统计学习题 第六章 概率与概率分布
- 格式:doc
- 大小:208.50 KB
- 文档页数:9
第5章概率与概率分布练习题5.1写出下列随机事件的基本空间:(1)抛三枚硬币。
(2)把两个不同颜色的球分别放入两个格子。
(3)把两个相同颜色的球分别放入两个格子。
(4)灯泡的寿命(单位:h)。
(5)某产品的不合格率(%)。
5.2假定某布袋中装有红、黄、蓝、绿、黑等5个不同颜色的玻璃球,一次从中取出3个球,请写出这个随机试验的基本空间。
5.3试定义下列事件的互补事件:(1)A={先后投掷两枚硬币,都为反面}。
(2)A={连续射击两次,都没有命中目标}。
(3)A={抽查三个产品,至少有一个次品}。
5.4向两个相邻的军火库发射一枚导弹,如果命中第一个和第二个军火库的概率分别是、,而且只要命中其中任何一个军火库都会引起另一个军火库的爆炸。
试求炸毁这两个军火库的概率有多大。
5.5已知某产品的合格率是98%,现有一个检查系统,它能以的概率正确的判断出合格品,而对不合格品进行检查时,有的可能性判断错误(错判为合格品),该检查系统产生错判的概率是多少5.6有一男女比例为51:49的人群,已知男人中5%是色盲,女人中%是色盲,现随机抽中了一个色盲者,求这个人恰好是男性的概率。
5.7消费者协会经过调查发现,某品牌空调器有重要缺陷的产品数出现的概率分布如下:根据这些数值,分别计算:(1)有2到5个(包括2个与5个在内)空调器出现重要缺陷的可能性。
(2)只有不到2个空调器出现重要缺陷的可能性。
(3)有超过5个空调器出现重要缺陷的可能性。
5.8设X是参数为n 4和p 0.5的二项随机变量。
求以下概率:(1)P(X 2)。
( 2)P(X 2)。
5.9 一条食品生产线每8小时一班中出现故障的次数服从平均值为的泊松分布。
求:(1)晚班期间恰好发生两次事故的概率。
(2)下午班期间发生少于两次事故的概率。
(3)连续三班无故障的概率。
5.10假定X服从N 12,n 7,M 5的超几何分布。
求:(1)P(X 3)。
(2)P(X 2)。
高中数学概率与统计概率分布练习题及答案1. 离散型随机变量问题1一次买彩票,抽奖号码是从1到30的整数,每个号码中奖的概率是相等的。
求以下事件的概率:a) 中奖号码小于等于10b) 中奖号码是偶数c) 中奖号码是质数解答1a) 中奖号码小于等于10的概率为10/30,即1/3。
b) 中奖号码是偶数的概率为15/30,即1/2。
c) 中奖号码是质数的概率为8/30,即4/15。
问题2某商品的销售量每天可以是0、1、2或3箱,各箱销售的概率分别为0.1、0.3、0.4和0.2。
求销售量的概率分布表。
解答2销售量的概率分布表如下:销售量 | 0 | 1 | 2 | 3--- | --- | --- | --- | ---概率 | 0.1 | 0.3 | 0.4 | 0.22. 连续型随机变量问题3某地每天的气温符合正态分布,均值为20摄氏度,标准差为3摄氏度。
求以下事件的概率:a) 气温大于等于15摄氏度b) 气温在15摄氏度到25摄氏度之间解答3a) 气温大于等于15摄氏度的概率可以通过计算标准正态分布的累积概率得到,约为0.8413。
b) 气温在15摄氏度到25摄氏度之间的概率可以通过计算标准正态分布的累积概率得到,约为0.6827。
问题4某工厂生产的铆钉的长度符合正态分布,均值为5毫米,标准差为0.2毫米。
若从工厂中随机抽取一只铆钉,求其长度在5.2毫米到5.5毫米之间的概率。
解答4将问题转化为标准正态分布,得到长度在1到2.5之间的概率约为0.3944。
以上是高中数学概率与统计概率分布的练习题及答案。
第6章 参数估计选择题1.设n X X X ,...,,21是来自正态总体X 的简单随机样本,X 的分布函数F(x;θ)中含未知参数,则(A )用矩估计法和最大似然估计法求出的θ的估计量相同 (B) 用矩估计法和最大似然估计法求出的θ的估计量不同 (C )用矩估计法和最大似然估计法求出的θ的估计量不一定相同 (D) 用最大似然估计法求出的θ的估计量是唯一的2.设n X X X ,...,,21是来自正态总体X 的简单随机样本,EX=μ,DX=σ2,其中μ,σ2均为未知参数,X =1ˆμ,12ˆX =μ,下面结论哪个是错误的。
(A )X =1ˆμ是μ的无偏估计 (B) 12ˆX =μ是μ的无偏估计 (C )X =1ˆμ比12ˆX =μ 有效 (D) ∑=-ni i X n 12)(1μ是σ2的最大似然估计量 3.设n X X X ,...,,21是来自正态分布总体N(μ,σ2)的简单随机样本,其中数学期望μ已知,则总体方差σ2 的最大似然估计量是(A ) ∑=--n i i X X n 12)(11 (B) ∑=-ni i X X n 12)(1 (C ) ∑=--n i i X n 12)(11μ (D) ∑=-n i i X n 12)(1μ 4.已知总体X 在区间[0,θ]上均匀分布,其中θ是未知参数,设n X X X ,...,,21是来自X 的简单随机样本,X 是样本均值,},...,max {1)(n n X X X = 是最大观测值,则下列选项错误的是 (A ))(n X 是θ的最大似然估计量 (B) )(n X 是θ的无偏估计量 (C )X 2是θ的矩估计量 (D) X 2是θ的无偏估计量5. 