第四讲概率分布
- 格式:ppt
- 大小:1.22 MB
- 文档页数:9
随机变量及其概率分布__________________________________________________________________________________ __________________________________________________________________________________1.理解随机变量的概念.2.熟练掌握随机变量的概率分布及其性质.3.能熟练应用两点分布.4.能熟练运用超几何分布.1.随机变量: 一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫做______________,通常用大写拉丁字母X ,Y ,Z (或小写希腊字母,,ξηζ)等表示,而用小写拉丁字母x ,y ,z (加上适当下标)等表示随机变量取的可能值.注意:(1)一般地,一个试验如果满足下列条件:i)试验可以在相同的情形下重复进行;ii)试验的所有可能结果是明确可知的,并且不止一个;iii)每次试验总是恰好出现这些可能结果中的一个,但在试验之前却不能肯定这次试验会出现哪一个结果.这种试验就是个随机试验,为了方便起见,也简称试验.(2)所谓随机变量,即是随机试验的试验结果与实数之间的一个对应关系,这种对应关系是人为建立起来的,但又是客观存在的.这与函数概念的本质是一样的,只不过在函数概念中,函数f (x )的自变量是实数,而在随机变量的概念中,随机变量的自变量是试验结果.(3)一般情况下,我们所说的随机变量有以下两种:如果随机变量所有可能的取值都能一一列举出来,这样的随机变量叫做离散型随机变量.如果随机变量可以取某一区间内的一切值,这样的随机变量叫做连续型随机变量.(4)离散型随机变量和连续型随机变量的区别:离散型随机变量和连续型随机变量都用来刻画随机试验所出现的结果,但二者之间又有着根本的区别:对于离散型随机变量来说,它所可能取的值为有限个或至多可列个,或者说能将它的可能取值,按一定次序一一列出,而连续型随机变量可取某一区间内的一切值,我们无法将其中的值一一列举.2.随机变量的概率分布一般地,假定随机变量X 有n 个不同的取值,它们分别是12,,,,n x x x L 且()i P X x ==,1,2,3,,i p i n =L ①,则称①为随机变量X 的概率分布列.3.随机变量概率分布的性质(1)对于随机变量的研究,我们不仅要知道随机变量取哪些值,随机变量所取的值表示的随机试验的结果,而且需要进一步了解随机变量:取这些值的概率.(2)随机事件A 的概率满足0≤P (A )≤1,必然事件U 的概率P (U )=1.若离散型随机变量X 所有可能取的值为12,,,.n x x x L X 取每一个值i x (i =1,2,…,n )的概率为(),i i P X x p ==○1_______________○2________________________.不满足上述两条性质的分布列一定是错误的,即分布列满足上述两条性质是该分布列正确的必要不充分条件.(3)由离散型随机变量分布列的概念可知,离散型随机变量各个可能的取值表示的事件是互斥的.因此,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.4.两点分布其中0<p <1,q =1-p ,则称随机变量X 服从参数为p 的两点分布.(1两点分布又称0-1分布.(2)两点分布的应用非常广泛,如抽取的彩券是否中奖、买回的一件产品是否为正品、新生婴儿的性别、投篮是否命中等等,都可用两点分布来研究.5.超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -MC n N,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,称随机变量X 服从超几何分布.类型一.随机变量及其概率分布例1:下面给出四个随机变量:①一高速公路上某收费站在1小时内经过的车辆数ξ;②一个沿直线y =x 进行随机运动的质点,它在该直线上的位置η;③某无线寻呼台1分钟内接到的寻呼次数ξ;④1天内的温度.η其中是离散型随机变量的是( ) A.①② B.③④ C ①③ D.②④例2:(1)从一个装有编号为1到10的10个球的袋中,任取1球,被取出的球的编号为X ; (2)一个袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X ;练习1:写出下列随机变量的可能取值,并说明随机变量所取的值所表示的随机试验的结果:抛掷甲、乙两枚骰子,所得点数之和为X .练习2:一袋中装有5个球,编号分别为1,2,3,4,5,从袋中同时取3个球,用ξ表示取出的3个球中的最大号码,写出随机变量ξ的概率分布.类型二.随机概率分布的性质例3:判断下列表格是否是随机变量的概率分布.类型三.两点分布例4:设某项试验的成功率是失败率的2倍,用随机变量ξ去描述1次试验的成功次数,则(0)P ξ=等于( )A.0B.12C.13D.23练习1:在抛掷一枚硬币的随机试验中,令1,0,X ⎧=⎨⎩正面向上正面向下;.如果正面向上的概率为p ;试写出随机变量X 的概率分布表.类型四.