实验一_时域离散信号、系统及系统响应
- 格式:dps
- 大小:75.50 KB
- 文档页数:3
实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。
二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。
2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。
信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。
根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。
三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。
(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
第1篇一、实验目的1. 理解时域离散信号的基本概念和特性。
2. 掌握时域离散信号的表示方法。
3. 熟悉常用时域离散信号的产生方法。
4. 掌握时域离散信号的基本运算方法。
5. 通过MATLAB软件进行时域离散信号的仿真分析。
二、实验原理时域离散信号是指在时间轴上取离散值的一类信号。
这类信号在时间上不连续,但在数值上可以取到任意值。
时域离散信号在数字信号处理领域有着广泛的应用,如通信、图像处理、语音处理等。
时域离散信号的基本表示方法有:1. 序列表示法:用数学符号表示离散信号,如 \( x[n] \) 表示离散时间信号。
2. 图形表示法:用图形表示离散信号,如用折线图表示序列。
3. 时域波形图表示法:用波形图表示离散信号,如用MATLAB软件生成的波形图。
常用时域离散信号的产生方法包括:1. 单位阶跃信号:表示信号在某个时刻发生突变。
2. 单位冲激信号:表示信号在某个时刻发生瞬时脉冲。
3. 正弦信号:表示信号在时间上呈现正弦波形。
4. 矩形脉冲信号:表示信号在时间上呈现矩形波形。
时域离散信号的基本运算方法包括:1. 加法:将两个离散信号相加。
2. 乘法:将两个离散信号相乘。
3. 卷积:将一个离散信号与另一个离散信号的移位序列进行乘法运算。
4. 反褶:将离散信号沿时间轴翻转。
三、实验内容1. 实验一:时域离散信号的表示方法(1)使用序列表示法表示以下信号:- 单位阶跃信号:\( u[n] \)- 单位冲激信号:\( \delta[n] \)- 正弦信号:\( \sin(2\pi f_0 n) \)- 矩形脉冲信号:\( \text{rect}(n) \)(2)使用图形表示法绘制以上信号。
2. 实验二:时域离散信号的产生方法(1)使用MATLAB软件生成以下信号:- 单位阶跃信号- 单位冲激信号- 正弦信号(频率为1Hz)- 矩形脉冲信号(宽度为2)(2)观察并分析信号的波形。
3. 实验三:时域离散信号的基本运算(1)使用MATLAB软件对以下信号进行加法运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(2)使用MATLAB软件对以下信号进行乘法运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(3)使用MATLAB软件对以下信号进行卷积运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(4)使用MATLAB软件对以下信号进行反褶运算:- \( u[n] \)4. 实验四:时域离散信号的仿真分析(1)使用MATLAB软件对以下系统进行时域分析:- 系统函数:\( H(z) = \frac{1}{1 - 0.5z^{-1}} \)(2)观察并分析系统的单位冲激响应。
数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。
对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。
()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。
也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。
因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。
已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。
实验一时域离散信号的产生及时域处理实验目的:了解Matlab软件数字信号处理工具箱的初步使用方法。
掌握其简单的Matlab语言进行简单的时域信号分析。
实验内容:[1.1]已知两序列x1=[0,1,2,3,4,3,2,1,0];n1=[-2:6];x2=[2,2,0,0,0,-2,-2],n2=[2:8].求他们的和ya及乘积yp. 程序如下:x1=[0,1,2,3,4,3,2,1,0];ns1=-2;x2=[2,2,0,0,0,-2,-2];ns2=2;nf1=ns1+length(x1)-1;nf2=ns2+length(x2)-1;ny=min(ns1,ns2):max(nf1,nf2);xa1=zeros(1,length(ny));xa2=xa1;xa1(find((ny>=ns1)&(ny<=nf1)==1))=x1;xa2(find((ny>=ns2)&(ny<=nf2)==1))=x2;ya=xa1+xa2yp=xa1.*xa2subplot(4,4,1),stem(ny,xa1,'.')subplot(4,1,2),stem(ny,xa2,'.')line([ny(1),ny(end)],[0,0])subplot(4,1,3),stem(ny,ya,'.')line([ny(1),ny(end)],[0,0])subplot(4,1,4),stem(ny,yp,'.')line([ny(1),ny(end)],[0,0])[1.2]编写产生矩形序列的程序。
