广州市2020年高中物理 力学竞赛辅导资料 专题06 功和能(含解析)
- 格式:doc
- 大小:208.00 KB
- 文档页数:25
高考物理佛山力学知识点之功和能知识点总复习含答案解析一、选择题1.质量为m 的小球从桌面上竖直抛出,桌面离地高度为1h ,小球能达到的最大离地高度为2h .若以桌面作为重力势能等于零的参考平面,不计空气阻力,那么小球落地时的机械能为( ).A .2mghB .1mghC .21()mg h h +D .21()mg h h -2.如图,半径为R 、质量为m 的半圆轨道小车静止在光滑的水平地面上,将质量也为m 的小球从距A 点正上方h 高处由静止释放,小球自由落体后由A 点经过半圆轨道后从B 冲出,在空中能上升的最大高度为34h ,则A .小球和小车组成的系统动量守恒B .小车向左运动的最大距离为12R C .小球离开小车后做斜上抛运动 D .小球第二次能上升的最大高度12h <h <34h 3.如图,倾角为θ的光滑斜面与光滑的半径为R 的半圆形轨道相切于B 点,固定在水平面上,整个轨道处在竖直平面内。
现将一质量为m 的小球自斜面上距底端高度为H 的某点A 由静止释放,到达半圆最高点C 时,对C 点的压力为F ,改变H 的大小,仍将小球由静止释放,到达C 点时得到不同的F 值,将对应的F 与H 的值描绘在F H -图像中,如图所示。
则由此可知( )A .小球开始下滑的高度H 的最小值是2RB .图线的斜率与小球质量无关C .a 点的坐标值是5RD .b 点坐标的绝对值是5mg4.小明和小强在操场上一起踢足球,若足球质量为m ,小明将足球以速度v 从地面上的A 点踢起。
当足球到达离地面高度为h 的B 点位置时,如图所示,不计空气阻力,取B 处为零势能参考面,则下列说法中正确的是( )A.小明对足球做的功等于mghB.足球在A点处的机械能为2 2 mvC.小明对足球做的功等于22mv+mghD.足球在B点处的动能为22mv-mgh5.如图所示,人站在电动扶梯的水平台阶上,假定人与扶梯一起沿斜面加速上升,在这个过程中,人脚所受的静摩擦力()A.等于零,对人不做功B.水平向左,对人做负功C.水平向右,对人做正功D.沿斜面向上,对人做正功6.把一物体竖直向上抛出去,该物体上升的最大高度为h,若物体的质量为m,所受空气阻力大小恒为f,重力加速度为g.则在从物体抛出到落回抛出点的全过程中,下列说法正确的是:()A.重力做的功为m g h B.重力做的功为2m g hC.空气阻力做的功为零D.空气阻力做的功为-2fh7.如图所示,用同种材料制成的一个轨道ABC,AB段为四分之一圆弧,半径为R,水平放置的BC段长为R。
专题06 功和能一、单项选择题(每道题只有一个选项正确)1、如图5所示,长1 m 的轻杆BO 一端通过光滑铰链铰在竖直墙上,另一端装一轻小光滑滑轮,绕过滑轮的细线一端悬挂重为15 N 的物体G ,另一端A 系于墙上,平衡时OA 恰好水平,现将细线A 端滑着竖直墙向上缓慢移动一小段距离,同时调整轻杆与墙面夹角,系统重新平衡后轻杆受到的压力恰好也为15 N ,则该过程中物体G 增加的重力势能约为( )图5A.1.3 JB.3.2 JC.4.4 JD.6.2 J【答案】A【解析】轻杆在O 点处的作用力方向必沿杆,即杆会平分两侧绳子间的夹角.开始时,AO 绳子水平,此时杆与竖直方向的夹角是45°;这时杆中的弹力大小等于滑轮两侧绳子拉力的合力.当将A 点达到新的平衡,由于这时轻杆受到的压力大小等于15 N(等于物体重力),说明这时两段绳子夹角为120° 那么杆与竖直方向的夹角是60°;设杆的长度是L .状态1时,AO 段绳子长度是L 1=L sin 45°=22L , 滑轮O 点到B 点的竖直方向距离是h 1=L cos 45°=22L , 状态2,杆与竖直方向夹角是60°,这时杆与AO 绳子夹角也是60°(∠AOB =60°),即三角形AOB 是等边三角形.所以,这时AO 段绳子长度是L 2=L ;滑轮到B 点的竖直距离是h 2=L cos 60°=12L ,可见,后面状态与原来状态相比,物体的位置提高的竖直高度是h =(h 2-h 1)+(L 2-L 1)=(12L -22L )+(L -22L )=(32-2)L .重力势能的增加量E p =Gh =G ×(32-2)L =15 N×(32-2)×1 m≈1.3 J.2、有一竖直放置的“T”形架,表面光滑,滑块A 、B 分别套在水平杆与竖直杆上,A 、B 用一不可伸长的轻细绳相连,A 、B 质量相等,且可看做质点,如图8所示,开始时细绳水平伸直,A 、B 静止.由静止释放B 后,已知当细绳与竖直方向的夹角为60°时,滑块B 沿着竖直杆下滑的速度为v ,则连接A 、B 的绳长为( )图8A.4v23g B.3v2gC.2v 23gD.2v2g【答案】A【解析】将A 、B 的速度分解为沿绳的方向和垂直于绳的方向,两滑块沿绳方向的速度相等,有:v B cos 60°=v A cos 30°,所以:v A =33v ,A 、B 组成的系统机械能守恒,有:mgh =12mv 2A +12mv 2B,所以:h =2v 23g ,绳长l =2h =4v23g.3、如图5所示,在某旅游景点的滑沙场有两个坡度不同的滑道AB 和AB ′(都可看做斜面),一名旅游者乘同一个滑沙橇从A 点由静止出发先后沿AB 和AB ′滑道滑下,最后停在水平沙面BC 或B ′C 上.设滑沙者保持一定坐姿,滑沙橇和沙面间的动摩擦因数处处相同.下列说法中正确的是( )图5A.到达B 点的速率等于到达B ′点的速率B.到达B 点时重力的功率大于到达B ′时重力的功率C.沿两滑道滑行的时间一定相等D.沿两滑道滑行的总路程一定相等 【答案】B【解析】设滑道的倾角为θ,动摩擦因数为μ.滑沙者在由斜面滑到水平面的过程中,由动能定理,mgh -μmg cos θ·hsin θ=12mv2-0,即得:mgh-μmgtan θ=12mv2.由于AB′与水平面的夹角小于AB与水平面的夹角,所以得知滑沙者在B点的速率大于在B′点的速率.故A错误.由前面可知,滑沙者在B点的速率大于在B′点的速率,且B点的速度与重力的夹角小于在B′点的夹角,根据P=Gv cos θ,故B正确;再对滑沙者滑行全过程用动能定理可知:mgh-μmg cos θ·hsin θ-μmgs′=0,得到:水平滑行位移s=htan θ+s′=hμ,与斜面的倾角无关,所以滑沙者在两滑道上将停在离出发点水平位移相同的位置,由几何知识可知,沿两滑道滑行的总路程不等.故D错误.由题意可知,到达B′的速度大小相同,从而根据路程不同,可以确定,沿两滑道滑行的时间不等,故C错误.4、如图1所示,缆车在牵引索的牵引下沿固定的倾斜索道加速上行,所受阻力不能忽略.在缆车向上运动的过程中,下列说法正确的是( )图1A.缆车克服重力做的功小于缆车增加的重力势能B.缆车增加的动能等于牵引力对缆车做的功和克服阻力做的功之和C.缆车所受牵引力做的功等于缆车克服阻力和克服重力做的功之和D.缆车增加的机械能等于缆车受到的牵引力与阻力做的功之和【答案】D【解析】根据重力做功与重力势能的变化关系可知,缆车克服重力做的功等于缆车增加的重力势能.故A错误;由动能定理可知,牵引力对缆车做的功等于缆车增加的动能、增加的重力势能与克服摩擦力所做的功之和,即:等于缆车增加的机械能与缆车克服摩擦力做的功之和,故B、C错误,D正确.5、如图2所示,用两根金属丝弯成一光滑半圆形轨道,竖直固定在地面上,其圆心为O、半径为R.