数学初中教材几何案例分析
- 格式:docx
- 大小:37.24 KB
- 文档页数:2
初中数学几何模型的应用案例分析数学作为一门基础学科,对于学生的发展具有重要的作用。
在初中阶段,数学的学习内容涉及到各个方面,其中几何模型的应用尤为重要。
几何模型是一种将数学概念与实际问题相结合的方法,通过几何图形的建立和分析,可以帮助学生更好地理解和应用数学知识。
本文将通过几个具体的案例来分析初中数学几何模型的应用。
案例一:计算机图形的绘制在计算机图形学中,几何模型的应用非常广泛。
以绘制一个简单的矩形为例,我们可以通过确定矩形的四个顶点坐标来构建几何模型。
假设矩形的长为5个单位,宽为3个单位,我们可以通过计算每个顶点的坐标来绘制矩形。
通过这个案例,学生可以学习到坐标系的概念和使用方法,进一步理解几何模型在计算机图形中的应用。
案例二:建筑设计中的几何模型几何模型在建筑设计中也有着重要的应用。
以设计一个房间的地板为例,我们可以通过绘制一个矩形来表示房间的平面图。
假设房间的长为6米,宽为4米,我们可以通过计算每个角的坐标来确定矩形的形状。
进一步,我们可以通过在矩形内部添加其他几何图形来表示房间中的家具和装饰物。
通过这个案例,学生可以学习到几何模型在建筑设计中的应用,培养他们的空间想象力和创造力。
案例三:地理测量中的几何模型地理测量中也广泛应用了几何模型。
以测量一块土地面积为例,我们可以通过将土地划分为多个几何图形,然后计算每个几何图形的面积,最后将它们相加得到整个土地的面积。
通过这个案例,学生可以学习到几何模型在地理测量中的应用,培养他们的测量和计算能力。
案例四:物体运动的分析物体运动的分析也经常使用几何模型。
以一个自由落体物体的运动为例,我们可以通过绘制一个高度-时间图来表示物体的运动轨迹。
通过计算物体在不同时间点的高度,我们可以得到一个几何图形,进一步分析物体的运动规律。
通过这个案例,学生可以学习到几何模型在物理运动中的应用,培养他们的观察和分析能力。
通过以上几个案例的分析,我们可以看到初中数学几何模型的应用具有广泛的领域。
初中数学几何图形变化与分类案例分析数学是一门涉及各种知识域的智力活动,而几何是数学中最古老也是最重要的一部分。
随着教育改革的深入,几何图形变化与分类越来越受到重视,成为数学课程的重要组成部分。
本文试图从几何图形变化与分类的角度,对初中数学进行分析。
首先,几何图形变化可以分为几类:缩放、平移、旋转、合并等。
例如,当实心矩形的缩放比为2时,它的长宽分别变为原来的2倍;当它平移某距离后,它的位置将发生变化;当它旋转某角度后,它的形状将发生变化;当它与另一个实心矩形合并后,它们将形成一个新的实心矩形。
其次,几何图形可以分为两类:实心图形和空心图形。
实心图形一般指可以填充的图形,如圆形、矩形和三角形;空心图形一般指不能填充的图形,如线段、直线、曲线等。
例如,一个实心矩形可以经过缩放、平移、旋转、合并等变化,而一个空心矩形则不能,只能进行移动和旋转。
最后,几何图形可以分为三类:几何体、几何图案和复合图形。
几何体指一个图形包括了三维画面,如正四面体、立方体、正八面体等;几何图案是指由多个几何形状构成的图形,如圆形、正方形、三角形等;复合图形指的是由几何体和几何图案组合而成的图形,如椭圆、心形等。
以上就是几何图形变化与分类的概述,下面我们来看一个具体的案例。
比如,一个实心四边形可以缩放、平移、旋转、合并等变化,而一个空心四边形只能移动和旋转。
当它缩放比为2时,它的长宽分别变为原来的2倍;当它平移某距离后,它的位置将发生变化;当它旋转某角度后,它的形状将发生变化;当它与另一个实心四边形合并后,它们将形成一个新的实心四边形。
以上就是初中数学几何图形变化与分类的概述与案例分析,希望本文对你有所帮助。
要想更深入地理解几何图形变化与分类,了解其规律,还需要结合实践,辅以实际案例,花费一定的时间和精力去探究。
只有这样,我们才能充分理解这些变化与分类,更好地掌握数学知识。
教学案例——人教版七年级数学上册第四章几何图形初步第一节几何图形《多姿多彩——几何图形》教案设计【教材分析】多姿多彩的图形中的几何图形,是人教版教材《数学》七年级上册第四章第一节的第一课时。