并用它截取一个复正弦序列,最后画出波形。
程序如下:clear;close alln0=input('输入序列起点:n0=');N=input('输入序列长度:N=');n1=input('输入位移:n1=');n=n0:n1+N+5;u=[(n-n1)>=0];x1=[(n-n1)>=0]-[(n-n1-N)>=0];x2=[(n>=n1)&(n<(N+n1))];x3=exp(j*n*pi/8).*x2;subplot(2,2,1);stem(n,x1,'.');xlabel('n');ylabel('x1(n)');axis([n0,max(n),0,1]);subplot(2,2,3);stem(n,x2,'.');xlabel('n');ylabel('x2(n)');axis([n0,max(n),0,1]);subplot(2,2,2);stem(n,real(x3),'.'); xlabel('n');ylabel('x3(n)的实部');line([n0,max(n)],[0,0]);axis([n0,max(n),-1,1]);subplot(2,2,4);stem(n,imag(x3),'.'); xlabel('n');ylabel('x3(n)的虚部');line([n0,max(n)],[0,0]);axis([n0,max(n),-1,1]);[1.3]利用已知条件,利用MATLAB生成图形。
实验一 离散时间信号及系统冲激响应和零状态响应一、 实验原理利用MATLAB 软件生成典型信号,通过系统差分方程求系统单位冲激响应,利用卷积计算给定输入的系统输出 二、 实验目的(1)熟悉MATLAB 软件的使用方法。
(2)利用MATLAB 产生典型信号(3)利用MATLAB 计算系统单位冲激响应 (4)利用MATLAB 计算系统输出 三、实验内容(1)编写MATLAB 程序来产生下列基本脉冲序列。
1) 单位脉冲序列:起点0n ,终点f n ,在s n 处有一单位脉冲(0s f n n n ≤≤)。
程序:2) 单位阶跃序列:起点0n ,终点f n ,在s n 前为0,在s n 处及以后为l(0s f n n n ≤≤)。
程序:3)实数指数序列:() 3()0.75n x n=程序:4)复数指数序列:(0.207) 4()j n x n e-+=程序:5)一个连续的锯齿波信号频率为1Hz,振幅值幅度为1V,在窗口上显示两个周期的信号波形,对它进行32点采样获得离散信号,试显示原信号和其采样获得离散信号波形。
程序:(2) ()0.75(1)0.125(2)()(1)y n y n y n x n x n+-+-=--表示线性时不变系统,用MATLAB求其冲激响应和阶跃响应程序:(3)用MATLAB 计算线性时不变系统()0.8(1)0.15y n y n x n--=当输入为1()2s i n (0.05)x n n π=时的零状态响应。
程序:(4) 用MATLAB计算线性时不变系统()0.9(1)()--=,当输入为y n y n x n =--时系统的零状态响应x n u n u n()()(10】程序:。
北华大学数字信号实验实验项目:信号、系统及系统响应班级:信息10-1姓名:张慧学号:36实验一 信号、系统及系统响应一.实验目的1.熟悉理想采样的性质,了解信号采用前后的频谱变化,加深对采样定理的理解。
2.熟悉离散信号和系统的时域特性。
3.熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4.掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。
二.实验原理1.连续时间信号的采样)()()(ˆt M t x t xa a = 其中)(ˆt xa 是连续信号)(t x a 的理想采样,)(t M 是周期冲激脉冲 ∑+∞-∞=-=n nT t t M )()(δ它也可以用傅立叶级数表示为:∑+∞-∞=Ω=n tjm s e T t M 1)(其中T 为采样周期,T s /2π=Ω是采样角频率。
设)(s X a 是连续时间信号)(t x a 的双边拉氏变换,即有:⎰+∞∞--=dt e t x s X sta a )()( 此时理想采样信号)(ˆt x a 的拉氏变换为 ∑⎰+∞-∞=+∞∞--Ω-===m s a sta ajm s X T dt e t x s X )(1)(ˆ)(ˆ作为拉氏变换的一种特例,信号理想采样的傅立叶变换[]∑+∞-∞=Ω-Ω=Ωm s a a m j X T j X )(1)(ˆ∑+∞-∞=-=n nzn x z X )()(以ωj e 代替上式中的z ,就可以得到序列)(n x 的傅立叶变换 ∑+∞-∞=-=n nj j en x e X ωω)()(具有如下关系:Tj a e X j X Ω==Ωωω)()(ˆ信号卷积∑+∞-∞=-=*=m m n h m x n h n x n y )()()()()()()()(z H z X z Y =)()()(ωωωj j j e H e X e Y =三.实验内容及步骤1, 分析理想采样的特性。
信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
实验一信号、系统及系统响应一、实验目的认真复习采样理论、离散信号与系统、线性卷积、序列的z 变换及性质等有关内容;掌握离散时间序列的产生与基本运算,理解离散时间系统的时域特性与差分方程的求解方法,掌握离散信号的绘图方法;熟悉序列的z 变换及性质,理解理想采样前后信号频谱的变化。