设总体X~N(μ1,σ2),总体Y~N(μ2,σ2),m X X X ,...,,21和n Y Y Y ,...,,21分别是来自总体X和Y 的简单随机样本,样本方差分别为2X S 与2Y S ,则σ2 的无偏估计量是 (A )22YX S S + (B) 22)1()1(Y X S n S m -+-(C )222-++n m S S YX (D) 2)1()1(22-+-+-n m S n S m Y X6. 设X 是从总体X 中取出的简单随机样本n X X X ,...,,21的样本均值,则X 是μ的矩估计,如果(A )X~N(μ,σ2) (B) X 服从参数为μ的指数分布 (C )P (X=m )=μ(1-μ)m-1,m=1,2,… (D) X 服从[0,μ]上的均匀分布 填空题1.假设总体X 服从参数为λ的泊松分布,n X X X ,...,,21是取自总体X 的简单随机样本,其均值、方差分别为X ,S 2 ,如果2)32(ˆS a X a -+=λ为λ的无偏估计,则a= 。
第六章 样本及抽样分布1.[一] 在总体N (52,6.32)中随机抽一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率。
解:8293.0)78()712(}63.68.163.65263.62.1{}8.538.50{),363.6,52(~2=-Φ-Φ=<-<-=<<X P X P N X2.[二] 在总体N (12,4)中随机抽一容量为5的样本X 1,X 2,X 3,X 4,X 5. (1)求样本均值与总体平均值之差的绝对值大于1的概率。
(2)求概率P {max (X 1,X 2,X 3,X 4,X 5)>15}. (3)求概率P {min (X 1,X 2,X 3,X 4,X 5)>10}.解:(1)⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=>-25541225415412}112{|X P X P X P=2628.0)]25(1[2=Φ- (2)P {max (X 1,X 2,X 3,X 4,X 5)>15}=1-P {max (X 1,X 2,X 3,X 4,X 5)≤15} =.2923.0)]21215([1}15{1551=-Φ-=≤-∏=i i X P (3)P {min (X 1,X 2,X 3,X 4,X 5)<10}=1- P {min (X 1,X 2,X 3,X 4,X 5)≥10} =.5785.0)]1([1)]21210(1[1}10{15551=Φ-=-Φ--=≥-∏=i iXP 4.[四] 设X 1,X 2…,X 10为N (0,0.32)的一个样本,求}.44.1{1012>∑=i iXP解:)5(1.0}163.0{}44.1{),10(~3.0101221012221012查表=>=>∑∑∑===i i i i i i X P X P χX7.设X 1,X 2,…,X n 是来自泊松分布π (λ )的一个样本,X ,S 2分别为样本均值和样本方差,求E (X ), D (X ), E (S 2 ).解:由X ~π (λ )知E (X )= λ ,λ=)(X D∴E (X )=E (X )= λ, D (X )=.)()(,)(2λX D S E nλn X D === [六] 设总体X~b (1,p),X 1,X 2,…,X n 是来自X 的样本。
第六章 概率与概率分布一、填空1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设(机会均等 )。
2.分布函数)(x F 和)(x P 或ϕ)(x 的关系,就像向上累计频数和频率的关系一样。
所不同的是,)(x F 累计的是(概率 )。
3.如果A 和B (互斥 ),总合有P(A/B)=P 〔B/A 〕=0。
4.(大数定律 )和( 中心极限定理 )为抽样推断提供了主要理论依据。
6.抽样设计的主要标准有(最小抽样误差原则 )和(最少经济费用原则 )。
7.在抽样中,遵守(随机原则 )是计算抽样误差的先决条件。
9.若事件A 和事件B 不能同时发生,则称A 和B 是(互斥 )事件。
10.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是(1/4 );在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是( 1/52 )。
二、单项选择1.随机试验所有可能出现的结果,称为( D )。
A 基本事件; B 样本;C 全部事件;D 样本空间。
2.在次数分布中,频率是指( )A.各组的频率相互之比B.各组的分布次数相互之比C.各组分布次数与频率之比D.各组分布次数与总次数之比 3.若不断重复某次调查,每次向随机抽取的100人提出同一个问题,则每次都能得到一个回答“是”的人数百分数,这若干百分数的分布称为:( D )。
A .总体平均数的次数分布B .样本平均的抽样分布C .总体成数的次数分布D .样本成数的抽样分布 4.以等可能性为基础的概率是(A )。
A 古典概率;B 经验概率;C 试验概率;D 主观概率。
5.古典概率的特点应为( A )。
A 基本事件是有限个,并且是等可能的;B 基本事件是无限个,并且是等可能的;C 基本事件是有限个,但可以是具有不同的可能性;D 基本事件是无限的,但可以是具有不同的可能性。
6.任一随机事件出现的概率为( D )。
