细胞核与线粒体的分离
- 格式:ppt
- 大小:2.71 MB
- 文档页数:24
实验二细胞核,叶绿体,线粒体的分级分离与观察一、实验目的:1、了解细胞器分离的一般原理和方法;2、掌握分级分离的原理和注意事项;3、观察叶绿体的自发荧光和次生荧光。
4、线粒体的分离方法以及詹纳斯绿B超活染色的方法。
二、实验原理:将组织匀浆后悬浮在等渗介质中进行差速离心,是分离细胞器的常用方法。
细胞组分的分离在等渗溶液(0.35mol/L Nacl或0.4mol/L蔗糖溶液)中进行。
●将匀浆液在1000r/min的条件下离心2 min以全除组织残渣和未破碎的细胞。
●在3000r/min的条件下离心5 min,即可获得沉淀的叶绿体(混有部分细胞核)。
●上清液在高速冷冻条件下10000rpm/min分离10分钟,所得沉淀即为线粒体,可反复离心一次。
三、实验步骤:第一部分细胞核与叶绿体的分离与观察1、选取新鲜的菠菜叶,洗净搽干后去除叶梗和粗脉,称30g于150ml0.35mol/L Nacl溶液中,放入组织捣碎机(间歇);低速匀浆1min;间歇匀浆。
2、将匀浆用6层纱布过滤于烧杯中。
3、每小组取滤液4 ml在1000r/min的条件下离心2 min;4、取上清液在3000r/min的条件下离心5 min;沉淀即为叶绿体(混有部分细胞核);上清夜转入干净的离心管中用于线粒体分离。
5、叶绿体观察:➢将沉淀用0.35mol/L Nacl悬浮。
(浓度不要太高,不利于观察)➢取叶绿体悬液一滴于载玻片上,加盖玻片即可在普通光学显微镜和荧光显微镜下观察;➢取叶绿体悬液一滴于载玻片上,再滴加一滴0.01%吖啶橙染料,加盖玻片即可在荧光显微镜下观察。
第二部分线粒体的分级分离以及超活染色观察6 第4步获得的上清液在高速冷冻条件下10000rpm/min分离10分钟,所得沉淀即为线粒体,可反复离心一次。
收集沉淀涂片,用1%詹纳斯绿B染色5-10分钟,线粒体为蓝绿色圆形颗粒。
实验过程最好在0-4o C的条件下进行;如果在室温下,要迅速分离和观察。
细胞器线粒体的分离与观察高熹1120152430(李安一)(北京理工大学生命学院16121501班)摘要:差速离心法是交替使用低速和高速离心,用不同强度的离心力使具有不同质量的物质分级分离的方法。
此法适用于混合样品中各沉降系数差别较大组分的分离。
离心分离出细胞核与线粒体,进行染色,对细胞核和线粒体的形态进行观察并记录。
关键词:差速离心法;细胞核;线粒体;实验。
1 引言差速离心主要是采取逐渐提高离心速度的方法分离不同大小的细胞器。
起始的离心速度较低,让较大的颗粒沉降到管底,小的颗粒仍然悬浮在上清液中。
收集沉淀,改用较高的离心速度离心悬浮液,将较小的颗粒沉降,以此类推,达到分离不同大小颗粒的目的。
线粒体是真核细胞特有的,司能量转换的重要细胞器。
细胞种的能源物质——糖、脂肪、部分氨基酸在此进行最终的氧化,并通过偶联磷酸华生成ATP,供给细胞生理活动之需。
对线粒体的结构和功能的研究通常是在离体线粒体上进行的。
制备线粒体用组织匀浆在悬浮介质中进行差速离心的方法。
在一给定的离心场中(对于所使用的离心机,就是选用一定的转速),球形颗粒的沉降速度取决于它的密度、半径和悬浮介质的粘度。
在一均匀悬浮介质中离心某一时间内,组织匀降中的各种细胞器及其它内含物由于沉降速度不同而停留在高低不同的位置。