二、实验内容a. 产生长度为500 的在[0,1]之间均匀分布的随机序列,产生长度为500 的均值为0 单位方差的高斯分布序列。
N=500;x=rand(1,N);subplot(1,2,1);plot(x);grid on;y=randn(1,N);subplot(1,2,2);plot(y);b. 线性时不变系统单位脉冲响应为h(n)=(0.9)n u(n),当系统输入为x(n)=R10(n)时,求系统的零状态响应,并绘制波形图。
n=[1:1:1000];y=0.9.^n.*u(n);x=ones(1,10);z=conv(x,y);stem(z)axis([0 20 0 10]);c. 描述系统的差分方程为:y(n)-y(n-1)+0.9y(n-2)=x(n),其中x(n)为激励,y(n)为响应。
计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位脉冲响应h(n);计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位阶跃响应s(n);由h(n)表征的这个系统是稳定系统吗?A=[1,-1,0.9];B=[1];hn=impz(B,A,20);subplot(2,9,1);plot(hn);hn=impz(B,A,30);subplot(2,9,2);plot(hn);hn=impz(B,A,40);subplot(2,9,3);plot(hn);hn=impz(B,A,50);subplot(2,9,4);plot(hn);hn=impz(B,A,60);subplot(2,9,5);plot(hn);hn=impz(B,A,70);subplot(2,9,6);plot(hn);hn=impz(B,A,80);subplot(2,9,7); plot(hn);hn=impz(B,A,90); subplot(2,9,8); plot(hn);hn=impz(B,A,100); subplot(2,9,9); plot(hn);sn1=ones(1,20); sn=filter(B,A,sn1); subplot(2,9,10); stem(sn);sn2=ones(1,30); sn=filter(B,A,sn2); subplot(2,9,11); stem(sn);sn3=ones(1,40); sn=filter(B,A,sn3); subplot(2,9,12); stem(sn);sn4=ones(1,50); sn=filter(B,A,sn4); subplot(2,9,13); stem(sn);sn5=ones(1,60); sn=filter(B,A,sn5); subplot(2,9,14); stem(sn);sn6=ones(1,70); sn=filter(B,A,sn6); subplot(2,9,15); stem(sn);sn7=ones(1,80); sn=filter(B,A,sn7); subplot(2,9,16); stem(sn);sn8=ones(1,90); sn=filter(B,A,sn8); subplot(2,9,17); stem(sn);sn9=ones(1,100); sn=filter(B,A,sn9); subplot(2,9,18); stem(sn);d. 序列x(n)=(0.8)n u(n),求DTFT[x(n)],并画出它幅度、相位,实部、虚部的波形图。
前言数字信号处理是一门理论和工程实践密切结合的课程。
为了加深对教学内容的理解,应在学习理论的同时,加强上机实验,深入理解和消化基本理论,锻炼初学者独立解决问题的能力。
本课程实验要求学生运用MATLAB编程完成一些数字信号处理的基本功能。
MATLAB是一高效的工程计算语言,它将计算、可视化和编程等功能集于一个易于使用的环境。
在MATLAB环境中描述问题计编制求解问题的程序时,用户可以按照符合人们科学思维的方式和数学表达习惯的语言形式来书写程序。
MATLAB广泛应用于工业,电子,医疗和建筑等众多领域。
其典型应用主要包括以下几个方面:数学计算;算法开发;数据采集;系统建模和仿真;数据分析和可视化科学和工程绘图;应用软件开发(包括用户界面)。
;实验1 用MATLAB产生时域离散信号一、.实验目的:1、了解常用时域离散信号及其特点2、掌握用MATLAB 产生时域离散信号的方法 二、.实验原理: 1、时域离散信号的概念在时间轴的离散点上取值的信号,称为离散时间信号。
通常,离散时间信号用x(n)表示,其幅度可以在某一范围内连续取值。
由于信号处理设备或装置(如计算机、专用的信号处理芯片等)均以有限位的二进制数来表示信号的幅度,因此,信号的幅度也必须离散化。
我们把时间和幅度均取离散值的信号称为时域离散信号或数字信号。
在MATLAB 语言中,时域离散信号可以通过编写程序直接产生。
2、常用时域离散信号的生成 1) 单位抽样序列 单位抽样序列的表示式为⎩⎨⎧=01)(n δ00≠=n n 或 ⎩⎨⎧=-01)(k n δ 0≠=n kn 以下三段程序分别用不同的方法来产生单位抽样序列。
例1-1 用MATLAB 的关系运算式来产生单位抽样序列。
n1= -5;n2=5;n0=0;n=n1:n2; x=[n==n0]; stem(n,x,'filled');axis([n1,n2,0,1.1*max(x)]); xlabel('时间(n)');ylabel('幅度x(n)');title('单位脉冲序列');运行结果如图1-1所示:时间(n)幅度x (n )单位脉冲序列图1-1例1-2 用zeros 函数和抽样点直接赋值来产生单位抽样序列。