随机变量的概率分布性质的应用例5:设随机变量ξ的概率分布为()5kp ξ==ak (k =1,2,3,4,5). (1)求常数a 的值; (2)求3();5P ξ≥(3)求17().1010P ξ<<练习1:袋中有1个白球和4个黑球,每次从中任取一个球,每次取出的黑球不再放回,直到取出白球为止.求取球次数X 的概率分布表.类型五.超几何分布例6:设有产品100件,其中有次品5件,正品95件,现从中随机抽取20件,求抽到次品件数ξ的分布表.练习1:在20件产品中,有15件是一级品,5件是二级品,从中任取3件,其中至少有1件为二级品的概率是多少?1.抛掷2颗骰子,如果将所得点数之和记为,ξ那么ξ=4表示的随机试验结果是( ) A .2颗都是4点 B .1颗是1点,另1颗是3点C .2颗都是2点D .1颗是1点,另1颗是3点,或者2颗都是2点2.随机变量1ξ是1个无线寻呼台1min 内接到的寻呼次数;随机变量2ξ是某工厂加工的某种钢管的外径与规定的外径间的尺寸误差;随机变量3ξ是测量1名学生身高所得的数值(精确到1cm );随机变量4ξ是1个沿数轴进行随机运动的质点的坐标,那么这4个随机变量中,离散型随机变量的个数是( )A .1B .2C .3D .43.命题p :离散型随机变量只能取有限个值;命题q :只能取有限个值的随机变量是离散型随机变量;命题r :连续型随机变量可以取某一区间内的一切值;命题s :可以取某一区间内的一切值的随机变量是连续型随机变量,这四个命题中真命题的个数是( )A .1B .2C .3D .44.已知随机变量ξ的分布列为1(),2k P k k ξ===1,2,3,,,(24)n P ξ<≤L 则=( ) A.316B.14C.116 D.5165.下列变量中,不是随机变量的是( ) A.某人投篮6次投中的次数 B.某日上证收盘指数 C.标准大气压下,水沸腾时的温度 D.某人早晨在车站等出租车的时间 6.有20个零件,其中16个一等品,4个二等品,若从20个零件中任取3 个,那么至少有一个是一等品的概率是( )A.12164320C C C B.22164320C C C C.21316416320C C C C ⋅+ D.以上均不对 7.在15个村庄中,有7个村庄交通不太方便,现从中任意选10个村庄,用ξ表示这10个村庄中交通不方便的村庄数,下列概率中等于46781015C C C 的是( )A.(2)P ξ=B.(2)P ξ≤C.(4)P ξ=D.(4)P ξ≤8.如果随机变量ξ的分布列(),1,10k P k k ξ===2,3,4,那么15()22P ξ≤≤=______.__________________________________________________________________________________ __________________________________________________________________________________基础巩固1.如果ξ是一个离散型随机变量,那么下列命题中不正确的是( ) A.ξ取每个可能值的概率都是非负实数 B.ξ取所有可能值的概率之和为1C.ξ取在某一范围内的值的概率等于它取这个范围内各个值的概率之和D.ξ取在某一范围内的值的概率大于它取这个范围内各个值的概率之和2.袋中有完全相同的5个钢球,分别标有1、2、3、4、5五个号码,任意抽取2个球,设2个球号码之和为ξ,则ξ所有可能取值的个数是()A.25B.10C.7D.63.盒中有10个螺丝钉,其中有3个是坏的,现从盒中随机地抽取4个,那么310等于()A.恰有1个是坏的的概率B.恰有2个是好的的概率C.4个全是好的的概率D.至多有2个是坏的的概率4.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以710为概率的事件是()A.都不是一等品B.恰有1件一等品C.至少有1件一等品D.至多有1件一等品5.设X是一个离散型随机变量,其分布列为:则q等于()A.1 B.1±22C.1-22D.1+226.抛掷两枚骰子,所得点数之和记为,ξ那么5ξ=表示的随机试验的结果是() A.2枚都是5点 B.1枚是1点,另一枚是4点C.1枚是2点,另一枚是3点D.1权是1点,另一枚是4点,或者1枚是2点,另一枚是3点7.设随机变量ξ的分布列2()(),3kP k mξ==⋅k=1,2,3,则m的值为______.8.从有3个果球,5个白球的盒中取出2个球,其中恰有一个是白球的概率是________.能力提升1.一个骰子连续投2次,点数和为4的概率________.2.一个筒中放有标号分别为0,1,2,…,9的十根竹签,从中任取一根,记所取出的竹签上的号数为X.(1)写出X的概率分布;(2)分别求“25(,)32X∈”;“X>7”,“3.5≤X≤6”的概率.3.(2014陕西卷节选)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:5000.5设X表示在这块地上种植1季此作物的利润,求X的分布列.4.(2014福建卷节选)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:(1)顾客所获的奖励额为60元的概率;(2)顾客所获的奖励额的分布列.5.(2014天津卷节选)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X为选出的3名同学中女同学的人数,求随机变量X的分布列.6.一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列.。