轨道正上方离地h处固定一水平长直光滑杆,杆与轨道在同一竖直平面内,杆上P点处固定一定滑轮,P点位于O 点正上方.A、B是质量均为m的小环,A套在杆上,B套在轨道上,一条不可伸长的细绳绕过定滑轮连接两环.两环均可看做质点,且不计滑轮大小与质量.现在A环上施加一个水平向右的恒力F,使B环从地面由静止沿轨道上升.则( )图2A.力F 所做的功等于系统动能的增加量B.在B 环上升过程中,A 环动能的增加量等于B 环机械能的减少量C.当B 环到达最高点时,其动能为零D.当B 环与A 环动能相等时,sin ∠OPB =R h【答案】D【解析】力F 做正功,系统的机械能增加,由功能关系可知,力F 所做的功等于系统机械能的增加量,不等于系统动能的增加量.故A 错误;由于力F 做正功,A 、B 组成的系统机械能增加,则A 环动能的增加量大于B 环机械能的减少量,故B 错误;当B 环到达最高点时,A 环的速度为零,动能为零,但B 环的速度不为零,动能不为零,故C 错误;当PB 线与圆轨道相切时,v B =v A ,根据数学知识有sin ∠OPB =R h,故D 正确. 6、如图1所示,在竖直面内固定一光滑的硬质杆ab ,杆与水平面的夹角为θ,在杆的上端a 处套一质量为m 的圆环,圆环上系一轻弹簧,弹簧的另一端固定在与a 处在同一水平线上的O 点,O 、b 两点处在同一竖直线上.由静止释放圆环后,圆环沿杆从a 运动到b ,在圆环运动的整个过程中,弹簧一直处于伸长状态,则下列说法正确的是( )图1A.圆环的机械能保持不变B.弹簧对圆环一直做负功C.弹簧的弹性势能逐渐增大D.圆环和弹簧组成的系统机械能守恒 【答案】D【解析】由几何关系可知,当环与O 点的连线与杆垂直时,弹簧的长度最短,弹簧的弹性势能最小.所以在环从a 到C 的过程中弹簧对环做正功,而从C 到b 的过程中弹簧对环做负功,所以环的机械能是变化的.故A 、B 错误;当环与O 点的连线与杆垂直时,弹簧的长度最短,弹簧的弹性势能最小,所以弹簧的弹性势能先减小后增大.故C 错误;在整个的过程中只有重力和弹簧的弹力做功,所以圆环和弹簧组成的系统机械能守恒.故D 正确.7、如图4所示,把小车放在倾角为30°的光滑斜面上,用轻绳跨过定滑轮使之与盛有沙子的小桶相连,不计滑轮质量及摩擦,已知小车的质量为3m ,小桶与沙子的总质量为m ,小车从静止释放后,在小桶上升竖直高度为h 的过程中( )图4A.小桶处于失重状态B.小桶的最大速度为12ghC.小车受绳的拉力等于mgD.小车的最大动能为32mgh【答案】B【解析】在整个的过程中,小桶向上做加速运动,所以小桶受到的拉力大于重力,小桶处于超重状态.故A 、C 错误;在小桶上升竖直高度为h 的过程中只有重力对小车和小桶做功,由动能定律得:3mg ·h ·sin 30°-mgh =12(3m +m )v 2解得:v =12gh ,故B 正确;小车和小桶具有相等的最大速度,所以小车的最大动能为:E km =12·3mv 2=38mgh ,故D 错误.二、多项选择题(每道题至少有二个选项正确)8、如图2所示,斜面与足够长的水平横杆均固定,斜面与竖直方向的夹角为θ,套筒P 套在横杆上,与绳子左端连接,绳子跨过不计大小的定滑轮,其右端与滑块Q 相连接,此段绳与斜面平行,Q 放在斜面上,P与Q质量相等且为m,O为横杆上一点且在滑轮的正下方,滑轮距横杆h.手握住P且使P和Q均静止,此时连接P的绳与竖直方向夹角为θ,然后无初速度释放P.不计绳子的质量和伸长及一切摩擦,重力加速度为g.关于P描述正确的是( )图2A.释放P前绳子拉力大小为mg cos θB.释放后P做匀加速运动C.P达O点时速率为D.P从释放到第一次过O点,绳子拉力对P做功功率一直增大【答案】AC【解析】释放P前,对Q分析,根据共点力平衡得,F T=mg cos θ,故A正确;释放后对P分析,知P所受的合力在变化,则加速度在变化,做变加速直线运动,故B错误;当P到O点时,Q的速度为零,对P和Q系统研究,mg(hcos θ-h)cos θ=12mv2,解得v=,故C正确;P从释放到第一次过O点,速度逐渐增大,拉力在水平方向的分力在减小,则拉力的功率不是一直增大,故D错误.9、如图2所示,轻质弹簧的一端与内壁光滑的试管底部连接,另一端连接质量为m的小球,小球的直径略小于试管的内径,开始时试管水平放置,小球静止,弹簧处于原长.若缓慢增大试管的倾角θ至试管竖直,弹簧始终在弹性限度内,在整个过程中,下列说法正确的是( )图2A.弹簧的弹性势能一定逐渐增大B.弹簧的弹性势能可能先增大后减小C.小球重力势能一定逐渐增大D.小球重力势能可能先增大后减小【答案】AD【解析】弹簧弹力逐渐增大,弹性势能一定逐渐增大,选项A正确,B错误;以地面为势能零点,倾角为θ时小球重力势能E p =mg (l 0-mg sin θk )sin θ,若sin θ=kl 02mg<1,则在达到竖直位置之前,重力势能有最大值,所以选项C 错误,D 正确.10、如图3所示,在粗糙水平面上有甲、乙两木块,与水平面间的动摩擦因数均为μ,质量均为m ,中间用一原长为L 、劲度系数为k 的轻质弹簧连接起来,开始时两木块均静止且弹簧无形变.现用一水平恒力F (F >2μmg )向左推木块乙,直到两木块第一次达到加速度相同时,下列说法正确的是(设木块与水平面间的最大静摩擦力等于滑动摩擦力)( )图3A.此时甲的速度可能等于乙的速度B.此时两木块之间的距离为L -F2kC.此阶段水平恒力F 做的功大于甲、乙两木块动能增加量与弹性势能增加量的总和D.此阶段甲、乙两木块各自克服摩擦力所做的功相等 【答案】BC【解析】现用一水平恒力F (F >2μmg )向左推木块乙,直到两木块第一次达到加速度相同时,在此过程中,乙的加速度减小,甲的加速度增大,所以此时甲的速度小于乙的速度,故A 错误;对系统运用牛顿第二定律得:a =F -2μmg 2m ,对甲分析,有:F 弹-μmg =ma ,根据胡克定律得:x =F 弹k =F2k,则两木块的距离为:s =L -x =L -F2k,故B 正确;根据能量守恒得此阶段水平力F 做的功等于甲、乙两木块动能增加量与弹性势能增加量和与水平面摩擦产生的热量的总和,故C 正确;由于甲、乙两木块各自所受摩擦力大小相等,但位移不同,故甲、乙两木块各自所受摩擦力所做的功不相等,故D 错误.11、如图4所示,一质量为m 的小球置于半径为R 的光滑竖直圆轨道最低点A 处,B 为轨道最高点,C 、D 为圆的水平直径两端点.轻质弹簧的一端固定在圆心O 点,另一端与小球拴接,已知弹簧的劲度系数为k =mgR,原长为L = 2R ,弹簧始终处于弹性限度内,若给小球一水平初速度v 0,已知重力加速度为g ,则( )图4A.无论v 0多大,小球均不会离开圆轨道B.若2gR <v 0<5gR ,则小球会在B 、D 间脱离圆轨道C.只要v 0>4gR ,小球就能做完整的圆周运动D.