依次增加离心力和离心时间,就能使这些颗粒按其大小、轻重分批沉降在离心管底部,从而分批收集。
细胞器中最先沉降的是细胞核,其次是线粒体,其他更轻的细胞器和大分子可依次再分离。
悬浮介质通常用缓冲的蔗糖溶液,它比较接近细胞质的分散相,在一定程度上能保持细胞器的结构和酶的活性,在pH7.2的条件下,亚细胞组分不容易重新聚集,有利于分离。
整个操作过程应注意样品保持4,避免酶失活。
线粒体的鉴定用詹纳斯绿活染法。
詹纳斯绿B(janus green B)是对线粒体专一的活细胞染料,毒性很小,属于碱性染料,解离后带正电,由电性吸引而堆积在线粒体膜上。
实验五细胞核与线粒体的分级分离一、实验原理细胞内不同结构的比重和大小都不相同,在同一离心场内的沉降速度也不相同,根据这一原理,常用不同转速的离心法,将细胞内各种组分分级分离出来。
分离细胞器最常用的方法是将组织制成匀浆,在均匀的悬浮介质中用差速离心法进行分离,其过程包括组织细胞匀浆、分级分离和分析三步,这种方法已成为研究亚细胞成分的化学组成、理化特性及其功能的主要手段。
匀浆(homogenization)低温条件下,将组织放在匀浆器中,加入等渗匀浆介质(即0.25mol/l 蔗糖一0.003mol/l氯化钙)进行破碎细胞使之成为各种细胞器及其包含物的匀浆。
分级分离(fractionation)由低速到高速离心逐渐沉降。
先用低速使较大的颗粒沉淀,再用较高的转速,将浮在上清液中的颗粒沉淀下来,从而使各种细胞结构,如细胞核、线粒体等得以分离。
由于样品中各种大小和密度不同的颗粒在离心开始时均匀分布在整个离心管中,所以每级离心得到的第一次沉淀必然不是纯的最重的颗粒,须经反复悬浮和离心加以纯化。
分析分级分离得到的组分,可用细胞化学和生化方法进行形态和功能鉴定。
二、实验用品(一)材料和标本:小白鼠、冰块。
(二)器材和仪器:玻璃匀浆器、普通离心机、台式高速离心机、普通天平、光学显微镜、载玻片、盖玻片、刻度离心管、高速离心管、滴管、10ml量筒、25ml烧杯、玻璃漏斗、解剖剪、镊子、吸水纸、纱布、螬盘、平皿、牙签。
(三)试剂:0.25mol/L蔗糖一0.003mol/L氯化钙溶液、1%甲苯胺兰染液、0.02%詹纳斯绿B染液、0.9%NaCl溶液。
三、实验步骤(一)细胞核的分离提取1.用颈椎脱位的方法处死小白鼠后,迅速剖开腹部取出肝脏,剪成小块(去除结缔组织)尽快置于盛有0.9%NaCl的烧杯中,反复洗涤,尽量除去血污,用滤纸吸去表面的液体。
2.将湿重约1g的肝组织放在小平皿中,用量筒量取8ml预冷的0.25mol/l蔗糖一0.003mol /l氯化钙溶液,先加少量该溶液于平皿中,尽量剪碎肝组织后,再全部加入。
从细胞、组织中分离线粒体——差速离心法所需缓冲液:RSB(使细胞膨胀的低渗缓冲液)10mM NaCl(Mr=58.44)2.5mM MgCl2(Mr=203.3)10mM Tris-Cl(PH8.0)调PH值至7.4配法:0.5844g NaCl,0.5083g MgCl2·6H2O,10ml 1M Tris-Cl(PH8.0),调PH值至7.4,加水定容至1000ml。
