概率与概率分布
- 格式:ppt
- 大小:477.50 KB
- 文档页数:2
第5章 概率与概率分布一、思考题、频率与概率有什么关系 、独立性与互斥性有什么关系、根据自己的经验体会举几个服从泊松分布的随机变量的实例。
、根据自己的经验体会举几个服从正态分布的随机变量的实例。
二、练习题、写出下列随机试验的样本空间:(1)记录某班一次统计学测试的平均分数。
(2)某人在公路上骑自行车,观察该骑车人在遇到第一个红灯停下来以前遇到的绿灯次数。
(3)生产产品,直到有10件正品为止,记录生产产品的总件数。
、某市有50%的住户订阅日报,有65%的住户订阅晚报,有85%的住户至少订两种报纸中的一种,求同时订这两种报纸的住户的百分比。
、设A 与B 是两个随机事件,已知A 与B 至少有个发生的概率是31,A 发生且B 不发生的概率是91,求B 发现的概率。
、设A 与B 是两个随机事件,已知P(A)=P(B)=31,P(A |B)= 61,求P(A |B ) 、有甲、乙两批种子,发芽率分别是和。
在两批种子中各随机取一粒,试求: (1)两粒都发芽的概率。
(2)至少有一粒发芽的概率。
(3)恰有一粒发芽的概率。
、某厂产品的合格率为96%,合格品中一级品率为75%,从产品中任取一件为一级品的概率是多少、某种品牌的电视机用到5000小时未坏的概率为43,用到10000小时未坏的概率为21。
现在有一台这种品牌的电视机已经用了5000小时未坏,它能用到10000小时的概率是多少、某厂职工中,小学文化程度的有10%,初中文化程度的有50%,高中及高中以上文化程度的有40%,25岁以下青年在小学、初中、高中及高中以上文化程度各组中的比例分别为20%,50%,70%。
从该厂随机抽取一名职工,发现年龄不到25岁,他具有小学、初中、高中及高中以上文化程度的概率各为多少、某厂有A ,B ,C ,D 四个车间生产同种产品,日产量分别占全厂产量的30%,27%,25%,18%。
已知这四个车间产品的次品率分别为,,和,从该厂任意抽取一件产品,发现为次品,且这件产品是由A ,B 车间生产的分布。
第六章概率与概率分布推论统计研究如何依据样本资料对总体性质作出推断,这是以概率论为基础的。
通过概率论,可以知道在一定条件下,总体的各种抽样结果所具有的概率特性。
然后,推论统计依据这些概率特性,研究在发生了某种抽样结果的情况下总体参数是什么,或者对社会研究中提出的某种假设进行检定。
学习推论统计必须首先对概率论有所了解。
第一节概率论1.随机现象和随机事件概率是与随机现象相联系的一个概念。
所谓随机现象,是指事先不能精确预言其结果的现象。
随机现象具有非确定性,但内中也有一定的规律性。
例如,事先我们虽不能准确预言一个婴儿出生后的性别,但大量观察,我们会发现妇女生男生女的可能性几乎一样大,都是0.5,这就是概率。
随机现象具有在一定条件下呈现多种可能结果的特性。
但由于到底出现哪种结果,却又无法事先预言。
因此,人们把随机现象的结果以及这些结果的集合体称作随机事件,简称事件。
当随机事件发生的可能性能用数量大小表示出来时,我们就得到了概率。
在统计学中,我们把类似掷一枚硬币的行为(或对某一随机现象进行观察)称之为随机试验。
随机试验必须符合以下三个条件:①它可以在相同条件下重复进行;②试验的所有结果事先已知;③每次试验只出现这些可能结果中的一个,但不能预先断定出现哪个结果。
随机试验的每一个可能的结果,称为基本事件(或称样本点);所有可能出现的基本事件的集合,称为样本空间,记为Ω。
随机事件(可记为A、B、C等)如果仅含样本空间中的一个样本点,该事件称为简单事件;随机事件如果含样本空间中的一个以上的样本点,该事件称为复合事件。
换言之,复合事件是样本空间Ω的某个子集。
随机事件有两种极端的情况:一种是必然会出现的结果,称为必然事件;另一种是不可能出现的结果,称为不可能事件。