只要小球能做完整圆周运动,则小球与轨道间最大压力与最小压力之差与v 0无关 【答案】ACD【解析】小球运动到最高点速度为零时假设没有离开圆轨道,则此时弹簧的弹力F 弹=k Δx =mgRR =mg ,此时小球没有离开圆轨道,故选项A 正确,B 错误;若小球到达最高点的速度恰为零,则根据动能定理12mv20=mg ·2R ,解得v 0=4gR ,故只要v 0>4gR ,小球就能做完整的圆周运动,选项C 正确;在最低点时:F N1-mg -k Δx =m v 20R ,其中k Δx =mg ;从最低点到最高点,根据动能定理12mv 20=12mv 2+mg ·2R ,在最高点:F N2+mg -k Δx =m v 2R,联立解得:F N1-F N2=6mg ,故选项D 正确;故选A 、C 、D.12、如图9所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的环,环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d .杆上的A 点与定滑轮等高,杆上的B 点在A 点正下方距离为d 处.现将环从A 处由静止释放,不计一切摩擦阻力,下列说法正确的是( )图9A.环到达B 处时,重物上升的高度h =d2B.环到达B 处时,环与重物的速度大小相等C.环从A 到B ,环减少的机械能等于重物增加的机械能D.环能下降的最大高度为43d【答案】CD【解析】根据几何关系有,环从A 下滑至B 点时,重物上升的高度h =2d -d ,故A 错误;对B 的速度沿绳子方向和垂直于绳子方向分解,在沿绳子方向上的分速度等于重物的速度,有:v cos 45°=v重物,故B错误;环下滑过程中无摩擦力对系统做功,故系统机械能守恒,即满足环减小的机械能等于重物增加的机械能,故C 正确;环下滑的最大高度为h 1时环和重物的速度均为0,此时重物上升的最大高度为h 21+d 2-d ,根据机械能守恒有mgh 1=2mg (h 21+d 2-d ),解得:h 1=43d ,故D 正确.故选C 、D.13、蹦床类似于竖直放置的轻弹簧(弹力满足F =kx ,弹性势能满足E p =12kx 2,x 为床面下沉的距离,k 为常量).质量为m 的运动员静止站在蹦床上时,床面下沉x 0;蹦床比赛中,运动员经过多次蹦跳,逐渐增加上升高度,测得某次运动员离开床面在空中的最长时间为Δt .运动员可视为质点,空气阻力忽略不计,重力加速度为g .则可求( ) A.常量k =mg x 0B.运动员上升的最大高度h =12g (Δt )2C.床面压缩的最大深度x =x 0+D.整个比赛过程中运动员增加的机械能ΔE =18mg 2(Δt )2【答案】AC【解析】质量为m 的运动员静止站在蹦床上时,床面下沉x 0,故有mg =kx 0,解得k =mgx 0,A 正确;离开床面后做竖直上抛运动,根据对称性可得运动员上升的时间为t =12Δt ,故上升的最大高度为h =12gt 2=18g (Δt )2,B 错误;离开床面时的速度为v =g Δt 2,从压缩最深处到运动员刚离开床面过程中有12kx 2-mgx =12mv 2,联立v =g Δt2,mg =kx 0,解得x =x 0+,C 正确;以床面为零势能面,则刚开始时,人的机械能为E 1=-mgx 0,到最高点时人的机械能为E 2=mgh =18mg 2(Δt )2,故运动员的机械能增量为ΔE =18mg 2(Δt )2+mgx 0,D 错误.14、如图6甲所示,以斜面底端为重力势能零势能面,一物体在平行于斜面的拉力作用下,由静止开始沿光滑斜面向下运动.运动过程中物体的机械能与物体位移关系的图象(E -x 图象)如图乙所示,其中0~x 1过程的图线为曲线,x 1~x 2过程的图线为直线.根据该图象,下列判断正确的是( )图6A.0~x 1过程中物体所受拉力始终沿斜面向下B.0~x 1过程中物体所受拉力先变小后变大C.x 1~x 2过程中物体可能在做匀速直线运动D.x 1~x 2过程中物体可能在做匀减速直线运动 【答案】BCD【解析】机械能与物体位移关系的图象的斜率表示拉力,可知0~x 1过程中物体所受拉力先变小后变大,A 错误,B 正确;x 1~x 2过程中拉力沿斜面向上恒定,物体可能匀速直线运动也可能匀减速直线运动,C 、D 正确.15、如图7所示,一质量为m 的小球以初动能E k0从地面竖直向上抛出,已知运动过程中受到恒定阻力F f =kmg 作用(k 为常数且满足0<k <1).图中两条图线分别表示小球在上升过程中动能和重力势能与其上升高度之间的关系(以地面为零势能面),h 0表示上升的最大高度.则由图可知,下列结论正确的是( )图7A.E 1是最大势能,且E 1=E k0k +1B.上升的最大高度h 0=(1)k E k mg+C.落地时的动能E k =kE k0k +1D.在h 1处,小球的动能和势能相等,且h 1=(2)k E k mg+【答案】ABD【解析】对于小球上升过程,根据动能定理可得:0-E k0=-(mg +F f )h 0,又F f =kmg ,得上升的最大高度h 0=0(1)k E k mg+,则最大的势能为 E 1=mgh 0=E k0k +1,故A 、B 正确.下落过程,由动能定理得:E k =(mg -F f )h 0,又F f =kmg ,解得落地时的动能 E k =(1)1k k E k -+,故C 错误.h 1高度时重力势能和动能相等,由动能定理得:E k1-E k0=-(mg +F f )h 1,又 mgh 1=E k1,解得h 1=(2)k E k mg+.故D 正确.16、一足够长的传送带与水平面的夹角为θ,以一定的速度匀速运动.某时刻在传送带适当的位置放上具有一定初速度的物块(如图3a所示),以此时为t=0时刻记录了物块之后在传送带上运动的速度随时间的变化关系.如图b所示(图中取沿斜面向上的运动方向为正方向,其中两坐标大小v1>v2).已知传送带的速度保持不变.则下列判断正确的是( )图3A.若物块与传送带间的动摩擦因数为μ,则μ>tan θB.0~t1内,传送带对物块做正功C.0~t2内,系统产生的热量一定比物块动能的减少量大D.0~t2内,传送带对物块做的功等于物块动能的减少量【答案】AC【解析】在t1~t2内,物块向上运动,则有μmg cos θ>mg sin θ,得μ>tan θ,故A正确;由题意知,物块先向下运动后向上运动,则知传送带的运动方向应向上.0~t1内,物块所受摩擦力沿斜面向上,则传送带对物块做负功,故B错误;物块的重力势能减小,动能也减小都转化为系统产生的内能,则由能量守恒得知,系统产生的热量大小一定大于物块动能的变化量大小.故C正确;0~t2内,传送带对物块做功等于物块机械能的变化量,故D错误.17、如图4所示,半径为R的竖直光滑圆轨道与光滑水平面相切,质量均为m的小球A、B与轻杆连接,置于圆轨道上,A位于圆心O的正下方,B与O等高.它们由静止释放,最终在水平面上运动.下列说法正确的是( )图4A.下滑过程中重力对B做功的功率先增大后减小B.当B滑到圆轨道最低点时,轨道对B的支持力大小为3mgC.下滑过程中B的机械能增加D.整个过程中轻杆对A 做的功为12mgR【答案】AD【解析】因为初位置速度为零,则重力的功率为0,最低点速度方向与重力的方向垂直,重力的功率为零,可知重力的功率先增大后减小.故A 正确;A 、B 小球组成的系统,在运动过程中,机械能守恒,设B 到达轨道最低点时速度为v ,根据机械能守恒定律得:12(m +m )v 2=mgR ,解得:v =gR ,在最低点,根据牛顿第二定律得: F N -mg =m v 2R解得:F N =2mg ,故B 错误;下滑过程中,B 的重力势能减小ΔE p =mgR ,动能增加量ΔE k =12mv 2=12mgR ,所以机械能减小12mgR ,故C 错误;整个过程中对A ,根据动能定理得:W =12mv 2=12mgR ,故D 正确.