所含内容在小学阶段学生已有了感性认识,本课时以现实背景为素材,让学生亲自经历将实际问题抽象成数学模型的过程,能由实物形状想像出几何图形,由几何图形想像出实物形状,进一步丰富学生对空间图形的认识和感受。
本节课的知识是进一步学习平面几何以及立体几何的基础,具有承上启下的作用。
本节课是学习空间与图形的第一课时需要在情感上激发学生兴趣,培养学生学习数学的热情。
【教学目标】知识与技能:通过观察生活中的大量图片或实物,能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能认识一些简单几何体,能用语言描述它们的基本特性,并能对它们进行简单的分类;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系.过程与方法:经历探索平面图形与立体图形之间的关系,发展空间观念,能由实物形状想像出几何图形,由几何图形想像出实物形状,进一步丰富学生对几何图形的感性认识;培养动手操作能力,培养观察、抽象、归纳、概括、判断等思维能力以及分类的数学思想。
情感态度与价值观:经历从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩;激发对学习空间与图形的兴趣;通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识。
【教学重点】简单几何体的识别与分类。
【教学难点】从具体实物中抽象出几何图形及常见几何体的分类。
【教学关键】从现实情境出发,通过动手操作进行实验,结合小组交流学习是关键。
【教学方法】情境教学、实践探究、多媒体演示相结合。
【教学资源】多媒体辅助教学;圆柱、圆锥、正方体、长方体、棱柱、棱锥等简单几何体的实物和模型;三角形、正方形、长方形、正六边形纸片;牙签、胶泥等。
【教学过程】(一)创设情景,设疑导入师:同学们,我们的世界是五彩缤纷、绚丽多彩的。
运用几何画板辅助初中数学教学的实践及案例几何画板是一种教学辅助工具,可以帮助初中学生更好地理解和掌握几何知识。
在数学教学中,几何画板的运用可以提高学生的学习兴趣,增强他们的几何思维能力和空间想象力。
下面将介绍几个几何画板在初中数学教学中的实践案例。
案例一:平面图形的绘制在初中数学中,学生需要学习各种平面图形的性质和判断方法。
通过几何画板,可以让学生直观地绘制各种平面图形,并观察它们的性质。
例如,在学习三角形的内角和定理时,可以让学生使用几何画板绘制不同形状的三角形,并测量它们的内角和,验证定理的正确性。
案例二:立体图形的展示在初中数学中,学生需要学习各种立体图形的性质和计算方法。
通过几何画板,可以让学生观察和展示各种立体图形的特点。
例如,在学习正方体的表面积和体积时,可以让学生使用几何画板绘制一个正方体,并计算它的表面积和体积。
通过实践操作,学生可以更好地理解和记忆相关的公式和计算方法。
案例三:图形的变换在初中数学中,学生需要学习各种图形的平移、旋转和翻转等变换方法。
通过几何画板,可以方便地进行图形的变换操作,并观察变换后图形的特点。
例如,在学习平移变换时,可以让学生使用几何画板上的移动工具,将一个图形平移到指定位置,并观察变换前后图形的位置关系和性质变化。
案例四:图形的相似和全等在初中数学中,学生需要学习图形的相似和全等的判定方法和性质。
通过几何画板,可以让学生进行图形的相似和全等判定,并观察它们的性质。
例如,在学习全等三角形的判定方法时,可以让学生使用几何画板绘制两个三角形,并进行边长和角度的测量,以判断它们是否全等。
总结起来,几何画板在初中数学教学中的实践可以通过平面图形的绘制、立体图形的展示、图形的变换以及图形的相似和全等等方面进行。
通过几何画板的运用,可以提高学生对几何知识的理解和掌握能力,增强他们的几何思维和空间想象能力。
教师可以结合具体的教学内容和学生的实际情况,设计相应的实践案例,让学生在实际操作中探索和学习几何知识。
浅谈初中数学几何图形变化分类案例分析江苏省江阴市顾山中学谢玉松一、引言几何图形的变化分类是数学学习的重要部分,初中学生对于几何图形的学习为以后的数学几何学习奠定了坚实的基础,也有利于解决日常生活中的很多问题。