A 在–1与1之间;B 小于0;C 不小于1;D 在0与1之间。
第六章样本及抽样分布一、选择题1.设X1 , X 2 ,L , X n是来自总体X的简单随机样本, 则X1, X2,L , X n必然满足 ( )A. 独立但分布不同 ;B. 分布相同但不相互独立 ; C 独立同分布 ; D. 不能确定2.下列关于“统计量”的描述中,不正确的是().A.统计量为随机变量 B. 统计量是样本的函数C. 统计量表达式中不含有参数D. 估计量是统计量3 下列关于统计学“四大分布”的判断中,错误的是() .1~ F (n2 ,n1)A.若 F ~ F ( n1 , n2 ), 则FB.若 T ~ t( n),则 T 2 ~ F (1,n)C .若X ~ N ( 0,1),则X2~ x2(1)n) 2( X iD .在正态总体下i 1 2(n 1)2 ~ x4.设X i , S i2表示来自总体N ( i , i2 ) 的容量为 n i的样本均值和样本方差(i 1,2) ,且两总体相互独立,则下列不正确的是() .A. 22S12~ F (n1 1,n2 1) B.( X 1 X2) (1 2)2 2 2 2 ~ N (0,1) 1S2 1 2n1 n2C. X 1 1~ t(n1 ) D.(n 1)S2 2(n2 1) S1 / n1 2 2 2~ x21nX )25.设X1, X 2,L , X n是来自总体的样本, 则1 i ( X i 是( ).n 1A. 样本矩B. 二阶原点矩C. 二阶中心矩D. 统计量6 X1,X2,L , X n是来自正态总体N (0,1) 的样本, X , S2分别为样本均值与样本方差, 则( ).n X~ t( nA. X ~ N (0,1)B. nX ~ N (0,1)C. X i2 ~ x2 (n)D. 1)i 1 S9 9X i2 285, 则样本方差 S27. 给定一组样本观测值X1, X 2,L , X9且得X i 45,i 1 i 1的观测值为 ( ).A. 7.5B.60C. 20D.65 3 28 设X服从t (n)分布 , P{|X| } a ,则 P{ X } 为( ).A. 1a B. 2a C. 1 a D. 1 1 a2 2 29 设x1, x2,L , x n是来自正态总体N (0, 22 ) 的简单随机样本,若Y a( X 1 2X 2 ) 2 b( X 3 X 4 X 5)2 c( X 6 X 7 X 8 X 9 )2服从 x 2分布,则a, b, c 的值分别为() .A. 1,1,1B.8 12 161,1,1 C. 1,1,1 D. 1,1,120 12 16 3 3 3 2 3 410 设随机变量X和Y相互独立 , 且都服从正态分布N(0,32),设 X1,X2, , X9和9X iY1,Y2, ,Y9分别是来自两总体的简单随机样本,则统计量U i 1 服从分布是92Y ii 1( ).A. t(9)B. t (8)C. N (0,81)D. N (0,9)二、填空题1.在数理统计中,称为样本.2.我们通常所说的样本称为简单随机样本,它具有的两个特点是.3.设随机变量 X1,X2, , X n相互独立且服从相同的分布, EX , DX 2 ,令X 1 nX i ,则 EX ; DX . ni 14. (X1,X2, , X10) 是来自总体X ~ N(0,0.32) 的一个样本,则102P X i 1.44 .i 15.已知样本 X 1 , X 2 , , X 16 取自正态分布总体 N ( 2,1) ,X 为样本均值, 已知 P{ X} 0.5,则.10. 6 设总体 X ~ N(,2) , X 是样本均值, S n 2是样本方差, n 为样本容量,则常用的随2机变量 (n1)S n 服从分布 .2第七章 参数估计一、选择题1.设总体 X~N(, 2), X 1,, X n 为抽取样本,则 1 n ( X iX ) 2 是().n i 1( A) 的无偏估计 ( B)2的无偏估计(C )的矩估计(D )2的矩估计2 设 X 在 [0 , a] 上服从均匀分布, a 0 是未知参数,对于容量为 n 的样本 X 1 , , X n , a的最大似然估计为( )(A ) max{X 1,X 2,, X n }1n(B )X in i 1(C ) max{X 1,X 2, , X n } min{ X 1 , X 2 ,, X n }(D ) 11 n X i ;n i 13 设总体分布为 N ( , 2) ,,2为未知参数,则2的最大似然估计量为( ) .(A ) 1n( X i X ) 2( B ) 1n( X i X )2n i 1n 1 i 1(C ) 1n( X i) 2( D ) 11 i n( X i)2n i 1n 14 设总体分布为 N ( , 2) ,已知,则2的最大似然估计量为() .(A ) S2( B )n 1S 2n(C ) 1n( X i) 2( D ) 11 i n( X i)2n i 1n 15 X 1, X 2, X 3 设为来自总体 X 的样本,下列关于 E( X ) 的无偏估计中, 最有效的为().(A )1(X 1 X 2 )(B ) 1(X 1X 2 X 3 )23(C ) 1(X 1X 2 X 3 )(D ) 2X 12X 2 1 X 3)43336 设 X 1,X 2,, X n (n 2)是正态分布 N( ,2)的一个样本,若统计量n1K( X i 1 X i ) 2 为2的无偏估计,则K 的值应该为()i 1(A )1( B )11( C )1 2 (D )12n2n2nn 17. 