三、计算题18、风洞飞行表演是一种高科技的惊险的娱乐项目.如图9所示,在某次表演中,假设风洞内向上的总风量和风速保持不变.质量为m 的表演者通过调整身姿,可改变所受的向上的风力大小,以获得不同的运动效果.假设人体受风力大小与正对面积成正比,已知水平横躺时受风力面积最大,且人体站立时受风力面积为水平横躺时受风力面积的18,风洞内人体可上下移动的空间总高度AC =H .开始时,若人体与竖直方向成一定角度倾斜时,受风力有效面积是最大值的一半,恰好使表演者在最高点A 点处于静止状态;后来,表演者从A 点开始,先以向下的最大加速度匀加速下落,经过某处B 点后,再以向上的最大加速度匀减速下落,刚好能在最低点C 处减速为零,试求:图9(1)表演者向上的最大加速度大小和向下的最大加速度大小; (2)AB 两点的高度差与BC 两点的高度差之比; (3)表演者从A 点到C 点减少的机械能. 【答案】(1)g 34g (2)3∶4 (3)mgH【解析】(1)在A 点受力平衡时,则mg =k S2向上最大加速度为a 1,kS -mg =ma 1 得到a 1=g向下最大加速度为a 2,mg -k S8=ma 2得到a 2=34g(2)设B 点的速度为v B 2a 1h AB =v 2B 2a 2h BC =v 2B 得到:h AB h BC =a 2a 1=34或者由v -t 图象法得到结论. (3)整个过程的动能变化量为ΔE k =0 整个过程的重力势能减少量为ΔE p =mgH 因此机械能的减少量为ΔE =mgH或者利用克服摩擦力做功可也得到此结论.19、如图1所示,劲度系数k =25 N/m 轻质弹簧的一端与竖直板P 拴接(竖直板P 固定在木板B 的左端),另一端与质量m A =1 kg 的物体A 相连,P 和B 的总质量为M B =4 kg 且B 足够长.A 静止在木板B 上,A 右端连一细线绕过光滑定滑轮与质量m C =1 kg 的物体C 相连.木板B 的上表面光滑,下表面与地面的动摩擦因数μ=0.4.开始时用手托住C ,让细线恰好伸直但没拉力,然后由静止释放C ,直到B 开始运动.已知弹簧伸长量为x 时其弹性势能为12kx 2,全过程物体C 没有触地,弹簧在弹性限度内,g 取10 m/s 2.求:图1(1)释放C 的瞬间A 的加速度大小; (2)释放C 后A 的最大速度大小;(3)若C 的质量变为m C ′=3 kg ,则B 刚开始运动时,拉力对物体A 做功的功率. 【答案】(1)5 m/s 2(2) 2 m/s (3)45 2 W 【解析】(1)对物体C :m C g -F T =m C a对物体A :F T =m A a 所以a =m C g m C +m A=5 m/s 2(2)水平面对B 的摩擦力F f =μF N =μ(m A +M B )g =20 N ,释放C 后B 不会运动. 所以,当A 的加速度为0时其速度最大,有kx =m C g ,x =0.4 m对物体A 、C 用动能定理m C gx +W =W =Fl =-kx 2·x =-kx 22v m =2m C gx -kx2m A +m C= 2 m/s(3)设B 刚开始运动时弹簧伸长量为x 1,弹力F =kx 1,当F =F f 时木板B 开始运动, 则kx 1=μ(m A +M B )g ,x 1=0.8 m 弹簧弹力对物体A 所做的功W 1=-kx212,若B 刚开始运动时A 的速度为v ,对物体A 、C 用动能定理m C ′gx 1+W 1=v =2m C ′gx 1-kx21m A +m C ′=2 2 m/s设B 刚要运动时细线的拉力为F T1 对物体C :m C ′g -F T1=m C ′a ′对物体A :F T1-kx 1=m A a ′,F T1==22.5 N功率P =F T1v =45 2 W.20、为研究物体的运动,在光滑的水平桌面上建立如图2所示的坐标系xOy ,O 、A 、B 是水平桌面内的三个点,OB 沿x 轴正方向,∠BOA =60°,OB =32OA .第一次将一质量为m 的滑块以一定的初动能从O 点沿y 轴正方向滑出,并同时施加沿x 轴正方向的恒力F 1,滑块恰好通过A 点.第二次,在恒力F 1仍存在的情况下,再在滑块上施加一个恒力F 2,让滑块从O 点以同样的初动能沿某一方向滑出,恰好也能通过A 点,到达A 点时动能为初动能的3倍;第三次,在上述两个恒力F 1和F 2的同时作用下,仍从O 点以同样初动能沿另一个方向滑出,恰好通过B 点,且到达B 点时的动能是初动能的6倍.求:图2(1)第一次运动经过A 点时的动能与初动能的比值;(2)两个恒力F 1、F 2的大小之比F 1F 2是多少?并求出F 2的方向与x 轴正方向所成的夹角. 【答案】(1)73(2)2 3 30°【解析】(1)设滑块的初速度为v 0,初动能为E k0,从O 点运动到A 点的时间为t ,令OA =d ,则OB =3d2,只有恒力F 1,根据平抛运动的规律有:d sin 60°=v 0t ①a x =F 1m ② d cos 60°=12a x t 2③又有E k0=12mv 20④由①②③④式得E k0=38F 1d ⑤设滑块到达A 点时的动能为E k A ,则E k A =E k0+F 1d2⑥由⑤⑥式得E k A E k0=73(2)加了恒力F 2后,滑块从O 点分别到A 点和B 点,由功能关系及⑤式得W F2=3E k0-E k0-F 1d 2=23E k0⑦W F2′=6E k0-E k0-3F 1d2=E k0⑧由恒力做功的特点,可在OB 上找到一点M ,从O 到M 点F 2做功与A 点做功相同,M 与O 点的距离为x ,如图,则有x 3d 2=W F2W F2′⑨解得x =d ⑩ 则据恒力做功特点,F 2的方向必沿AM 的中垂线,设F 2与x 轴正方向的夹角为α,由几何关系可得α=30°,F 1F 2=2 3.21、光滑圆轨道和两倾斜直轨道组成如图3所示装置,其中直轨道bc 粗糙,直轨道cd 光滑,两轨道相接处为一很小的圆弧.质量为m =0.1 kg 的滑块(可视为质点)在圆轨道上做圆周运动到达轨道最高点a 时的速度大小为v =4 m/s ,当滑块运动到圆轨道与直轨道bc 的相切处b 时,脱离圆轨道开始沿倾斜直轨道bc 滑行,到达轨道cd 上的d 点时速度为零.若滑块变换轨道瞬间的能量损失可忽略不计,已知圆轨道的半径为R =0.25 m ,直轨道bc 的倾角θ=37°,其长度为L =26.25 m ,d 点与水平地面间的高度差为h =0.2 m ,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:图3(1)滑块与直轨道bc 间的动摩擦因数; (2)滑块在直轨道bc 上运动的时间. 【答案】(1)0.8 (2)7.66 s【解析】(1)从a 点到d 点全过程应用动能定理mg (R +R cos θ+L sin θ-h )-μmg cos θ·L =0-mv 22解得μ=0.8(2)设滑块在bc 上向下滑动的加速度为a 1,时间为t 1,向上滑动的加速度为a 2,时间为t 2,在c 点时的速度v c ,由c 到d 有mv2c 2=mgh ,得v c =2 m/sa 点到b 点的过程中,有mgR (1+cos θ)=mv 2b 2-mv22解得v b =5 m/s在轨道bc 上 下滑时L =1()2b c v v t t 1=7.5 s上滑时mg sin θ+μmg cos θ=ma 2 解得a 2=12.4 m/s 2由于0=v c -a 2t 2t 2=v ca 2≈0.16 s由于μ>tan θ,滑块在轨道bc 上停止后不再下滑. 