第四讲 随机事件的概率知识梳理·双基自测 知识梳理知识点一 随机事件和确定事件(1)在条件S 下,__必然要发生__的事件,叫做相对于条件S 的必然事件,简称必然事件. (2)在条件S 下,__不可能发生__的事件,叫做相对于条件S 的不可能事件,简称不可能事件. (3)必然事件和不可能事件统称为相对于条件S 的确定事件,简称确定事件.(4)在条件S 下,__可能发生也可能不发生__的事件,叫做相对于条件S 的随机事件,简称随机事件. 知识点二 概率与频率(1)概率与频率的概念:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的__频数__,称事件A 出现的比例f n (A)=n An为事件A 出现的__频率__.(2)概率与频率的关系:对于给定的随机事件A ,由于事件A 发生的频率f n (A)随着试验次数的增加稳定于概率P(A),因此可以用__频率f n (A)__来估计概率P(A).知识点三 互斥事件与对立事件 事件的关系与运算 定义符号表示 包含 关系 若事件A__发生__,则事件B__一定发生__,这时称事件B 包含事件A(或称事件A 包含于事件B) __B ⊇A__ __(或A ⊆B)__ 相等 关系 若B ⊇A ,且__A ⊇B__,则称事件A 与事件B 相等 __A =B__ 并事件 (和事件) 若某事件发生__当且仅当事件A 发生或事件B 发生__,则称此事件为事件A 与事件B 的并事件(或和事件) __A ∪B__ __(或A +B)__ 交事件 (积事件) 若某事件发生__当且仅当事件A 发生且事件B 发生__,则称此事件为事件A 与事件B 的交事件(或积事件) __A∩B __ __(或AB)__ 互斥 事件 若A∩B 为__不可能__事件,则称事件A 与事件B 互斥 __A∩B=∅__ 对立 事件 若A∩B 为__不可能__事件,A ∪B 为__必然事件__,则称事件A 与事件B 互为对立事件__A∩B=∅,__ __且A ∪B =Ω__重要结论概率的几个基本性质(1)概率的取值范围:__0≤P(A)≤1__. (2)必然事件的概率:P(A)=__1__. (3)不可能事件的概率:P(A)=__0__.(4)概率的加法公式:若事件A 与事件B 互斥,则P(A ∪B)=__P(A)+P(B)__.(5)对立事件的概率:若事件A 与事件B 互为对立事件,则A ∪B 为必然事件.P(A ∪B)=__1__,P(A)=__1-P(B)__.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)事件发生的频率与概率是相同的.( × ) (2)在大量重复试验中,概率是频率的稳定值.( √ ) (3)两个事件的和事件是指两个事件都得发生.( × )(4)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能的.( × )(5)对立事件肯定是互斥事件、互斥事件不一定是对立事件.( √ ) 题组二 走进教材2.(P 121T4)一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是( D ) A .至多有一次中靶 B .两次都中靶 C .只有一次中靶D .两次都不中靶[解析] “至少有一次中靶”的对立事件是“两次都不中靶”.故选D . 3.(P 133T4)同时掷两个骰子,向上点数不相同的概率为__56__.[解析] 掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有6种,所以点数不相同的概率P =1-636=56.题组三 走向高考4.(2018·课标全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( B )A .0.3B .0.4C .0.6D .0.7[解析] 设事件A 为“不用现金支付”,事件B 为“既用现金支付也用非现金支付”,事件C 为“只用现金支付”,则P(A)=1-P(B)-P(C)=1-0.15-0.45=0.4故选B .5.(2020·新课标Ⅰ)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( A )A .15B .25C .12D .45[解析] O ,A ,B ,C ,D 中任取3点,共有 C 35=10种,即OAB ,OAC ,OAD ,OBC ,OBD ,OCD ,ABC ,ABD ,ACD ,BCD 十种, 其中共线为A ,O ,C 和B ,O ,D 两种, 故取到的3点共线的概率为P =210=15,故选A .考点突破·互动探究考点一 随机事件的关系——自主练透例1 (1)(2020·辽宁六校协作体期中)从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( C )A .“至少有1个白球”和“都是红球”B .“至少有2个白球”和“至多有1个红球”C .“恰有1个白球”和“恰有2个白球”D .“至多有1个白球”和“都是红球”(2)(2021·中山模拟)从1,2,3,4,5这5个数中任取两个数,其中: ①恰有一个是偶数和恰有一个是奇数; ②至少有一个是奇数和两个都是奇数; ③至少有一个是奇数和两个都是偶数; ④至少有一个是奇数和至少有一个是偶数. 