现今各地的考试中,对于图形与空间几何等进行综合出题的越来越多,本文对于初中数学的几何图形变化分类教学的意义以及案例进行分析与讨论,进一步研究几何图形形状、位置等的变化,加深对几何图形的认识,也是对已学知识进行复习与总结。
二、几何图形变化分类教学的意义初中数学对于几何图形变化分类的教学是对几何图形典型案例进行的分析与教学,以一个案例引出一类问题,学生对学习到的知识灵活运用、归类总结,可以更加合理的推理出几何图形的定理,对问题进行讨论,更加深刻的认识到对几何图形分类讨论的意义。
对于几何图形不同的形状、位置等进行仔细的分析,可以让学生更加全面的考虑问题,并养成这样的思考习惯,对其他学科学习也可以进行全面的考虑。
在整个学习过程中,可以锻炼学生思维,培养学生勇于发现与大胆创新的精神;也可以激发学生的学习兴趣,有一个追求科学的态度,提高学生的实践能力、学习能力与空间想象力。
三、几何图形分类教学案例分析在几何图形教学中,教材中的案例是有代表性的,学生结合图形对题目进行探讨,可以增进理解,易于接受。
在初中数学几何图形的教学过程中,有的学生在遇到一些比较复杂的题目类型时,经常由于考虑问题不全面,导致做题时经常出现遗漏和重复讨论的现象。
除此之外,学生对几何图形的绘画能力和想象能力都比较弱。
因此在实际的数学几何教学过程中,应该在这些方面加强学生的锻炼,对一类问题进行分析、归纳与总结,不断可以开阔学生思维,使学生更加灵活的运用学到的知识并不断的扩展,这样思路明确了,解答问题也就更加容易。
(一)以图形引入利用日常生活中常见的图形来引出问题,激发学生对问题的思考,不仅可以加深学生对图形的印象,而且可以提高学生对学习的兴趣。
初中数学教学案例及反思——多边形内角和杞县沙沃一中岳娟一、教材分析本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。
二、教学目标1、知识目标:了解多边形内角和公式。
2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。
3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。
4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。
三、教学重、难点重点:探索多边形内角和。
难点:探索多边形内角和时,如何把多边形转化成三角形。
四、教学方法:引导发现法、讨论法五、教具、学具教具:多媒体课件学具:三角板、量角器六、教学媒体:大屏幕、实物投影七、教学过程:(一)创设情境,设疑激思师:大家都知道三角形的内角和是180º,那么四边形的内角和,你知道吗?活动一:探究四边形内角和。
在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。
方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360º。
方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360º。
接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。
师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?活动二:探究五边形、六边形、十边形的内角和。
学生先独立思考每个问题再分组讨论。
关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。
(2)学生能否采用不同的方法。
学生分组讨论后进行交流(五边形的内角和)方法1:把五边形分成三个三角形,3个180º的和是540º。
方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180º的和减去一个周角360º。