滑块在直轨道bc 上运动的总时间为t =t 1+t 2=7.66 s.22、水上滑梯可简化成如图4所示的模型:倾角θ=37°的斜滑道AB 和光滑圆弧滑道BC 在B 点相切连接,圆弧末端C 点切线水平,C 点到水面的高度h =2 m ,顶点A 距水面的高度H =12 m ,点A 、B 的高度差H AB =9 m ,一质量m =50 kg 的人从滑道起点A 点无初速度滑下,人与滑道AB 间的动摩擦因数μ=0.25.(取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,人在运动过程中可视为质点)图4(1)求人从A 点滑到C 点的过程克服摩擦力所做的功; (2)求人在圆弧滑道末端C 点时对滑道的压力大小;(3)现沿BA 方向移动圆弧滑道,调节圆弧滑道与斜滑道AB 相切的位置,使人从滑梯平抛到水面的水平位移最大,求圆弧滑道与AB 滑道的相切点B ′到A 点的距离. 【答案】(1)1 500 J (2)1 900 N (3)7.9 m 【解析】(1)人在AB 滑道下滑过程中,由受力分析可知F f =μmg cos θ W f =-F f s AB s AB =H ABsin θ解得:W f =-1 500 JBC 段光滑,所以人从A 点滑到C 点的过程中克服摩擦力所做的功为1 500 J.(2)由几何关系可知:BC 段圆弧所对的圆心角θ=37°,A 、C 两点的高度差H AC =10 m ,B 、C 两点的高度差H BC =1 m则:F N -mg =mv 2CRH BC =R (1-cos θ)mgH AC +W f =12mv 2C。
高考物理力学知识点之功和能分类汇编含解析一、选择题1.一位质量为m的运动员从下蹲状态向上起跳,经Δt时间,身体伸直并刚好离开地面,速度为v,重心上升高度为h。
在此过程中()A.地面对他的冲量为mv+mgΔt,地面对他做的功为12mv2B.地面对他的冲量为mv+mgΔt,地面对他做的功为零C.地面对他的冲量为mv,地面对他做的功为12mv2D.地面对他的冲量为mv-mgΔt,地面对他做的功为零2.如图,光滑圆轨道固定在竖直面内,一质量为m的小球沿轨道做完整的圆周运动.已知小球在最低点时对轨道的压力大小为N1,在高点时对轨道的压力大小为N2.重力加速度大小为g,则N1–N2的值为A.3mg B.4mg C.5mg D.6mg3.按压式圆珠笔内装有一根小弹簧,尾部有一个小帽,压一下小帽,笔尖就伸出来。
如图所示,使笔的尾部朝下,将笔向下按到最低点,使小帽缩进,然后放手,笔将向上弹起至一定的高度。
忽略摩擦和空气阻力。
笔从最低点运动至最高点的过程中A.笔的动能一直增大B.笔的重力势能与弹簧的弹性势能总和一直减小C.弹簧的弹性势能减少量等于笔的动能增加量D.弹簧的弹性势能减少量等于笔的重力势能增加量4.一质量为m的木块静止在光滑的水平面上,从0t=开始,将一个大小为F的水平恒力作用在该木块上,作用时间为1t,在10~t内力F的平均功率是()A.212Fmt⋅B.2212Fmt⋅C.21Fmt⋅D.221Fmt⋅5.小明和小强在操场上一起踢足球,若足球质量为m,小明将足球以速度v从地面上的A 点踢起。
当足球到达离地面高度为h的B点位置时,如图所示,不计空气阻力,取B处为零势能参考面,则下列说法中正确的是()A.小明对足球做的功等于mghB.足球在A点处的机械能为22mvC.小明对足球做的功等于22mv+mghD.足球在B点处的动能为22mv-mgh6.如图所示,地球的公转轨道接近圆,哈雷彗星的公转轨迹则是一个非常扁的椭圆。
高考物理力学知识点之功和能知识点总复习含解析(5)一、选择题1.如图所示,长为L的均匀链条放在光滑水平桌面上,且使长度的垂在桌边,松手后链条从静止开始沿桌边下滑,则链条滑至刚刚离开桌边时的速度大小为( )A.B.C.D.2.某人造地球卫星发射时,先进入椭圆轨道Ⅰ,在远地点A加速变轨进入圆轨道Ⅱ。
已知轨道Ⅰ的近地点B到地心的距离近似等于地球半径R,远地点A到地心的距离为3R,则下列说法正确的是()A.卫星在B点的加速度是在A点加速度的3倍B.卫星在轨道Ⅱ上A点的机械能大于在轨道Ⅰ上B点的机械能C.卫星在轨道Ⅰ上A点的机械能大于B点的机械能D.卫星在轨道Ⅱ上A点的动能大于在轨道Ⅰ上B点的动能3.如图所示,质量分别为m和3m的两个小球a和b用一长为2L的轻杆连接,杆可绕中点O在竖直平面内无摩擦转动.现将杆处于水平位置后无初速度释放,重力加速度为g,则下列说法正确的是A.在转动过程中,a球的机械能守恒B.b球转动到最低点时处于失重状态C.a gLD.运动过程中,b球的高度可能大于a球的高度4.我国的传统文化和科技是中华民族的宝贵精神财富,四大发明促进了科学的发展和技术的进步,对现代仍具有重大影响,下列说法正确的是()A.春节有放鞭炮的习俗,鞭炮炸响的瞬间,动量守恒但能量不守恒B.火箭是我国的重大发明,现代火箭发射时,火箭对喷出气体的作用力大于气体对火箭的作用力C.装在炮弹中的火药燃烧爆炸时,化学能全部转化为弹片的动能D.指南针的发明促进了航海和航空,静止时指南针的N极指向北方5.2019年2月16日,世界游泳锦标赛跳水项目选拔赛(第一站)在京举行,重庆选手施延懋在女子3米跳板决赛中,以386.60分的成绩获得第一名,当运动员压板使跳板弯曲到最低点时,如图所示,下列说法正确的是()A.跳板发生形变是因为运动员的重力大于板对她支持力B.弯曲的跳板受到的压力,是跳板发生形变而产生的C.在最低点时运动员处于超重状态D.跳板由最低点向上恢复的过程中,运动员的机械能守恒6.如图所示,斜面体放在光滑的水平面上,小物块A与斜面体间接触面光滑。
功和能考试大纲要求考纲解读1. 功和功率Ⅱ1.本章各个考点的层级要求均为“Ⅱ”,凸显本章在高考中的重要地位,是历年高考命题重中之重。
2.功和能的关系、能量的转化和守恒是解决物理问题的一种重要途径.从过去两年高考来看,本章知识与电场、磁场、电磁感应、碰撞或相对运动中的动量守恒相结合,以直线运动、平抛运动和圆周运动等物理现象为情景,以多过程、多状态形式出现的综合题,是高考的最高要求。
3.近几年高考试题与生产、生活实际相结合是一种命题趋势.本专题知识与实际生产、生活联系紧密,所以高考题往往将本专题知识放在一些与实际问题相结合的情景中考查,要求考生从实际情景中找出物理过程和状态,并正确运用物理原理来解题。
2. 动能和动能定理Ⅱ3. 重力做功与重力势能Ⅱ4.功能关系、机械能守恒定律及其应用Ⅱ纵观近几年高考试题,预测2019年物理高考试题还会考:1、从近几年高考来看,关于功和功率的考查,多以选择题的形式出现,有时与电流及电磁感应相结合命题.2、动能定理多数题目是与牛顿运动定律、平抛运动、圆周运动以及电磁学等知识相结合的综合性试题;动能定理仍将是高考考查的重点,高考题注重与生产、生活、科技相结合,将对相关知识的考查放在一些与实际问题相结合的情境中。
3、机械能守恒定律,多数是与牛顿运动定律、平抛运动、圆周运动以及电磁学等知识相结合的综合性试题;高考题注重与生产、生活、科技相结合,将对相关知识的考查放在一些与实际问题相结合的情境中。