从样本空间来看,必然事件是由其全部基本事件组成的,可记为S;不可能事件则不含任何基本事件,可记为Φ。
2.事件之间的关系客观事物之间总是存在着一定的关系,随机事件之间也不例外。
概率分布和概率分布律【原创版】目录一、概率分布的定义和意义二、概率分布律的概念和性质三、概率分布律的类型和应用四、总结正文一、概率分布的定义和意义概率分布是指用于表述随机变量取值的概率规律。
在概率论中,随机变量是描述随机现象的重要工具,而概率分布则是用来描述随机变量取值的可能性。
事件的概率表示了一次试验中某一个结果发生的可能性大小。
若要全面了解试验,则必须知道试验的全部可能结果及各种可能结果发生的概率,即随机试验的概率分布。
概率分布的研究具有重要的理论意义和实际应用价值。
在理论上,概率分布是概率论的一个重要研究对象,可以深入研究随机现象的内在规律;在实际应用中,概率分布可以用于风险评估、数据分析、可靠性分析等领域。
二、概率分布律的概念和性质概率分布律是指随机变量取某个值的概率。
具体来说,假设随机变量X 的概率分布为 F(x),那么 F(x) 表示 X 取值小于等于 x 的概率。
概率分布律具有以下性质:1.0 ≤ F(x) ≤ 1,即概率分布律的取值范围在 0 到 1 之间。
2.F(-∞) = 0,即随机变量取负无穷大的概率为 0。
3.F(+∞) = 1,即随机变量取正无穷大的概率为 1。
4.F(x) 是单调递增的,即随着 x 的增加,F(x) 的值也递增。
5.F(x) 是右连续的,即对于任意一个 x,有 F(x+) = F(x)。
三、概率分布律的类型和应用概率分布律可以分为离散型和连续型两种。
离散型概率分布律是指随机变量取有限个或可数无限个值的概率分布律,如伯努利分布、二项分布等;连续型概率分布律是指随机变量取值在一个区间内的概率分布律,如正态分布、指数分布等。
概率分布律在实际应用中有广泛的应用,例如在风险评估中,可以通过概率分布律来估计某一风险发生的可能性;在数据分析中,可以通过概率分布律来分析数据的分布特征;在可靠性分析中,可以通过概率分布律来评估产品的寿命等。
四、总结概率分布是描述随机变量取值的概率规律,是概率论的一个重要研究对象。
第5章 概率与概率分布一、思考题5.1、频率与概率有什么关系?5.2、独立性与互斥性有什么关系?5.3、根据自己的经验体会举几个服从泊松分布的随机变量的实例。
5.4、根据自己的经验体会举几个服从正态分布的随机变量的实例。
二、练习题5.1、写出下列随机试验的样本空间:(1)记录某班一次统计学测试的平均分数。
(2)某人在公路上骑自行车,观察该骑车人在遇到第一个红灯停下来以前遇到的绿灯次数。
(3)生产产品,直到有10件正品为止,记录生产产品的总件数。
5.2、某市有50%的住户订阅日报,有65%的住户订阅晚报,有85%的住户至少订两种报纸中的一种,求同时订这两种报纸的住户的百分比。
5.3、设A 与B 是两个随机事件,已知A 与B 至少有个发生的概率是31,A 发生且B 不发生的概率是91,求B 发现的概率。
5.4、设A 与B 是两个随机事件,已知P(A)=P(B)=31,P(A |B)= 61,求P(A |B ) 5.5、有甲、乙两批种子,发芽率分别是0.8和0.7。
在两批种子中各随机取一粒,试求:(1)两粒都发芽的概率。
(2)至少有一粒发芽的概率。
(3)恰有一粒发芽的概率。
5.6、某厂产品的合格率为96%,合格品中一级品率为75%,从产品中任取一件为一级品的概率是多少?5.7、某种品牌的电视机用到5000小时未坏的概率为43,用到10000小时未坏的概率为21。