上述事件中,是对立事件的是( C ) A .① B .②④ C .③D .①③(3)设条件甲:“事件A 与事件B 是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] (1)对于选项A ,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B ,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C ,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D ,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C .(2)从1,2,3,4,5这5个数中任取两个数有3种情况:一奇一偶,2个奇数,2个偶数.其中“至少有一个是奇数”包含一奇一偶或2个奇数这两种情况,它与两个都是偶数是对立事件.又①中的事件可以同时发生,不是对立事件,故选C .(3)若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P(A)+P(B)=1;投掷一枚硬币3次,满足P(A)+P(B)=1,但A ,B 不一定是对立事件,如:事件A :“至少出现一次正面”,事件B :“出现3次正面”,则P(A)=78,P(B)=18,满足P(A)+P(B)=1,但A ,B 不是对立事件,故甲是乙的充分不必要条件.名师点拨(1)准确把握互斥事件与对立事件的概念:①互斥事件是不可能同时发生的事件,但也可以同时不发生;②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,既有且仅有一个发生.(2)判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.〔变式训练1〕(2021·宁夏检测)抽查10件产品,设事件A 为“至少有2件次品”,则事件A 的对立事件为( B ) A .至多有2件次品 B .至多有1件次品 C .至多有2件正品D .至少有2件正品[解析] ∵“至少有n 个”的反面是“至多有n -1个”,又∵事件A“至少有2件次品”,∴事件A 的对立事件为“至多有1件次品”.考点二 随机事件的概率——多维探究 角度1 频率与概率例2 (2018·北京高考)电影公司随机收集了电影的有关数据,经分类整理得到下表: 电影类型 第一类 第二类 第三类 第四类 第五类 第六类 电影部数 140 50 300 200 800 510 好评率0.40.20.150.250.20.1(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化.那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)[解析] (1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2 000, 第四类电影中获得好评的电影部数是200×0.25=50. 故所求概率为502 000=0.025.(2)由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1 =56+10+45+50+160+51 =372.故所求概率估计为1-3722 000=0.814.(3)增加第五类电影的好评率,减少第二类电影的好评率. 角度2 统计与概率例3 (2021·云南名校适应性月考)下边茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( A )甲 乙 9 8 8 3 3 7 2 1 09● 9A .45B .25C .910D .710[解析] 记其中被污损的数字为x ,由题知甲的5次综合测评的平均成绩是15×(80×2+90×3+8+9+2+1+0)=90,乙的5次综合测评的平均成绩是15×(80×3+90×2+3+3+7+x +9)=442+x 5, 令90>442+x 5,解得x <8,即x 的取值可以是0~7,因此甲的平均成绩超过乙的平均成绩的概率是810=45.故选A .名师点拨概率和频率的关系概率可看成频率在理论上的稳定值,它从数量上反映了随机事件发生的可能性的大小,它是频率的科学抽象,当试验次数越来越多时频率向概率靠近,只要次数足够多,所得频率就近似地当作随机事件的概率.〔变式训练2〕(1)(2021·黑龙江大庆质检)某公司欲派甲、乙、丙3人到A ,B 两个城市出差,每人只去1个城市,且每个城市必须有人去,则A 城市恰好只有甲去的概率为( B )A .15B .16C .13D .14(2)(2021·吉林模拟)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.②估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;③如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?