考向01 功和功率1.讲高考(1)考纲要求 掌握做功正负的判断和计算功的方法;理解t W P =和Fv P =的关系,并会运用;会分析机车的两种启动方式.(2)命题规律从近几年高考来看,关于功和功率的考查,多以选择题的形式出现,有时与电流及电磁感应相结合命题. 案例1. 如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度,木箱获得的动能一定( )A. 小于拉力所做的功B. 等于拉力所做的功C. 等于克服摩擦力所做的功D. 大于克服摩擦力所做的功【来源】2018年普通高等学校招生全国统一考试物理(全国II 卷)【答案】 A【解析】试题分析:受力分析,找到能影响动能变化的是那几个物理量,然后观测这几个物理量的变化即可。
高三物理“功和能的关系”知识定位在高中物理学习过程中,既要学习到普遍适用的守恒定律——能量守恒定律,又要学习到条件限制下的守恒定律——机械能守恒定律。
学生掌握守恒定律的困难在于:对于能量守恒定律,分析不清楚哪些能量发生了相互转化,即哪几种能量之和守恒;而对于机械能守恒定律,又不能正确的分析何时守恒,何时不守恒。
在整个高中物理学习过程中,很多同学一直错误的认为功与能是一回事,甚至可以互相代换,其实功是功,能是能,功和能是两个不同的概念,对二者的关系应把握为:功是能量转化的量度。
知识梳理1、做功的过程是能量转化的过程,功是能的转化的量度。
2、能量守恒和转化定律是自然界最基本的定律之一。
而在不同形式的能量发生相互转化的过程中,功扮演着重要的角色。
本章的主要定理、定律都是由这个基本原理出发而得到的。
需要强调的是:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它个一个时刻相对应。
两者的单位是相同的(都是J),但不能说功就是能,也不能说“功变成了能”。
3、复习本章时的一个重要课题是要研究功和能的关系,尤其是功和机械能的关系。
突出:“功是能量转化的量度”这一基本概念。
⑴物体动能的增量由外力做的总功来量度:W外=ΔE k,这就是动能定理。
⑵物体重力势能的增量由重力做的功来量度:W G= -ΔE P,这就是势能定理。
⑶物体机械能的增量由重力以外的其他力做的功来量度:W其=ΔE机,(W其表示除重力以外的其它力做的功),这就是机械能定理。
⑷当W其=0时,说明只有重力做功,所以系统的机械能守恒。
⑸一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,也就是系统增加的内能。
f d=Q(d为这两个物体间相对移动的路程)。
例题精讲1【题目】如图所示,一根轻弹簧下端固定,竖立在水平面上。
其正上方A位置有一只小球。
小球从静止开始下落,在B位置接触弹簧的上端,在C位置小球所受弹力大小等于重力,在D位置小球速度减小到零。
高考物理力学知识点之功和能技巧及练习题附解析(1)一、选择题1.如图所示,用同种材料制成的一个轨道ABC,AB段为四分之一圆弧,半径为R,水平放置的BC段长为R。
一个物块质量为m,与轨道的动摩擦因数为μ,它由轨道顶端A从静止开始下滑,恰好运动到C端停止,物块在AB段克服摩擦力做功为()A.mgRμB.mgRC.12mgRπμD.()1-mgRμ2.某人造地球卫星发射时,先进入椭圆轨道Ⅰ,在远地点A加速变轨进入圆轨道Ⅱ。
已知轨道Ⅰ的近地点B到地心的距离近似等于地球半径R,远地点A到地心的距离为3R,则下列说法正确的是()A.卫星在B点的加速度是在A点加速度的3倍B.卫星在轨道Ⅱ上A点的机械能大于在轨道Ⅰ上B点的机械能C.卫星在轨道Ⅰ上A点的机械能大于B点的机械能D.卫星在轨道Ⅱ上A点的动能大于在轨道Ⅰ上B点的动能3.如图所示,质量分别为m和3m的两个小球a和b用一长为2L的轻杆连接,杆可绕中点O在竖直平面内无摩擦转动.现将杆处于水平位置后无初速度释放,重力加速度为g,则下列说法正确的是A.在转动过程中,a球的机械能守恒B.b球转动到最低点时处于失重状态C.a gLD.运动过程中,b球的高度可能大于a球的高度4.如图所示,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽高h处开始自由下滑,则()A.小球到达弧形槽底部时速度小于2ghB.小球到达弧形槽底部时速度等于2ghC.小球在下滑过程中,小球和槽组成的系统总动量守恒D.小球自由下滑过程中机械能守恒5.某人用手将1kg的物体由静止向上提起1m,这时物体的速度为2m/s(g取10m/s2),则下列说法正确的是()A.物体克服重力做功2J B.合外力做功2JC.合外力做功12J D.手的拉力对物体做功10J6.我国的传统文化和科技是中华民族的宝贵精神财富,四大发明促进了科学的发展和技术的进步,对现代仍具有重大影响,下列说法正确的是()A.春节有放鞭炮的习俗,鞭炮炸响的瞬间,动量守恒但能量不守恒B.火箭是我国的重大发明,现代火箭发射时,火箭对喷出气体的作用力大于气体对火箭的作用力C.装在炮弹中的火药燃烧爆炸时,化学能全部转化为弹片的动能D.指南针的发明促进了航海和航空,静止时指南针的N极指向北方7.如图所示,物体与路面之间的动摩擦因数处处相同且不为零,运动中无碰撞能量损失。
高考物理力学知识点之功和能解析含答案(4)一、选择题1.如图所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R ,一质量为m 的物体,与两个轨道的动摩擦因数都为μ,当它由轨道顶端A 从静止下滑时,恰好运动到C 处停止,那么物体在AB 段克服摩擦力做功为( )A .12μmgR B .12mgR C .mgRD .()1mgR μ-2.将一个皮球从地面以初速度v 0竖直向上抛出,皮球运动时受到空气阻力的大小与速度的大小成正比,即f =kv ,重力加速度为g ,下列说法中正确的是( ) A .从抛出到落四地面的过程中,最高点加速度最大,大小为gB .刚抛出时加速度最大,大小为g +kv mC .皮球上升所用时间比下降所用时间长D .皮球落回地面时速度大于v 03.如图,倾角为θ的光滑斜面与光滑的半径为R 的半圆形轨道相切于B 点,固定在水平面上,整个轨道处在竖直平面内。
现将一质量为m 的小球自斜面上距底端高度为H 的某点A 由静止释放,到达半圆最高点C 时,对C 点的压力为F ,改变H 的大小,仍将小球由静止释放,到达C 点时得到不同的F 值,将对应的F 与H 的值描绘在F H -图像中,如图所示。
则由此可知( )A .小球开始下滑的高度H 的最小值是2RB .图线的斜率与小球质量无关C .a 点的坐标值是5RD .b 点坐标的绝对值是5mg4.把一物体竖直向上抛出去,该物体上升的最大高度为h ,若物体的质量为m ,所受空气阻力大小恒为f ,重力加速度为g .则在从物体抛出到落回抛出点的全过程中,下列说法正确的是:( ) A .重力做的功为m g h B .重力做的功为2m g h C .空气阻力做的功为零D .空气阻力做的功为-2fh5.如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到最大距离的过程中( )A.圆环的机械能守恒B.弹簧弹性势能变化了3mgLC.圆环下滑到最大距离时,所受合力为零D.圆环重力势能与弹簧弹性势能之和保持不变6.如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直,一小物块以速度v从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与轨道半径有关,此距离最大时,对应的轨道半径为(重力加速度为g)( )A.216vgB.28vgC.24vgD.22vg7.如图,半径为R、质量为m的半圆轨道小车静止在光滑的水平地面上,将质量也为m的小球从距A点正上方h高处由静止释放,小球自由落体后由A点经过半圆轨道后从B冲出,在空中能上升的最大高度为34h,则A.小球和小车组成的系统动量守恒B.小车向左运动的最大距离为1 2 RC.小球离开小车后做斜上抛运动D.小球第二次能上升的最大高度12h<h<34h8.关于重力势能,下列说法中正确的是()A.重力势能的大小只由物体本身决定B.重力势能恒大于零C.在地面上的物体,它具有的重力势能一定等于零D.重力势能是物体和地球所共有的9.如图所示,用同种材料制成的一个轨道ABC,AB段为四分之一圆弧,半径为R,水平放置的BC段长为R。