现在有一台这种品牌的电视机已经用了5000小时未坏,它能用到10000小时的概率是多少?5.8、某厂职工中,小学文化程度的有10%,初中文化程度的有50%,高中及高中以上文化程度的有40%,25岁以下青年在小学、初中、高中及高中以上文化程度各组中的比例分别为20%,50%,70%。
从该厂随机抽取一名职工,发现年龄不到25岁,他具有小学、初中、高中及高中以上文化程度的概率各为多少?5.9、某厂有A ,B ,C ,D 四个车间生产同种产品,日产量分别占全厂产量的30%,27%,25%,18%。
概率分布和概率分布律概率分布是概率论中的一个重要概念,它描述了随机变量的所有可能取值及其对应的概率。
概率分布可以用来描述随机事件发生的可能性大小,是统计分析和推断的基础。
概率分布可以分为离散型和连续型两种。
离散型概率分布是指随机变量只能取有限个或可列个取值的情况,其概率可以用概率分布律表示。
概率分布律是指在离散型概率分布中,每个取值对应的概率。
以掷骰子为例,假设一个骰子的每个面上的数字分别为1、2、3、4、5、6。
如果我们想知道掷骰子后出现某个数字的概率,就可以使用概率分布律来描述。
在这个例子中,每个数字出现的概率都是1/6,因为骰子是均匀的,每个面出现的可能性是相等的。
所以,掷骰子的概率分布律可以表示为:P(1) = 1/6P(2) = 1/6P(3) = 1/6P(4) = 1/6P(5) = 1/6P(6) = 1/6这个概率分布律告诉我们,在掷骰子的过程中,每个数字出现的概率都是1/6。
除了离散型概率分布律,还有连续型概率分布。
连续型概率分布是指随机变量的取值可以是任意的实数,其概率可以用概率密度函数表示。
概率密度函数是描述连续型概率分布的函数,它的值并不表示概率,而是在某个取值附近的概率密度。
以正态分布为例,正态分布是一种常见的连续型概率分布,也被称为高斯分布。
它的概率密度函数可以用一个钟形曲线来表示,曲线的中心对应着平均值,曲线的宽度对应着标准差。
正态分布在自然界中广泛存在,例如身高、体重等。
正态分布的概率密度函数形式如下:f(x) = (1 / (σ * sqrt(2π))) * exp(-((x - μ)^2) / (2σ^2))其中,μ表示平均值,σ表示标准差。
概率密度函数告诉我们,在正态分布中,随机变量取某个值的概率密度是多少。
概率分布和概率分布律在统计学中扮演着重要的角色。
它们可以帮助我们理解随机事件的分布情况,预测未来事件的可能性,进行统计推断和假设检验等。
在实际应用中,我们经常使用概率分布和概率分布律来描述和分析数据,以便更好地了解数据的特征和规律。
概率与概率分布概率是数学中的一个重要概念,它描述了事件发生的可能性。
在现实生活和各个学科领域中,概率都有着广泛的应用。
而概率分布则是概率理论的基础,用于描述不同事件发生的概率分布情况。
本文将介绍概率的定义,概率的性质以及概率分布的类型和应用。
一、概率的定义与性质1.1 概率的定义概率是指某个事件在特定条件下发生的可能性。
它通常用一个介于0和1之间的数值来表示,其中0代表不可能发生的事件,而1代表必然发生的事件。
概率的计算方法可以通过实验观察、理论推导或者数据统计等方式得到。
1.2 概率的性质概率具有以下几个重要的性质:1) 非负性:概率的值始终是非负的,即概率不会为负数。
2) 正则性:所有可能事件的概率之和等于1,即P(Ω) = 1,其中Ω代表样本空间。
3) 可列可加性:对于任意一组互不相容的事件Ai(i = 1,2,...,n),它们的概率之和等于各个事件概率的和,即P(A1∪A2∪...∪An) =P(A1)+ P(A2)+ ...+ P(An)。
二、概率分布的概念与类型2.1 概率分布的概念概率分布是用于描述随机变量可能取值的概率情况的函数或表格。
随机变量是实验结果的函数,它的取值是根据概率分布来确定的。
2.2 常见的概率分布类型2.2.1 离散概率分布离散概率分布是指随机变量的取值只能是离散的、有限或可数个的情况。