七年级上册第四章几何图形初步教材分析文字稿及例题解析含答案第四章《几何图形初步》教材分析一、教材分析1.本章地位和作用本章是初中阶段“图形与几何”领域的第一章,是初中几何的起始章节,在前面两个学段研究的“空间与图形”内容的基础上,让学生进一步欣赏丰富多彩的图形世界,初步尝试用数学的眼光观察立体图形与平面图形,分析它们之间的关系.并通过对线段和角等一些简单几何图形的再认识,初步接触由实验几何向推理几何的过渡.本章内容是几何知识的重要基础,对后续几何的研究有很重要的意义和作用.(1)内容上:本章分为两部分,第一部分“几何图形”,从观察现实生活中的各种物体抽象出几何图形或几何概念,体会几何图形的抽象性特点和数学的抽象性.第二部分“线段、角”是平面几何中最基础也是最重要的图形,有关线段和角的概念、公理、性质,相关的画法、计算、推理、几何语言与图形语言之间的转化能力,对今后几何研究将起到导向作用.(2)方法上:三种数学语言(文字语言、符号语言、图形语言)的转化贯穿于研究的始终.要学会用分析法、综合法思考解决几何问题,这也是今后解决几何问题的基本方法.(3)思想上:这一章中所涉及到从具体到抽象的思想、把立体图形转化为平面图形的思想、代数方法解决几何问题的思想、数形结合的思想、运动变换的思想、分类讨论的思想、方程的思想以及应用意识的渗透.2.本章研究目标(1)通过从什物和具体模型的抽象,了解几何图形、立体图形与平面图形以及几何体、平面和曲面、直线和曲线、点等概念.(2)能画出从分歧偏向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简朴组合体获得的平面图形;了解直棱柱、圆柱、圆锥的展开图,能根据展开图设想响应的几何体,制作立体模型,在平面图形和立体图形相互转换的过程当中,培养空间看法和空间设想力.(3)进一步认识直线、射线、线段的概念,掌握它们的符号透露表现;掌握基本究竟:“两点确定一条直线”、“两点之间,线段最短”,了解它们在生活和出产中的应用;了解两点间距离的意义,能度量两点间的距离;了解平面上两条直线具有相交和不相交两种位置关系;会比较线段的大小;了解线段的和、差及线段中点的概念,会画一条线段等于已知线段.(4)了解角的概念,掌握角的符号透露表现;会比较角的大小;认识度、分、秒,并会举行简朴的换算,会计较角的和与差.了解角的平分线、余角、补角的概念,知道余角和补角的性质.(5)初步认识几何图形是描述现实天下的紧张工具,初步应用几何图形的知识解决一些简朴的实际题目,培养研究图形和几何知识的乐趣,通过交换活动,初步形成积极介入数学活动、自动与他人合作交换的意识.3.本章知识结构图几何图形4.重点、难点重点:(1)几何与图形的基本概念,线段、角的基本知识,图形与几何的知识与客观实际的联系.(2)熟悉一些基本的几何语言,养成优秀的几何作图的气,体会和模仿几何计较的较为规范的书写方式.(3)结合立体图形与平面图形的互相转化的研究,来发展空间观念以及一些重要的概念、性质.难点:(1)概念的抽象性:能由什物形状设想(抽象)出几何图形,由几何图形设想出什物形状.(2)对图形的透露表现方法,对几何语言的认识与运用.(3)根据文字作图的训练,注意到其中可能蕴含的分类讨论等情形.5.本章共16课时,具体分配如下(仅供参考):4.1几何图形4.3角小结点、线、面、体从不同方向看立体图形立体图形展开立体图形线段大小的比较直线、射线、线段两点确定一条直线两点之间、线段最短角的度量角角的大小比较与运算角的平分线平面图形平面图形余角和补角等角的补角相等等角的余角相等4课时3课时5课时2课时2课时4.2直线、射线、线段4.4课题研究二、教学发起1.总体教学建议(1)教学中要注意与小学知识内容的衔接,要在已有的知识基础上教学,避免不适当的重复.【小学要求】:对于一些简朴几何体和平面图形有一些感性的了解,能联合实例了解线段、射线和直线,了解一些几何体和平面图形的基本特征,知道周角、平角,了解周角、平角、钝角、直角、锐角之间的大小关系,能辨认从分歧偏向(前面、侧面、上面)看到的物体的形状图,能认识最简朴的几何体(长方体、正方体和圆柱)的展开图.(2)要善于利用模型、生活什物、图片、多媒体工具演示等要学生充分去体验激发学生乐趣.多从生活中的实物出发,让学生感受到图形普遍存在于我们的周围,运用信息技术工具的展现丰富多彩的图形,进行动态演示.在实践中培养学生研究的兴趣.