高考物理力学知识点之功和能全集汇编含答案解析(3)一、选择题1.如图所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R ,一质量为m 的物体,与两个轨道的动摩擦因数都为μ,当它由轨道顶端A 从静止下滑时,恰好运动到C 处停止,那么物体在AB 段克服摩擦力做功为( )A .12μmgR B .12mgR C .mgRD .()1mgR μ-2.某人造地球卫星发射时,先进入椭圆轨道Ⅰ,在远地点A 加速变轨进入圆轨道Ⅱ。
已知轨道Ⅰ的近地点B 到地心的距离近似等于地球半径R ,远地点A 到地心的距离为3R ,则下列说法正确的是( )A .卫星在B 点的加速度是在A 点加速度的3倍B .卫星在轨道Ⅱ上A 点的机械能大于在轨道Ⅰ上B 点的机械能C .卫星在轨道Ⅰ上A 点的机械能大于B 点的机械能D .卫星在轨道Ⅱ上A 点的动能大于在轨道Ⅰ上B 点的动能3.如图,半径为R 、质量为m 的半圆轨道小车静止在光滑的水平地面上,将质量也为m 的小球从距A 点正上方h 高处由静止释放,小球自由落体后由A 点经过半圆轨道后从B 冲出,在空中能上升的最大高度为34h ,则A .小球和小车组成的系统动量守恒B .小车向左运动的最大距离为12R C .小球离开小车后做斜上抛运动D.小球第二次能上升的最大高度12h<h<34h4.如图所示,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽高h处开始自由下滑,则()A.小球到达弧形槽底部时速度小于2ghB.小球到达弧形槽底部时速度等于2ghC.小球在下滑过程中,小球和槽组成的系统总动量守恒D.小球自由下滑过程中机械能守恒5.我国的传统文化和科技是中华民族的宝贵精神财富,四大发明促进了科学的发展和技术的进步,对现代仍具有重大影响,下列说法正确的是()A.春节有放鞭炮的习俗,鞭炮炸响的瞬间,动量守恒但能量不守恒B.火箭是我国的重大发明,现代火箭发射时,火箭对喷出气体的作用力大于气体对火箭的作用力C.装在炮弹中的火药燃烧爆炸时,化学能全部转化为弹片的动能D.指南针的发明促进了航海和航空,静止时指南针的N极指向北方6.如图,光滑圆轨道固定在竖直面内,一质量为m的小球沿轨道做完整的圆周运动.已知小球在最低点时对轨道的压力大小为N1,在高点时对轨道的压力大小为N2.重力加速度大小为g,则N1–N2的值为A.3mg B.4mg C.5mg D.6mg7.如图所示,长为l的轻杆一端固定一质量为m的小球,另一端有固定转轴O,杆可在竖直平面内绕轴O无摩擦转动.已知小球通过最低点Q时,速度大小为,则小球的运动情况为()A.小球不可能到达圆周轨道的最高点PB.小球能到达圆周轨道的最高点P,但在P点不受轻杆对它的作用力C.小球能到达圆周轨道的最高点P,且在P点受到轻杆对它向上的弹力D.小球能到达圆周轨道的最高点P,且在P点受到轻杆对它向下的弹力8.如图所示,三个固定的斜面底边长度都相等,斜面倾角分别为 30°、45°、60°,斜面的表面情况都一样.完全相同的物体(可视为质点)A、B、C分别从三斜面的顶部滑到底部的过程中A.物体A克服摩擦力做的功最多B.物体B克服摩擦力做的功最多C.物体C克服摩擦力做的功最多D.三物体克服摩擦力做的功一样多9.2019年2月16日,世界游泳锦标赛跳水项目选拔赛(第一站)在京举行,重庆选手施延懋在女子3米跳板决赛中,以386.60分的成绩获得第一名,当运动员压板使跳板弯曲到最低点时,如图所示,下列说法正确的是()A.跳板发生形变是因为运动员的重力大于板对她支持力B.弯曲的跳板受到的压力,是跳板发生形变而产生的C.在最低点时运动员处于超重状态D.跳板由最低点向上恢复的过程中,运动员的机械能守恒10.如图所示,质量为60kg的某运动员在做俯卧撑运动,运动过程中可将她的身体视为一根直棒,已知重心在C点,其垂线与脚,两手连线中点间的距离Oa、ob分别为0.9m和0.6m,若她在1min内做了30个俯卧撑,每次肩部上升的距离均为0.4m,则克服重力做功和相应的功率为()A.430J,7WB.4300J,70WC.720J,12WD.7200J,120W11.质量为m的滑块沿高为h,长为L的粗糙斜面匀速下滑,在滑块从斜面顶端滑至底端的过程中A.滑块的机械能保持不变B.滑块克服摩擦所做的功为mgLC.重力对滑块所做的功为mgh D.滑块的机械能增加了mgh12.如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R:bc是半径为R的四分之一的圆弧,与ab相切于b点.一质量为m的小球.始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动,重力加速度大小为g.小球从a点开始运动到其他轨迹最高点,机械能的增量为A.2mgRB.4mgRC.5mgRD.6mgR13.关于重力势能,下列说法中正确的是()A.重力势能的大小只由物体本身决定B.重力势能恒大于零C.在地面上的物体,它具有的重力势能一定等于零D.重力势能是物体和地球所共有的14.恒力F作用于原来静止的物体上,使其分别沿粗糙水平面和光滑水平面移动一段相同距离s,则水平恒力F做的功和功率W1、P l和W2、P2相比较,正确的是( )A.W l>W2,P1>P2B.W l=W2,P I<P2C.W l=W2,P l>P2D.W l>W2,P I<P215.研究“蹦极”运动时,在运动员身上装好传感器,用于测量运动员在不同时刻下落的高度及速度。
高考物理力学知识点之功和能真题汇编含答案解析一、选择题1.起重机以加速度a竖直向上加速吊起质量为m的重物,若物体上升的高度为h,重力加速度为g,则起重机对货物所做的功是A.B.C.D.2.如图,半径为R、质量为m的半圆轨道小车静止在光滑的水平地面上,将质量也为m的小球从距A点正上方h高处由静止释放,小球自由落体后由A点经过半圆轨道后从B冲出,在空中能上升的最大高度为34h,则A.小球和小车组成的系统动量守恒B.小车向左运动的最大距离为1 2 RC.小球离开小车后做斜上抛运动D.小球第二次能上升的最大高度12h<h<34h3.把小球放在竖立的弹簧上,并把球往下按至A位置,如图甲所示.迅速松手后,球升高至最高位置C(图丙),途中经过位置B时弹簧正处于原长(图乙).忽略弹簧的质量和空气阻力.则小球从A运动到C的过程中,下列说法正确的是A.经过位置B时小球的加速度为0B.经过位置B时小球的速度最大C.小球、地球、弹簧所组成系统的机械能守恒D.小球、地球、弹簧所组成系统的机械能先增大后减小4.如图,光滑圆轨道固定在竖直面内,一质量为m的小球沿轨道做完整的圆周运动.已知小球在最低点时对轨道的压力大小为N1,在高点时对轨道的压力大小为N2.重力加速度大小为g,则N1–N2的值为A.3mg B.4mg C.5mg D.6mg5.如图所示,物体与路面之间的动摩擦因数处处相同且不为零,运动中无碰撞能量损失。