常见的离散概率分布有:1) 伯努利分布:描述了只有两个可能结果的随机试验,如抛硬币的结果。
2) 二项分布:用于描述重复n次、每次试验只有两个可能结果的情况。
3) 泊松分布:适用于描述单位时间或单位面积内随机事件发生次数的概率分布。
2.2.2 连续概率分布连续概率分布是指随机变量的取值可以是连续的、无限多个的情况。
常见的连续概率分布有:1) 均匀分布:描述在一个区间内每个取值出现的可能性相等的概率分布。
2) 正态分布:也称为高斯分布,是最常见的连续概率分布之一,广泛应用于各个领域。
概率密度与概率分布函数概率——随机事件发⽣的可能性⼤⼩
对于离散型随机变量,概率是指某⼀个随机事件发⽣的可能性,⽐如
P(X=x i)=p i
x表⽰所有随机事件,i表⽰其中的⼀个取值。
概率分布表⽰所有随机事件的概率规律,⽤于了解实验的全部可能结果及其发⽣的概率,⽐如
P(X=x i)=p i,i=1,2,...,n
⽤图表表⽰为
X x1x2...x n
P p1p2...p n
离散型随机变量的概率分布函数可以表⽰为
F(x)=P(X<x)=∑
x i<x p
i
概率分布函数为概率的累加。
对于连续型随机变量,讨论某⼀点的概率没有意义,所以引⼊概率密度(函数),表⽰⼀段区间的概率除以该区间的长度。
常⽤f(x)表⽰,有
∫∞−∞f(x)dx=1
连续型随机变量的概率分布函数
F(x)=∫x−∞f(x)dx
概率分布函数为概率密度的积分。
概率分布函数的导数为概率密度,即
f(x)=F′(x)
概率分布函数为概率的累加或概率密度的积分,由于概率或概率密度都是⾮负的,概率分布函数是⼀个单调⾮降函数。
平时我们遇到的正态分布、瑞利分布等就是指离散型随机变量的概率分布或连续型随机变量的概率密度函数。
参考:
Processing math: 100%。
概率分布的计算概率分布的计算是统计学中最基础的概念之一。
它描述了在某个随机事件中,各个可能结果发生的概率。
概率分布在各个领域都有广泛的应用,例如金融、医学、天气预报等。
在本文中,我们将介绍概率分布的基本概念、常见的概率分布类型以及概率分布的计算方法。
1. 概率和概率分布概率是描述某个事件发生的可能性的数值。
它的取值范围在0到1之间,0表示不可能发生,1表示一定会发生。
概率分布则是表示一个随机变量所有可能取值及其对应的概率的函数。
2. 常见的概率分布类型2.1 二项分布二项分布描述了进行多次独立重复试验中成功的次数的概率。
每次试验只有两个可能的结果,称为“成功”和“失败”。
例如,抛掷硬币就是一个二项分布。
二项分布的概率质量函数为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k),其中,n表示试验的总次数,k表示成功的次数,p表示每次试验成功的概率。
2.2 正态分布正态分布是自然界中最常见的分布之一。
它可用于描述众多随机现象,例如人的身高、体重等。
正态分布的概率密度函数为:f(x) =(1/(σ√(2π))) * exp(-(x-μ)²/(2σ²)),其中,μ表示期望值,σ表示标准差。
2.3 泊松分布泊松分布用于描述单位时间、单位面积或单位体积内随机事件发生的次数。
例如,电话中断次数、交通事故数量等都可以用泊松分布来描述。
泊松分布的概率质量函数为:P(X=k) = (e^(-λ) * λ^k) / k!,其中,λ表示单位时间、单位面积或单位体积内事件发生的平均次数。
3. 概率分布的计算方法概率分布的计算方法有两种:经验法和理论法。
3.1 经验法经验法是通过观测和统计数据来计算概率分布。
它适用于实际数据收集和分析,但需要大量的数据样本和时间。
在经验法中,可以通过频率来估计概率,即事件发生的次数除以总次数。
3.2 理论法理论法是通过特定的数学模型来计算概率分布。