设 为总体 X 的未知参数, 1 , 2 是统计量,1,2为 的置信度为 1 a(0a 1) 的置信区间,则下式中不能恒成的是() .A. P{ 12}1 aB.P{2}P{1}aC. P{2}1aD.P{2}P{1}a28设X~N( , 2)且2未知,若样本容量为 n ,且分位数均指定为“上侧分位数”时,则的 95%的置信区间为( )A. ( Xu0.025)B. ( XS t 0 .05(n1))nnC. ( XSD.( X St 0 .025 ( n1))t 0.025 (n))nn9 设 X ~ N ( ,2), ,2均未知,当样本容量为n 时,2的 95%)的置信区间为(A.(( n 1)S 2, (n 1)S 2B. ( (n 1)S 2 ( n 1)S 221) 2)2 (n , 2(n )x 0.975 ( n x 0.025 (n 1)x 0.025 1) x 0.975 1)(( n 1)S 2( n 1)S 2( XSt 0. 025 (n1)) C. 2, 2) D.nt 0. 025 (n 1) t 0.975 ( n 1)二、填空题1. 点估计常用的两种方法是:和.2. 若 X 是离散型随机变量,分布律是 P{ X x} P(x; ) ,( 是待估计参数) ,则似然函数是,X 是连续型随机变量,概率密度是f (x; ) ,则似然函数是.3. 设总体 X 的概率分布列为:X 012 3P p 2 2 p(1 -p ) p2 1- 2p 其中 p (0 p 1/ 2)是未知参数. 利用总体 X 的如下样本值:1 ,3,0,2,3,3,1,3则 p 的矩估计值为__ ___ ,极大似然估计值为.4. 设总体 X 的一个样本如下:,,,,则该样本的数学期望E(X ) 和方差 D(X ) 的矩估计值分别_ ___.5. 设总体 X 的密度函数为: f ( x) ( 1)x 0 x 10 其他,设 X 1 , , X n是X的样本,则的矩估计量为,最大似然估计量为.6. 假设总体 X ~ N( , 2),且 X 1 n X i , X1,X2, , X n 为总体 X 的一个样本,n i 1则 X 是的无偏估计 .7 设总体 X~N( , 2) , X1, X2, , X n为总体X的一个样本,则常数k=, 使nk X i X 为的无偏估计量 .i 18 从一大批电子管中随机抽取100只,抽取的电子管的平均寿命为1000小时,样本均方差为S 40 .设电子管寿命分布未知,以置信度为0.95 ,则整批电子管平均寿命的置信区间为(给定 Z0. 05 1.645 , Z0.025 1.96 ).9设总体X~N( , 2), , 2 为未知参数,则的置信度为 1-的置信区间为.10某车间生产滚珠,从长期实践可以认为滚珠的直径服从正态分布,且直径的方差为20.04 ,从某天生产的产品中随机抽取9 个,测得直径平均值为15 毫米,给定0.05则滚珠的平均直径的区间估计为. ( Z0.05 1.645 , Z 0.025 1.96)11.某车间生产滚珠,从某天生产的产品中抽取6 个,测得直径为:已知原来直径服从N ( ,0.06) ,则该天生产的滚珠直径的置信区间为,(0.05,Z0.05 1.645 , Z0.025 1.96).12.某矿地矿石含少量元素服从正态分布,现在抽样进行调查,共抽取12 个子样算得S 0.2 ,则的置信区间为(, 2 (11) 19.68 ,2 (11) 4.57 ).0.1 12 2第八章假设检验一、选择题1.关于检验的拒绝域W,置信水平, 及所谓的“小概率事件” , 下列叙述错误的是().A.的值即是对究竟多大概率才算“小”概率的量化描述B .事件 {( X1 , X 2 , , X n ) W |H0为真} 即为一个小概率事件C.设 W是样本空间的某个子集,指的是事件{( X1 , X 2 ,L , X n ) | H 0为真 }D.确定恰当的W是任何检验的本质问题2. 设总体 X~N( , 2 ), 2未知 , 通过样本X1, X2, , X n检验假设 H 0 : 0,要采用检验估计量 ( ).X 0B. X 0C.XD.XA.n S / n/ S/ n / n 3. 样本 X1, X 2, , X n来自总体 N ( ,122) ,检验 H 0 : 100 ,采用统计量( ).A. XB.X 100C.X 100D.X12 / n 12 / n S / n 1 S / n4设总体X ~ N( , 2 ), 2 未知 ,通过样本X1,X2, , X n检验假设 H 0 : 0,此问题拒绝域形式为.A. { X100 C} B. {X100 C } C. {X100 C} D. { X C}S / 10 S / n S / 105.设X1, X2, , X n为来自总体N ( ,32 ) 的样本,对于H 0 : 100 检验的拒绝域可以形如() .. { X C} { X 100 C} X 100C} { X 100 C}A B. C. {n D.S /6 、样本来自正态总体N( , 2 ) , 未知 ,要检验H0: 2 100 , 则采用统计量为( ).A. (n 1)S2B.