对于一些抽象的概念、性质等,也可借助实物或多媒体,让学生在探索中逐步理解这些知识.(3)要重视画图技能的培养.应注意要求学生养成良好的惯,画图要认真,图应该画得清楚、干净,并能很好地表现图形之间的位置关系.在画图的过程中,一方面培养学生的绘图技能,同时也培养学生严谨、认真的研究态度,形成良好的个性品质.在这方面老师也应起到良好的示范作用.(4)要重视几何语言的教学.几何图形是“空间与图形”的研究工具,对它的一般描述透露表现是按“几何模型→图形→文字→符号”这类程序举行的.其中,图形是将几何模型第一次抽象后的产品,也是形象、直观的语言;文字语言是对图形的描述、解释与讨论;符号语言则是对文字语言的简化和再次抽象.明显,首先建立的是图形语言,其次是文字语言,再次是符号语言,最后形成的是对于研究工具的三种数学语言的综合描述,有了这类团体认识,三种语言达到融汇贯通的程度,就能基本掌控工具了.要留意概念的定义和性质的表述,逐步使学生懂得几何语句的意义并能建立几何语句与图形之间的联系.准确的几何语言应当贯穿课堂、作业、课外题等各个环节,逐步训练学生的几何推理表达.这些不仅是研究好本章的关键,同时对于学好以后各章也是很重要的.(5)在研究中通过对比(如直线、射线、线段)和类比(线段和角)加深理解.(6)注意训练几何推理书写方式,纠正用算术式进行几何计算的惯:【“旧”气】90245【“新”写法】COB11AOB904522【为什么惯要“改”?】体现了图形语言和符号语言的对应;体现了推理的过程;从算术思维到代数思维.(7)要通过立体图形的三视图与展开图发展空间概念(不要过于总结规律).(8)要注重基本概念与性质的教学.例如:①在研究直线、线段、射线的有关概念时,容易出现延长直线或延长射线之类的错误,在用两个大写字母表示射线时,忽视第一个字母表示的是这条射线的顶点.②直线有这样一个紧张性质:经过两点有一条直线,并且只要一条直线.即两点确定一条直线.线段有这样一条紧张性质:两点的所有连线中,线段最短.XXX说成:两点之间,线段最短.这两个性质是研究几何图形的根蒂根基,复时应抓住性质中的枢纽性字眼,不能出现似是而非的错误.③注意线段的中点是指把线段分成相等的两条线段的点;而连结两点间的线段的长度,叫做这两点的距离.这里应特别注意线段与距离的区别,即距离是线段的长度,是一个量;线段则是一种图形,它们之间是不能等同的.④在复角的概念时,应留意了解两种方式来描述,即一种是从一些实际题目中抽象地概括出来,即有公共端点的两条射线组成的图形,叫做角;另一种是用旋转的观点来定义,即一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角.角的两种定义都告诉我们这样一些究竟:(1)角有两个特征:一是角有两条射线,二是角的两条射线必需有公共端点,两者缺一不可;(2)由于射线是向一方无限延长的,所以角的双方无所谓长短,即角的大小与它的边的长短无关;(3)当角的大小一旦确定,它的大小就不因图形的位置、图形的放大或缩小而改动.如一个37°的角放在放大或缩小多少倍的放大镜下它仍然是37°不能误以为角的大小也放大或缩小多少倍.另外对角的透露表现方法中,当用三个大写字母来透露表现时,顶点的字母必需写在中央,在角的双方上各取一点,将透露表现这两个点的字母划分写在顶点字母的两旁,两旁的字母不分前后.⑤在研究互为余角和互为补角时,容易混淆这两个概念.常常误以为互为余角的两个角的和等于180°,互为补角的两个角的和等于90°.(9)要准确把握好教学要求总体上说,起始章的教学要求不宜过高,要充分保护学生研究积极性,避免产生畏难情绪,但是基础知识要落实扎实,养成规范的表达分析惯,为后续研究打好基础,因此要注意根据学生具体情况来把握教学要求.①立体图形和平面图形、点线面体的概念要求学生在实际背景中认识、理解这些概念,体会抽象的过程,而不是通过形式化的描述让学生接受概念.②视图的知识对于三视图大部分内容是安排在第29章“视图与投影”中的.在这一章,没有给出严格的三视图的概念,是要求能从一组图形中辨认出是从什么方向看得到的图形,能说出从不同方向看一些最基本的几何体(长方体、正方体、圆柱、圆锥、球)以及它们的简单组合所能得到的图形(对于语言难以表达的,可画出示意图,基本形状正确即可,不做尺寸要求).