2.5×MS缓冲液(MS缓冲液是用来保持细胞器张力的等渗缓冲液)525mM甘露醇(Mr=182.17)175mM 蔗糖(Mr=342.3)12.5mM Tris-Cl(PH8.0)2.5mM EDTA(PH8.0)调PH值至7.4配法:19.13g甘露醇,11.98g蔗糖,加150ml水溶解,加2.5ml 1M Tris-Cl(PH8.0),1ml 0.5M EDTA(PH8.0),用1M HCl调PH值至7.4,加水定容至200ml。
1×MS缓冲液210mM甘露醇70mM 蔗糖5mM Tris-Cl(PH8.0)1mM EDTA(PH8.0)调PH值至7.4配法:38.26g甘露醇,23.96g蔗糖,加800ml水溶解,加5ml 1M Tris-Cl(PH8.0),2ml 0.5M EDTA(PH8.0),用1M HCl调PH值至7.4,加水定容至1000ml。
注意事项:溶液、离心管应在冰上预冷,所有离心步骤都要在40C进行。
从细胞中分离线粒体:1.消化贴壁细胞,加5ml培液,转入10ml离心管中,1000rpm离心5min,弃上清,加5ml PBS,1000rpm离心5min,弃上清;悬浮细胞直接转入10ml离心管中,1000rpm离心5min,弃上清,加5ml PBS,1000rpm离心5min,弃上清。
2.用3ml冰上预冷的RSB重悬细胞,让细胞膨胀10min,加3×61uL PMSF贮液,在冰上匀浆,转速不宜过快。
细胞分裂的遗传物质分离机制细胞分裂是生物体生长和繁殖的基本过程之一。
在细胞分裂过程中,细胞核内的遗传物质需要准确分离,以保证新生细胞的遗传信息的准确传递。
细胞核内的遗传物质主要包括染色体和细胞质内的遗传物质,它们通过不同的机制进行分离。
1. 染色体的分离机制在细胞分裂的过程中,染色体的准确分离是非常重要的。
染色体的分离是通过两个重要的过程来实现的:核分裂和细胞质分裂。
核分裂是指染色体在细胞核内的准确分离过程。
在有丝分裂中,染色体首先复制,形成姐妹染色单体,然后通过纺锤体的作用将姐妹染色单体分离到细胞核的两个极端。
在无丝分裂中,染色体则通过核膜和核仁的分解与重组,然后直接分离。
细胞质分裂是指在细胞核分裂完成后,细胞质进行分离的过程。
细胞质分裂通常发生在核分裂之后,通过细胞骨架和细胞膜的重组来实现细胞质的分离。
在细胞质分裂过程中,细胞骨架和细胞膜的收缩带起到重要的作用,将细胞分为两个新的细胞。
2. 细胞质内遗传物质的分离机制除了染色体的分离外,细胞质内的遗传物质也需要准确分离。
细胞质内遗传物质的主要组成部分包括线粒体和叶绿体。
线粒体是细胞质内的细胞器,负责细胞的能量代谢。
在线粒体分裂时,其内部的DNA也需要分离。
线粒体分裂是一种独特的遗传物质分离方式,它通过线粒体自身的分裂过程来实现DNA的准确分离。
叶绿体是植物细胞和一些原生生物中的细胞器,是光合作用的场所。
在叶绿体分裂的过程中,其内部的DNA也需要分离。
叶绿体的分裂机制与线粒体类似,通过叶绿体自身的分裂过程来实现DNA的准确分离。
3. 遗传物质分离的重要性细胞分裂是生物体生长和繁殖的基本过程,遗传物质分离的准确性对于新生细胞的遗传信息的准确传递非常重要。
如果遗传物质分离出现错误,可能导致染色体不平衡和基因突变等问题,进而影响生物体的正常发育和功能。
细胞分裂的遗传物质分离机制不仅在自然界中起到重要的作用,也在科学研究和医学领域中具有重要价值。
对细胞分裂过程及其遗传物质分离机制的深入研究,可以帮助人们更好地理解生命的奥秘,并有助于探索和治疗与遗传有关的疾病。