(n 1) S2C.Xn D.nS 22 100 100 1007、设总体分布为N ( , 2),若已知,则要检验H0: 2 100 ,应采用统计量 ( ).n 2 n 2A. XB. (n 1)S2C. i 1 ( X i )D.i 1( Xi X ) S / n 2 100 100二、填空题1.为了校正试用的普通天平 , 把在该天平上称量为 100 克的 10 个试样在计量标准天平上进行称量 , 得如下结果 :, , , 101,2,,假设在天平上称量的结果服从正态分布, 为检验普通天平与标准天平有无显著差异, H0 为.2.设样本X1, X2, , X25来自总体 N( ,9), 未知.对于检验 H 0 : 0,H1: 0,取拒绝域形如X 0 k ,若取a 0.05,则 k 值为.第六章样本及抽样分布答案一、选择题1. ( C )2. ( C ) 注:统计量是指不含有任何未知参数的样本的函数3. ( D )对于答案 D, 由于 X i~ N (0,1), 1,2, , n ,且相互独立,根据 2 分布的定义有i Ln ) 2( X i2i 1(n)2~ x4.(C)注:X 11~ t (n 1 1) 才是正确的 .S 1 / n 15.(D)6C) 注: X ~ N(0,1),X ~ t(n 1)才是正确的 nS nP X 12 1 2PX 12 1 12PX1225 12512(5)1299222X i XX 9 Xi 2859 257.(A)S 2 i 11i 19 17.5 988.(A) 9.(B)解:由题意可知X 1 2X 2 ~ N(0,20) , X 3X 4 X 5 ~ N (0,12) ,X 6 X 7 X 8X 9 ~ N (0,16) ,且相互独立,因此222X 1 2X 2X 3 X 4 X 5X 6 X 7X 8 X 9 ~ 23,201216即 a1, b1, c120121610(A)999解:X i ~ N (0,9 2 )X i 9 ~ N 0,1 , Y i 2 9 ~29i 1i 1i 19X i 9由 t 分布的定义有i 1~t 992Y i 81i 1二、填空题1.与总体同分布,且相互独立的一组随机变量 2. 代表性和独立性 23.,n4. 0.16.2( n 1)第七章 参数估计一、选择题1. 答案: D.222?21 n2?1 n[ 解 ] 因为E(X )A 2X i,E (X) ,E(X )X i ,E( X ) A 1n i 1n i 1所以, ? 2?2?2( X )1n2.E( X) E( X i X )n i 12. 答案: A.[ 解 ] 因为似然函数 11 ,当 amax X i 时, L(a) 最大,L(a)(max X i ) n a nii所以, a 的最大似然估计为max{ X 1 , X 2 , , X n } .3答案A.n[ 解] 似然函数 L( ,2)i 11 exp 12 ( xi) 2 ,22由ln L 0, 2 ln L 0 ,得2A 2 .4. 答案 C.[ 解]在上面第 5题中用取代 X 即可.5答案 B.6. 答案 C. 7 答案 D. 8. 答案 D.9. 答案 B.二、填空题:1. 矩估计和最大似然估计;2.p(x i ; ) ,f ( x i ; );i i.31 , ; 4816/82,令 E(X)[ 解 ] ( 1) p 的矩估计值 X X i 3 4 pX ,i 1得 p的矩估计为p (3 X ) / 4 1/ 4 .?( 2)似然函数为8x i ) P( X 0)[ P( X 1)] 2P( X 2)[ P( X 3)] 4L( p)P( Xi 14 p(1 p) 2 (1 2 p)4ln L( p) ln 46ln p 2 ln(1 p) 4 ln(1 2 p)令 [ ln L ( p)]6 1 2 1 8 0 ,12 p 2 14 p 3 0pp2 pp (7 13) /12 . 由 0 p1/ 2 ,故 p (713) /12 舍去所以 p的极大似然估计值为 p (713) /120.2828 .?4、 ,;?? 2iX i 222[ 解 ]由矩估计有:),又因为 D(X) E( X ) [E(X)],E(X ) X,E(Xn?X 1.7 1.75 1.71.65 1.75 1.71所以 E(X)5?1n2( X iX )0.00138 .且D(X)n i 1n2X 1, n ln X i5、?? i 1 ;1 X n ln Xii 1[ 解 ] ( 1)的矩估计为:11 2 11E(X ) x ( 1) x d x x2 0 2样本的一阶原点矩为:1 nx i Xn i 1所以有:1 X ? 2X 12 1 X( 2)的最大似然估计为:n nL ( X 1 , , X n; ) ( 1) X i ( 1) n ( X i )i 1 i 1nln L n ln( 1) ln X ii 1d ln L n nln X i 0d 1 i 1n得:? n ln X ii 1.nln X ii 16、;[ 解] E(X) 1 nE( X i ) n .nn i 17、;2n(n1)[ 解] 注意到X1, X2, , X n的相互独立性,X i1X1 X2 (n 1) X i X n Xnn 1E( X i X ) 0, D ( X i 2X )n所以, X i X ~ N (0, n1 2),nz21n 1 22E(| X i X |) | z | e n dzn 12nz21 n 12 2 n 12 z e 2 dzn0 n 1 22nn nkn 2n 1因为: E k | X i X | k E | X i X |i 1 i 1 2 n所以, k2n( n 1).8、. [ , ] ;[ 解 ] 这是分布未知,样本容量较大,均值的区间估计,所以有:X 1000, S 40, 0.05 , Z 0.025 1.96 的 95%的置信区间是:[ X SZ0.025 , X S Z0.025 ] [ 992.16,1007.84] . n n9、(X St (n 1), XSt (n 1)) ;n 2 n 2[ 解 ] 这是 2 为未知的情形,所以X ~ t(n 1) .S / n10、 [ , ] ;[ 解 ] 这是方差已知均值的区间估计,所以区间为:[ x Z , xn Z ]n 2 2 由题意得: x 15 2 0.04 0.05 n 9 ,代入计算可得:[15 0.2 1.96,15 0.2 1.96] ,化间得:[14.869,15.131] .9 911、 [ ,];[ 解 ]这是方差已知,均值的区间估计,所以有:置信区间为: [ Xn Z , XnZ ]2 2由题得: X 1 (14.6 15.1 14.9 14.8 15.2 15.1) 14.95 60.05 Z0.025 1.96 n 6代入即得: [14.95 0.06 1.96,14.95 0.06 1.96]6 6所以为: [14.754,15.146]12、.[,];[ 解 ] 由2(n 1)S 2 2 得:1 22 22 (n 1) S2, 2(n 1)S22 2212所以的置信区间为: [ (n 1) S2,(n 1)S22 (11) 2] ,(11)212将 n 12 , S 0.2 代入得[ 0.15 , 0.31 ]. 第八章假设检验一、选择题、、、、、、、二、填空题1.1002.。
概率与统计中的分布函数练习题及解析Introduction:概率与统计是数学中非常重要的分支,它研究了事件发生的可能性以及数据的收集、分析和解释方法。
在概率与统计中,分布函数是一个关键概念,它描述了随机变量取值的概率分布。
在本文中,我们将介绍一些与分布函数相关的练习题,并给出解析。
Exercise 1:假设随机变量X服从正态分布N(1,4),计算P(X > 3)。
Solution 1:正态分布的分布函数可以用标准正态分布的累积分布函数来表示。
由于X服从N(1,4),我们可以将其标准化为Z=(X-μ)/σ,其中μ为均值,σ为标准差。
对于本题,μ=1,σ=2。
现在我们需要计算P(X > 3),即计算Z > (3-1)/2=1 的概率。
根据标准正态分布表,我们可以得到P(Z > 1)≈0.1587。
因此,P(X > 3)≈0.1587。
Exercise 2:某商店销售的某种商品的重量服从均值为10千克,标准差为0.5千克的正态分布。
如果从该商店购买一件此商品,求它重量大于10.5千克的概率。
Solution 2:根据题意,我们可以将问题转化为计算随机变量X大于10.5千克的概率,其中X服从N(10, 0.5^2)。
再次利用标准化方法,我们得到Z=(X-μ)/σ=(X-10)/0.5。
现在需要计算P(Z > (10.5-10)/0.5)=P(Z > 1)。
根据标准正态分布表,P(Z > 1)≈0.1587。
因此,购买的商品重量大于10.5千克的概率约为0.1587。
Exercise 3:随机变量X服从指数分布Exp(2),计算P(X > 3)。
Solution 3:指数分布的分布函数为F(x)=1-exp(-λx),其中λ=1/均值。
由于X服从Exp(2),均值为1/2。
现在我们需要计算P(X > 3),即计算1-F(3)。
代入公式,我们得到1-(1-exp(-1.5))≈0.2231。
实验六:常用概率分布【目的要求】1.掌握正态分布的特点和面积分布规律,掌握参考值范围的制定方法。
2.掌握二项分布、泊松分布的正态近似。
【案例分析】案例1: 2000年某地艾滋病病毒感染率为十万分之七,该地10万人口,2001年感染了艾滋病病毒的人数为17人,有人说,该地2001年总体上艾滋病病毒感染率与2000年持平。
如果是这样的话,该地2001年感染了艾滋病病毒人数为17人这种情况发生的概率为0006.0!177)17(177===-eX P 因为发生的概率太小了,所以说该地2001年总体上艾滋病病毒感染率与2000年持平的说法是不成立的。
该分析是否正确,为什么?【练习题】一、填空题1. 分布的总体均数等于总体方差。
2.二项分布在 时服从正态分布。
3. 泊松分布在 时服从正态分布。
4.确定医学参考值范围的方法有 和 。
二、选择题1.标准正态分布的均数与标准差是( )A. 0,1B. 1,0C. 0,0D. 1,1 2.正态分布的两个参数μ与 σ,( )对应的正态曲线愈趋扁平。
A. μ愈大 B. μ愈小 C. σ愈大 D. σ愈小 3.正态分布的两个参数μ与 σ,( )对应的正态曲线平行右移。
A. 增大μ B. 减小μ C. 增大σ D. 减小σ4. 随机变量X 服从正态分布N(μ1,σ12),随机变量Y 服从正态分布N(μ2,σ22),X 与Y 独立,则X-Y 服从( )A. N(μ1+ μ2,σ12- σ22)B. N(μ1- μ2,σ12- σ22)C. N(μ1-μ2,σ12+σ22)D. N(0σ12+σ22) 5. 二项分布的概率分布图在( )条件下为对称图形。
A. n>50 B. π=0.5 C. n=1 D. π=1 6.( )的均数等于方差。