[解析] (1)总的派法有:(甲、乙A),(丙B);(甲、乙B),(丙A);(甲、丙A),(乙B);(甲、丙B),(乙A);(乙、丙A),(甲B);(乙、丙B),(甲A),共6种(或C 23A 22=6(种)),A 城市恰好只有甲去有一种,故所求概率P =16.(2)①从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.②从统计表可以看出,在这1 000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.③与①同理.可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 考点三 互斥事件、对立事件的概率——师生共研例4 (1)某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A 、B 、C .求:①P(A),P(B),P(C); ②1张奖券的中奖概率;③1张奖券不中特等奖且不中一等奖的概率.(2)(2021·河南新乡模拟)从5个同类产品(其中3个正品,2个次品)中,任意抽取2个,下列事件发生概率为910的是( C )A .2个都是正品B .恰有1个是正品C .至少有1个正品D .至多有1个正品[解析] (1)①P(A)=11 000,P(B)=101 000=1100,P(C)=501 000=120.②因为事件A ,B ,C 两两互斥,所以P(A ∪B ∪C)=P(A)+P(B)+P(C)=11 000+1100+120=611 000.故1张奖券的中奖概率为611 000.③P(A ∪B )=1-P(A +B)=1-⎝⎛⎭⎪⎫11 000+1100=9891 000.故1张奖券不中特等奖且不中一等奖的概率为9891 000.(2)从5个产品中任取2个的取法有C 25=10种,其中2个都是正品的取法有C 23=3种,故2个都是正品的概率P 1=310;其对立事件是“至多有1个正品”,概率为P 2=1-P 1=1-310=710.恰有1个正品的取法有C 13·C 12=6种,故恰有1个正品的概率P 3=610=35.至少有1个正品的概率P 4=P 1+P 3=310+610=910.名师点拨求复杂的互斥事件的概率的两种方法(1)直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率求和公式计算.(2)间接求法,先求此事件的对立事件的概率,再用公式P(A)=1-P(A),即运用逆向思维(正难则反).特别是“至多”“至少”型题目,用间接求法就显得较简便.〔变式训练3〕(1)(2020·西安二模)2021年某省新高考将实行“3+1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B( A )A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件(2)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.则该地1位车主至少购买甲、乙两种保险中的一种的概率为__0.8__;该地1位车主甲、乙两种保险都不购买的概率为__0.2__.[解析](1)2021年某省新高考将实行“3 +1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B不能同时发生,但能同时不发生,故事件A和B是互斥事件,但不是对立事件,故A正确.故选A.(2)记A表示事件:该车主购买甲种保险;B表示事件:该车主购买乙种保险但不购买甲种保险;C表示事件:该车主至少购买甲、乙两种保险中的一种;D表示事件:该车主甲、乙两种保险都不购买.①由题意得P(A)=0.5,P(B)=0.3,又C=A∪B,所以P(C)=P(A∪B)=P(A)+P(B)=0.5+0.3=0.8.②因为D与C是对立事件,所以P(D)=1-P(C)=1-0.8=0.2.名师讲坛·素养提升用正难则反的思想求对立事件的概率例5 (1)(2020·浙江湖州期末,改编)现有5个不同编号的小球,其中黑色球2个,白色球2个,红色球1个,若将其随机排成一列,则相同颜色的球都不相邻的概率是__45__.(2)(2021·洛阳模拟)经统计,在某储蓄所一个营业窗口等候的人数及相应的概率如下:排队人数0 1 2 3 4 5人及5人以上概率0.1 0.16 0.3 0.3 0.1 0.04求:(1)至多2人排队等候的概率是多少?(2)至少3人排队等候的概率是多少?[解析](1)“相同颜色的球不都相邻”的对立事件为“相同颜色的球都相邻”,记为事件A.因5个不同编号的小球排列有A55=120种排法,“相同颜色的球都相邻”的排法有A22A22A33=24种排法,∴所求概率P=|-P(A)|=1-24120=45.(2)记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F互斥.①记“至多2人排队等候”为事件G,则G=A∪B∪C,所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.②解法一:记“至少3人排队等候”为事件H,则H=D∪E∪F,所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.解法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.