③展开图的要求教材从展开和折叠两个方面都有要求,且教材中的题中出现正方体表面有图案的情况,这也是中考的一个热点.圆锥的侧面展开图在背面的章节还要再研究,其余的多面体的展开图很少涉及,所以尽可能多做一些练,尽可能在本章中过关.在教学中,能够从看图阐发图形特点举行设想或先动手做再阐发图形,两方面同时举行.正方体的11种展开图,在操作中理解展开和折叠的过程,从不同的分类角度认识展开图.④推理能力的要求教科书是按照“简单说理”“说理”“推理”“用符号表示推理”不同层次分阶段逐步加深安排的.在本章,不仅要求学生通过观察、思考、探究等活动归纳出图形的概念和性质,还要“简单说理”.直线和线段性质的应用、余角和补角的性质的得出等都有简单说理的成分.教学中要注意利用这里“简单说理”的因素,为后面逐步让学生养成言之有据的惯作准备.规范的推理形式,学生虽然一开始接受有些困难,随着教学的深入不断地纠正、强化,学生是可以掌握的,为以后的几何研究起到示范作用.本章中线段的中点、角平分线、互余、互补、同角的余角(补角)相等,等角的余角(补角)相等,要从文、图、式三方面加深理解,并加以应用,要配上适当的练,巩固学生的说理.(10)关于本章作图的要求:①作一条线段等于已知线段②作已知线段的中点③作一个角等于已知角④作一个角的平分线2.各小节教学建议4.1.1立体图形与平面图形知识点1:在实际背景中了解立体图形和平面图形的概念,体会抽象的过程,能举出实例.教学建议:1.理解从模型→图形,就是数学化的过程.2.能够认清N棱柱和N棱锥,圆柱和圆锥,留意“棱”字和“锥”字的写法;能区分棱柱(锥)与圆柱(锥),能区分圆形和球体,不要求但也能够认识棱台或圆台.知识点2:从分歧角度看立体图形获得平面图形.教学建议:简单几何体要求会画图;复杂几何体能想象、辨认、说明即可.知识点3:立体图形的展开图.教学建议:1.对于立体图形展开图,学生首先要分析认清立体图形的空间结构,可以把每个面都标上它的位置名称,在展开后方便分清每个面所达到的位置.正方体的11种展开图,不要肄业生记忆,紧张的是展开和折叠的过程.鼓励学生自己动手尝试.圆锥的侧面展开图在背面圆一章中还能够再研究,其余的多面体的展开图很少涉及,所以尽可能多做一些练,尽可能在本章中过关.2.通过“展开”和“围成”两种途径认识常见几何体的展开图.尽量提供学生动手操作的机会.4.1.2点、线、面、体知识点:能从几何实体中抽象出点、线、面、体;知道“…动成…”.教学建议:这局部学生在小学阶段就有了响应的体验,枢纽是学生能进一步抽象了解这些概念,如对点的认识,它只透露表现一个位置,没有大小,甚至于无法画出来.这里还要说明线分直线和曲线,面分平面和曲面.4.2直线、射线、线段知识点1:三种基本几何图形的概念、表示、作图、性质教学建议:联系:射线、线段是直线的一部分,反向延长射线得到直线,两方延长线段得到直线.区别:名称直线图像透露表现1.直线AB(或直线BA)直线l2.射线线段1.射线AB2.射线l1.线段AB(或线段BA)2.线段a延伸向两端无限延长向一端无限延伸不可延长2可度量1不可度量端点度量不可度量知识点2:几何语言和作图;点和直线教学发起:1.该当学会“过某点”、“点在线上/外”、“相交于某点”、“延长(到某点)”、“在某线上截取”、“连接AB”、“作直线/射线/线段AB”、“有且只要”等说法,并能画出响应的图形.2.学生在书写时可能会出现用小写字母表示点的问题.知识点3:尺规作图:作一条线段等于已知线段;叠合法比较两条线段的长度大小教学发起:要让学生了解为什么在“射线”上截取,在直线或线段上截取行不行.知识点4:线段的中点、N等分点的概念教学建议:1.夸大中点必需在线段上,能够提出探讨性题目“MA=MB,能否断言M就是线段AB的中点?”,能够要学生利用尺规作图举行探讨.2.合理利用中点举行推理.知识点5:线段的和差倍分教学建议:1.注意规范符号语言的书写,要求学生模仿,从现在起必须变算术式为几何语言.2.发起此时不上难题、综合题,目的是先解决“三种语言”的题目,也为后续研究角的计较打好根蒂根基,分散难点.4.3.1角知识点1:角的两种定义方法教学发起:1.