A. 正态分布B. 二项分布C. Poisson 分布D. 对称分布7. 设X1,X2分别服从以λ1,λ2为均数的Poisson 分布,且X1,X2独立,则X1+X2服从以( )为方差的Poisson 分布。
第六章 概率与概率分布第一节 概率论随机现象与随机事件·事件之间的关系(事件和、事件积、事件的包含与相等、互斥事件、对立事件、互相独立事件)·先验概率与古典法·经验概率与频率法第二节 概率的数学性质概率的数学性质(非负性、加法规则、乘法规则)·排列与样本点的计数·运用概率方法进行统计推断的前提第三节 概率分布、期望值与变异数概率分布的定义·离散型随机变量及其概率分布·连续型随机变量及其概率分布·分布函数·数学期望与变异数一、填空1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设( 机会均等 )。
2.分布函数)(x F 和)(x P 或 )(x 的关系,就像向上累计频数和频率的关系一样。
所不同的是,)(x F 累计的是( 概率 )。
3.如果A 和B ( 互斥 ),总合有P(A/B)=P 〔B/A 〕=0。
4.( 大数定律 )和( 中心极限定理 )为抽样推断提供了主要理论依据。
5.抽样推断中,判断一个样本估计量是否优良的标准是( 无偏性 )、( 一致性 )、( 有效性 )。
6.抽样设计的主要标准有( 最小抽样误差原则 )和( 最少经济费用原则 )。
7.在抽样中,遵守( 随机原则 )是计算抽样误差的先决条件。
8.抽样平均误差和总体标志变动的大小成( 正比 ),与样本容量的平方根成( 反比 )。
如果其他条件不变,抽样平均误差要减小到原来的1/4,则样本容量应( 增大到16倍 )。
9.若事件A 和事件B 不能同时发生,则称A 和B 是( 互斥 )事件。
10.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是( 1/4 );在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是( 1/52 )。
二、单项选择1.古典概率的特点应为(A )A 、基本事件是有限个,并且是等可能的;B 、基本事件是无限个,并且是等可能的;C 、基本事件是有限个,但可以是具有不同的可能性;D 、基本事件是无限的,但可以是具有不同的可能性。
2.随机试验所有可能出现的结果,称为(D )A 、基本事件;B 、样本;C 、全部事件;D 、样本空间。
3、以等可能性为基础的概率是(A )A 、古典概率;B 、经验概率;C 、试验概率;D 、主观概率。
4、任一随机事件出现的概率为(D )A 、在–1与1之间;B 、小于0;C 、不小于1;D 、在0与1之间。
5、若P (A )=0.2,P(B )=0.6,P (A/B )=0.4,则)(B A P =(D )A 、0.8B 、0.08C 、0.12D 、0.24。
6、若A 与B 是任意的两个事件,且P (AB )=P (A )·P (B ),则可称事件A 与B (C )A 、等价B 、互不相容C 、相互独立D 、相互对立。
7、若两个相互独立的随机变量X 和Y 的标准差分别为6与8,则(X +Y )的标准差为(B )A 、7B 、10C 、14D 、无法计算。
8、抽样调查中,无法消除的误差是(C )A 登记性误差B 系统性误差C 随机误差D 责任心误差9. 对于变异数D (X ),下面数学表达错误的是( )。
A .D (X )=E (X 2)―μ2B .D (X )=E [(X ―μ)2]C .D (X )=E (X 2)―[E (X ) ] 2 D .D (X )=σ10.如果在事件A 和事件B 存在包含关系A ⊂B 的同时,又存在两事件的反向包含关系A ⊃B ,则称事件A 与事件B ( )A .相等B .互斥C .对立D .互相独立三、多项选择1.数学期望的基本性质有( ACD )A .E(c)=cB .E(cX)=c 2E(X)C .E (X +Y)=E(X)+E(Y)D .E(XY)=E(X)·E(Y)2、概率密度曲线(AD )A 、位于X 轴的上方B 、位于X 轴的下方C 、与X 轴之间的面积为0D 、与X 轴之间的面积为1E 、与X 轴之间的面积不定。
3、重复抽样的特点是(ACE )A 每次抽选时,总体单位数始终不变;B 每次抽选时,总体单位数逐渐减少;C 各单位被抽中的机会在每次抽选中相等;D 各单位被抽中的机会在每次抽选中不等;E 各次抽选相互独立。
4、对于抽样误差,下面正确的说法是(ABE)A抽样误差是随机变量;B 抽样平均误差是一系列抽样指标的标准差;C 抽样误差是估计值与总体参数之间的最大绝对误差;D 抽样误差是违反随机原则而产生的偏差;E 抽样平均误差其值越小,表明估计的精度越高。
5.关于频率和概率,下面正确的说法是()。
A.频率的大小在0与1之间;B.概率的大小在0与1之间;C.就某一随机事件来讲,其发生的频率是唯一的;D.就某一随机事件来讲,其发生的概率是唯一的;E.频率分布有对应的频数分布,概率分布则没有。
6.随机试验必须符合以下几个条件()。
A.它可以在相同条件下重复进行;B.每次试验只出现这些可能结果中的一个;C.预先要能断定出现哪个结果;D.试验的所有结果事先已知;E.预先要能知道哪个结果出现的概率。
四、名词解释1、数学期望:是反映随机变量X取值的集中趋势的理论均值(算术平均)。