名师点拨“正难则反”的思想是一种常见的数学思想,如反证法、补集的思想都是“正难则反”思想的体现.在解决问题时,如果从问题的正面入手比较复杂或不易解决,那么尝试采用“正难则反”思想往往会起到事半功倍的效果,大大降低题目的难度.在求对立事件的概率时,经常应用“正难则反”的思想,即若事件A与事件B互为对立事件,在求P(A)或P(B)时,利用公式P(A)=1-P(B)先求容易的一个,再求另一个.〔变式训练4〕某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人) x 30 25 y 10结算时间(分钟/人)1 1.52 2.5 3(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)[解析](1)由已知得25+y+10=55,x+30=45,所以x=15,y= 20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).(2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P(A1)=20100=1 5,P(A2)=10100=110.P(A)=1-P(A1)-P(A2)=1-15-110=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.。
概率分布和概率分布律【原创版】目录一、概率分布的定义和意义二、概率分布律的概念和性质三、概率分布律的类型和应用四、总结正文一、概率分布的定义和意义概率分布是指用于表述随机变量取值的概率规律。
在概率论中,随机变量是描述随机现象的重要工具,而概率分布则是用来描述随机变量取值的可能性。
事件的概率表示了一次试验中某一个结果发生的可能性大小。
若要全面了解试验,则必须知道试验的全部可能结果及各种可能结果发生的概率,即随机试验的概率分布。
概率分布的研究具有重要的理论意义和实际应用价值。
在理论上,概率分布是概率论的一个重要研究对象,可以深入研究随机现象的内在规律;在实际应用中,概率分布可以用于风险评估、数据分析、可靠性分析等领域。
二、概率分布律的概念和性质概率分布律是指随机变量取某个值的概率。
具体来说,假设随机变量X 的概率分布为 F(x),那么 F(x) 表示 X 取值小于等于 x 的概率。
概率分布律具有以下性质:1.0 ≤ F(x) ≤ 1,即概率分布律的取值范围在 0 到 1 之间。
2.F(-∞) = 0,即随机变量取负无穷大的概率为 0。
3.F(+∞) = 1,即随机变量取正无穷大的概率为 1。
4.F(x) 是单调递增的,即随着 x 的增加,F(x) 的值也递增。
5.F(x) 是右连续的,即对于任意一个 x,有 F(x+) = F(x)。
三、概率分布律的类型和应用概率分布律可以分为离散型和连续型两种。
离散型概率分布律是指随机变量取有限个或可数无限个值的概率分布律,如伯努利分布、二项分布等;连续型概率分布律是指随机变量取值在一个区间内的概率分布律,如正态分布、指数分布等。
概率分布律在实际应用中有广泛的应用,例如在风险评估中,可以通过概率分布律来估计某一风险发生的可能性;在数据分析中,可以通过概率分布律来分析数据的分布特征;在可靠性分析中,可以通过概率分布律来评估产品的寿命等。
四、总结概率分布是描述随机变量取值的概率规律,是概率论的一个重要研究对象。
统计学中的概率分布统计学是一门研究收集、整理、分析和解释数据的学科。
它在各个领域都有广泛的应用,从市场调查到医学研究,从金融分析到环境科学。
而概率分布则是统计学中的重要概念之一,它描述了随机变量的取值可能性。
一、概率分布的基本概念概率分布是指随机变量的所有可能取值及其相应的概率。
随机变量是一个变量,其取值由随机事件决定。
例如,掷硬币的结果可以是正面或反面,这就是一个二元随机变量。
在概率分布中,有两种基本类型:离散概率分布和连续概率分布。
离散概率分布用于描述离散随机变量,即取有限或可数个数值的随机变量。
常见的离散概率分布包括伯努利分布、二项分布和泊松分布。
伯努利分布用于描述只有两个可能结果的随机试验,如抛硬币的结果。
二项分布则用于描述多次独立重复的伯努利试验的结果。
泊松分布则用于描述在给定时间或空间单位内发生的事件的次数。
连续概率分布则用于描述连续随机变量,即可以取任意实数值的随机变量。
最常见的连续概率分布是正态分布,也称为高斯分布。
正态分布在自然界和人类行为中广泛存在,例如身高、体重等。
除了正态分布,还有指数分布、均匀分布和伽马分布等。
二、概率分布的特征概率分布有一些重要的特征,包括期望值、方差和标准差。
期望值是随机变量的平均值,它描述了随机变量的中心位置。
方差衡量了随机变量取值的离散程度,而标准差是方差的平方根。
概率分布还有一个重要的特征是分位数。
分位数是指将概率分布分成几个部分的点。
最常见的分位数是中位数,它将概率分布分成两个相等的部分。
其他常见的分位数包括四分位数和百分位数。
三、概率分布的应用概率分布在统计学中有广泛的应用。
首先,它可以用于描述和分析数据。
通过将数据与适当的概率分布进行比较,可以确定数据是否符合某种分布模型。
这对于数据的进一步分析和解释至关重要。
其次,概率分布可以用于进行推断统计学。
通过样本数据,可以估计总体参数的值,并进行假设检验。
例如,可以使用正态分布来进行总体均值的推断。