通常情况下角的范围是(0,180].2.明确角的分类.3.在第二种定义下,说明角的范围可以进一步扩展到和大于180的角.知识点2:角的三种表示方法教学建议:1.角的表达规范题目.2.书写时尽可能写成简洁的表达形式.知识点3:角的大小、单位制、方位角教学发起:1.度分秒的转换、计算是难点,学生对于60进制的换算还是不太适应.2.一般方位,都统一用“北偏X”或“南偏X”表示;在图中标记角度.4.3.2角的比较与运算知识点1:叠合法比较角度大小;角分线的概念;角度和差倍分的计算教学建议:1.类比“线段”的研究来研究“角”.可以从以下方面作类比:①定义、图形、符号表示②测量:测量工具、测量方法、度量单位③比较大小:两条线段/两个角的大小关系的方法④特殊位置:线段的等分点、角等分线⑤和差倍分运算:感受运算中的推理和方程思想⑥角的作图:感受作图中的方案设计2.典型题:线段同一直线上有n个点,求线段的条数.已知:点C是直线AB上一点,满足已知:平面内有AOB,射线OC满足BOC角平面内有共端点的n条射线,求角的个数.AC1BC2BC1AB,2BC2则点C有两个可能位置:已知:如图,点C在线段AB上,1AOB,O2AC1则射线OC有两个可能位置:已知:如图,射线OC在AOB内部,M,N划分是线段AC,BC中点,OM,ON划分是AOC,BOC平分线,A总有MON1总有XXX.21AOB.2OXXX4.3.3余角和补角知识点:余角和补角的概念和计算教学建议:1.明确这两个概念仅透露表现数量关系、不涉及位置关系;但反过来,特殊的位置关系(垂直、邻补角)则每每会出现两个角互为余角/补角,能够用来计较角的大小.2.可以考虑将性质写成“已知-求证-证明”的形式,让学生初步感受几何中的推理和证明.4.4课题研究制作长方体形状的包装纸盒通过这一研究体会长方体(立体图形)与其侧面展开图(平面图形)之间的关系.教学建议:能够安排与立体图形展开图教学联合举行.第四章几何图形初步小结复1.建立完善的认知结构,体会一些数学思想方法的应用.2.注重渗透数学思想方法:分类讨论思想、方程思想、数形联合思想等等.分类讨论思想例1.两条相交直线与另外一条直线在同一平面内,求它们的交点个数?分析由于题设条件中并没有明确这三条直线的具体位置,所以应分情况讨论.前两条的关系很确定,当画第三条时,会出现分类,或平行于某一条,或相交于同一个点,或相交不在同一个点等三种情况.说明:在过平面上若干点可以画多少条直线,应注意这些点的分情况讨论;或在画其它的图形时,应注意图形的各种可能性.例 2.点A,B,C在统一条直线上,AB=3 cm,BC=1 cm.求AC的长.方程思想在处理有关角的大小,线段大小的计较经常需要通过列方程来解决.例.如果一个角的补角是150°,求这个角的余角.分析若设这个角的大小为x°,则这个角的余角是90°-x,于是由这个角的补角是150°可列出方程求解.数形联合思想例.如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF.将∠BEF半数,点B落在直线EF 上的点B'处,得折痕EM;将∠AEF半数,点A落在直线EF上的点A'处,得折痕EN,求∠XXX的度数.说明:对于几何中的一些概念、性质及关系,应把几何意义与数量关系结合起来加以认识,达到形与数的统一.三、几个主要知识点1.从分歧偏向看例1.将两个大小完全不异的杯子(如图1-甲)叠放在一起(如图1-乙),则从上往下看图乙,获得的平面图形是()第图1解析:从上面往下看,能够看到上面杯子的底和两杯子的口都是圆形,应用实线透露表现,故选C.例2.图2是一个几何体的什物图,从正面看这个几何体,获得的平面图形是()图2ABCD解析:此几何体由上下两部分组成,从正面看上面的几何体,看到的是一个等腰梯形,从正面看下面的几何体,看到的是一个长方形,再根据上面的几何体放置的位置特征,应选C.2.展开与折叠例3.如图3所示的平面图形中,不可能围成圆锥的是()图3解析:圆锥的展开图是一个圆和一个扇形,D选项中是一个圆和一个三角形,不能围成圆锥,故选D.例4.图4是正方体的展开图,原正方体相对两个面上的数字之和的最小值是图4________.