2、对立事件:若事件A和事件B是互斥事件,且在一次试验(或观察中)必有其一发生,则称A和B是对立事件,或称逆事件。
3、随机事件:人们把随机现象的结果以及这些结果的集合体称作随机事件,也称事件。
4、事件和:事件A和事件B至少有一个发生所构成的事件C,称为A和B的事件和。
5、事件积:事件A和事件B同时发生所构成的事件C,称为A和B的事件积。
6、互斥事件:若事件A和事件B不能同时发生,则称A和B是互斥事件,或称互不相容事件。
7、互相独立事件:若A事件发生的概率等于在B事件发生后A事件发生的概率,或者B 事件发生的概率等于在A事件发生后B事件发生的概率,则称A和B是互相独立事件。
8、 先验概率:古典法以想象总体为对象,利用模型本身所具有的对称性,来事先求得概率,古典法求出的概率被称为先验概率。
9、 经验概率:将试验次数n 充分大时的频率作为概率的近似值,这就是所谓的经验概率。
五、判断题1.对于连续型随机变量,讨论某一点取值的概率是没有意义的。
( √ )2.把随机现象的全部结果及其概率,或者把随机现象的或几个结果及其概率列举出来,就可以称作概率分布。
( × )3.社会现象是人类有意识参与的后果,这一点只是改变概率的应用条件,并不改变社会现象的随机性质。
( √ )4.在社会现象中,即使相同的意识作用也完全可能有不确定的结果,这就提供了概率论应用的可能性。
( √ )5.抽样的随机原则就是指客观现象的随机性。
( × )6.样本均值是总体均值的一个无偏估计量。
( √ )7.样本方差是总体方差的一个无偏估计量。
( × )8.样本容量的大小与抽样推断的可信程度成正比。
( √ )9.重复抽样的误差一定大于不重复抽样的抽样误差。
( √ )10.抽样误差的产生是由于破坏了抽样的随机原则而造成的。
( × )11.当样本容量n 无限增大时,样本均值与总体均值的绝对离差小于任意正数的概率趋于零。
( × )12.所谓抽样分布,就是把具体概率数值赋予样本每个或每组结果的概率分布。
( √ )六、计算题1.某系共有学生100名,其中来自广东省的有25名;来自广西省的有10名。
问任意抽取一名学生,来自两广的概率是多少? 【0.35】2.为了研究父代文化程度对子代文化程度的影响,某大学统计出学生中,父亲具有大学文化程度的占30%,母亲具有大学文化程度的占20%,而父母双方都具有大学文化程度的占10%。
问学生中任抽一名,其父母有一人具有大学文化程度的概率是多少? 【0.40】3.根据统计结果,男婴出生的概率为4322;女婴出生的概率为4321。
某单位有两名孕妇,问两名孕妇都生男婴的概率是多少? 【0.2601】4. 根据统计,由出生活到60岁的概率为0.8,活到70岁的概率为0.4。
问现年60岁 的人活到70岁的概率是多少? 【0.5】5.根据统计结果,男婴出生的概率为4322;女婴出生的概率为4321。
某单位有两名孕妇,求这两名孕妇生女婴数的概率分布。
【0.2601,0.4998,0.2401】6. 一家人寿保险公司在投保50万元的保单中,每千名每年由15个理赔,若每一保单 每年的运营成本与利润的期望值为200年,试求每一保单的保费。
【7700元】7. 某单位对全单位订报纸情况进行了统计,其中订《人民日报》的有45%,订《扬子晚报》的有60%,两种报纸都订的有30%。
试求以下概率:1)只订《人民日报》的;2)至少订以上一种报纸的;3)只订以上一种报纸的;4)以上两种报纸都不订的。
【0.15,0.95,0.65,0.05】8.根据某市职业代际流动的统计,服务性行业的工人代际向下流动的概率为0.07,静止不流动的概率为0.85,求服务性行业的代际向上流动的概率是多少? 【0.08】9. 消费者协会在某地对国外旅游动机进行了调查,发现旅游者出于游览名胜的概率为 0.219;出于异族文化的吸引占0.509;而两种动机兼而有之的占0.102。
问旅游动机为游览名胜或为异族文化吸引的概率是多少? 【0.626】10.根据生命表,年龄为60岁的人,可望活到下年的概率为P =0.95;设某单位年龄为60岁的人共有10人,问:(1)其中有9人活到下年的概率为多少?(2)至少有9人活到下年的概率是多少? 【0.315】【0.914】11.假定从50个社区的总体中随机抽取一些社区(这些社区的规模和犯罪率之间关系的数据如下表),(1)用不回置抽样得到了一个4个社区的样本,试问其中恰好有一个大社区,一个中社区以及两个小社区的概率是多少?(2)在一个用回置法得到的3个社区的样本中,得到至少一个高犯罪率社区和两个小社区的概率是多少? 【0.178】【0.046】12试求:1))(X E 【2】;2))(2X E 【5.2】;3)令Y =2)1( X ,求)(Y E 【2.2】;4))(X D 【1.10】;5))(2X D 【4.62】。
13、A 、B 、C 为三事件,指出以下事件哪些是对立事件:1)A 、B 、C 都发生;2)A 、B 、C 都不发生;3)A 、B 、C 至少有一个发生;4)A 、B 、C 最多有一个发生;5)A 、B 、C 至少有两个发生;6)A 、B 、C 最多有两个发生【2、3为对立事件 4、5为对立事件 1、6为对立事件】14、从户籍卡中任抽1名,设:A =“抽到的是妇女”B =“抽到的受过高等教育”C =“未婚”求:(1)用符号表达“抽到的是受过高等教育的已婚男子”;【ABC 】(2)用文字表达ABC ;【抽到是受过高等教育的未婚妇女】(3)什么条件下ABC =A 。