解析:将正方体的展开图折成正方体,能够获得2与6两个面相对,3与4两个面相对,1与5两个面相对,所以相对两个面上的数字之和的最小值是:1+5=6.故填6.3 .线段的性质与计算例5.在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是___________.解析:本题是线段性质的实际应用,根据线段的性质直接获得谜底.应填“两点之间,线段最短.”例6.如图5,点C是线段AB上的点,点D是线段BC 的中点,若AB=12,AC=8,则CD=______.解析:由图可知,CB=AB-AC=12-8=4.又因为D是BC的中点,所以CD=BC=2.故填2.4.角度的计算例7.如图6所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A. 20°B. 25°C. 30°D. 70°CA1OD2图512解析:由∠1=40°及平角定义,可求出∠BOC的度数,由角平分线的定义,通过∠BOC=2∠2可求出∠2的度数.因为∠1=40°,所以∠BOC=180°-∠AOC=140°.又由于OD是∠BOC的平分线,所以∠2=B图61XXX∠BOC=70°.故选D.2例8.如图7,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45°,则∠COE的度数是()A. 125°B. 135°C. 145°D. 155°解析:因为OE⊥AB,所以∠BOE=90°.由于∠BOD=45°,所以∠DOE=45°.所以∠COE=180°-∠DOE=135°.故选B.5.余角与补角例9.(1)已知∠α=20°,则∠α的余角等于度.(2)一个角的补角是36°35′,这个角是.ACO图7EDB解析:(1)由余角定义,∠α的余角为:90°-20°=70°.故填70.。
数学初中教材几何案例分析几何作为数学的一个重要分支,在初中阶段是学生们理解空间和形状关系的基础。
通过几何学习,学生可以培养他们的逻辑思维和几何直观能力。
本文将通过对几个初中数学教材中的几何案例进行分析,来探讨教材中的几何案例的设计和学习效果。
案例一:直线和平面的关系
在初中数学教材中,通常以直线和平面的关系为开篇。
这一部分的案例设计旨在让学生理解直线与平面的交点、相交关系以及垂直关系等基本概念。
例如,教材中的一个案例可以如下:
在平面上,画一条与给定平面相交、无限延长的直线,再在该线上取一点,该点不在给定平面上。
现求证:该点到给定平面的距离是不变的。
通过这个案例,学生可以观察,无论直线怎样在平面上移动,所取的点到给定平面的距离始终保持不变。
这个案例通过直观的示例和逻辑的证明,让学生深刻理解了点到平面的距离的性质。
案例二:相似三角形的性质
相似三角形是初中数学中非常重要的一个概念,它涉及到比例关系和三角形的形状特征。
在教材中,有很多关于相似三角形的案例,这里我们以一个案例为例来进行分析:
已知ΔABC和ΔADE是两个相似三角形,且比例尺为2∶3。
若
AB=8cm,BC=12cm,DE=9cm,求AD的长度。
这个案例通过给出已知条件和所求量,引导学生运用相似三角形的
性质解题。
学生需要注意到两个相似三角形的对应边成比例,在此基
础上利用比例关系求出所求量。
这个案例既巩固了相似三角形的性质,又锻炼了学生运用数学知识解决实际问题的能力。
案例三:圆的性质及应用
圆是初中数学教材中一个重要的几何对象,它具有许多独特的性质
和广泛的应用。
教材中对圆的性质和应用进行了全面的介绍,其中的
案例设计也非常具有教育意义。
以下是一个案例示例:
已知圆的周长为30cm,求其半径和面积。
这个案例通过给出已知条件,引导学生通过相关圆的公式来求解。
学生需要运用圆的周长和面积的公式,将已知条件代入进行计算。
通
过这个案例,学生可以巩固圆的周长和面积的计算方法,并将其应用
到实际问题中。
综上所述,初中数学教材中的几何案例在设计上注重启发学生的思维,引导学生通过观察、实践和推理来理解几何概念和解决问题。
这
些案例既提高了学生的数学能力,又培养了他们的逻辑思维和几何直
观能力。
通过对这些几何案例的学习和分析,学生能更好地掌握几何
知识和问题解决能力。