DO是水平面,AB是斜面,初速度为v0的物体从D点出发沿DBA滑动到顶点A时速度刚好为零。
如果斜面改为AC,让该物体从D点出发沿DCA滑动到A点时速度也刚好为零,则此时物体具有的初速度v()A.大于v0B.等于v0C.小于v0D.决定于斜面的倾角6.如图所示,长为l的轻杆一端固定一质量为m的小球,另一端有固定转轴O,杆可在竖直平面内绕轴O无摩擦转动.已知小球通过最低点Q时,速度大小为,则小球的运动情况为()A.小球不可能到达圆周轨道的最高点PB.小球能到达圆周轨道的最高点P,但在P点不受轻杆对它的作用力C.小球能到达圆周轨道的最高点P,且在P点受到轻杆对它向上的弹力D.小球能到达圆周轨道的最高点P,且在P点受到轻杆对它向下的弹力7.人用绳子通过定滑轮拉物体A,A穿在光滑的竖直杆上,当人以速度v竖直向下匀速拉绳使质量为m的物体A到达如图所示位置时,此时绳与竖直杆的夹角为θ,则物体A的动能为()A.222coskmvEθ=B.222tankmvEθ=C .212k E mv =D .221sin 2k E mv θ=8.物体仅在拉力、重力作用下竖直向上做匀变速直线运动,重力做功-2J ,拉力做功3J ,则下列说法正确的是 A .物体的重力势能减少2J B .物体的动能增加3J C .物体的动能增加1J D .物体的机械能增加1J9.如图所示,小明将质量为m 的足球以速度v 从地面上的A 点踢起,当足球到达B 点时离地面的高度为h .不计空气阻力,取地面为零势能面,则足球在B 点时的机械能为(足球视为质点)A .212mv B .mgh C .212mv +mgh D .212mv -mgh 10.如图所示,质量为m 的物体,以水平速度v 0离开桌面,若以桌面为零势能面,不计空气阻力,则当它经过离地高度为h 的A 点时,所具有的机械能是( )A .mv 02+mg hB .mv 02-mg hC .mv 02+mg (H-h)D .mv 0211.如图所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R ,一质量为m 的物体,与两个轨道的动摩擦因数都为μ,当它由轨道顶端A 从静止下滑时,恰好运动到C 处停止,那么物体在AB 段克服摩擦力做功为( )A .12μmgR B .12mgR C .mgRD .()1mgR μ-12.如图所示,质量分别为m和3m的两个小球a和b用一长为2L的轻杆连接,杆可绕中点O在竖直平面内无摩擦转动.现将杆处于水平位置后无初速度释放,重力加速度为g,则下列说法正确的是A.在转动过程中,a球的机械能守恒B.b球转动到最低点时处于失重状态C.a球到达最高点时速度大小为gLD.运动过程中,b球的高度可能大于a球的高度13.如图所示,在竖直平面内有一半径为R的圆弧轨道,半径OC水平、OB竖直,一个质量为m的小球自C的正上方A点由静止开始自由下落,小球沿轨道到达最高点B时恰好对轨道没有压力。
高考物理新力学知识点之功和能全集汇编附答案解析(1)一、选择题1.研究“蹦极”运动时,在运动员身上装好传感器,用于测量运动员在不同时刻下落的高度及速度。
如图甲所示,运动员及所携带的全部设备的总质量为50kg,弹性绳有一定长度。
运动员从蹦极台自由下落,根据传感器测到的数据,得到如图乙所示的速度-位移(v-x)图像。
不计空气阻力,重力加速度g取10m/s2。
下列判断正确的是()A.运动员下落运动轨迹为一条抛物线B.弹性绳的原长为16mC.从x=16m到x=30m过程中运动员的加速度逐渐变大D.运动员下落到最低点时弹性势能为18000J2.某人造地球卫星发射时,先进入椭圆轨道Ⅰ,在远地点A加速变轨进入圆轨道Ⅱ。
已知轨道Ⅰ的近地点B到地心的距离近似等于地球半径R,远地点A到地心的距离为3R,则下列说法正确的是()A.卫星在B点的加速度是在A点加速度的3倍B.卫星在轨道Ⅱ上A点的机械能大于在轨道Ⅰ上B点的机械能C.卫星在轨道Ⅰ上A点的机械能大于B点的机械能D.卫星在轨道Ⅱ上A点的动能大于在轨道Ⅰ上B点的动能3.如图,光滑圆轨道固定在竖直面内,一质量为m的小球沿轨道做完整的圆周运动.已知小球在最低点时对轨道的压力大小为N1,在高点时对轨道的压力大小为N2.重力加速度大小为g,则N1–N2的值为A.3mg B.4mg C.5mg D.6mg4.韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1900J,他克服阻力做功100J.韩晓鹏在此过程中()A.动能增加了1900JB.动能增加了2000 JC.重力势能减小了1900JD.重力势能减小了2000J5.小明和小强在操场上一起踢足球,若足球质量为m,小明将足球以速度v从地面上的A 点踢起。
当足球到达离地面高度为h的B点位置时,如图所示,不计空气阻力,取B处为零势能参考面,则下列说法中正确的是()A.小明对足球做的功等于mghB.足球在A点处的机械能为2 2 mvC.小明对足球做的功等于22mv+mghD.足球在B点处的动能为22mv-mgh6.如图所示,人站在电动扶梯的水平台阶上,假定人与扶梯一起沿斜面加速上升,在这个过程中,人脚所受的静摩擦力()A.等于零,对人不做功B.水平向左,对人做负功C.水平向右,对人做正功D.沿斜面向上,对人做正功7.关于力对物体做功,下列说法正确的是A.滑动摩擦力对物体一定做负功B.静摩擦力对物体可能做正功C.作用力与反作用力的功代数和一定为零D.合外力对物体不做功,则物体速度一定不变8.下述实例中,机械能守恒的是()A.物体做平抛运动B.物体沿固定斜面匀速下滑C.物体在竖直面内做匀速圆周运动D.物体从高处以0.9g(g为重力加速度的大小)的加速度竖直下落9.如图所示,质量为60kg的某运动员在做俯卧撑运动,运动过程中可将她的身体视为一根直棒,已知重心在C 点,其垂线与脚,两手连线中点间的距离Oa 、ob 分别为0.9m 和0.6m ,若她在1min 内做了30个俯卧撑,每次肩部上升的距离均为0.4m ,则克服重力做功和相应的功率为( )A .430J ,7WB .4300J ,70WC .720J ,12WD .7200J ,120W10.如图所示,一表面光滑的木板可绕固定的水平轴O 转动,木板从水平位置OA 转到OB 位置的过程中,木板上重为5 N 的物块从靠近转轴的位置由静止开始滑到图中虚线所示位置,在这一过程中,物块的重力势能减少了4 J 。
高考物理力学知识点之功和能全集汇编及解析(6)一、选择题1.升降机中有一质量为m 的物体,当升降机以加速度a 匀加速上升h 高度时,物体增加的重力势能为( ) A .mgh B .mgh +mah C .mahD .mgh -mah2.如图所示,小车A 放在一个倾角为30°的足够长的固定的光滑斜面上,A 、B 两物体由绕过轻质定滑轮的细线相连,已知重力加速度为g ,滑轮质量及细线与滑轮之间的摩擦不计,小车A 的质量为3m ,小球B 的质量为m ,小车从静止释放后,在小球B 竖直上升h 的过程中,小车受绳的拉力大小F T 和小车获得的动能E k 分别为( )A .F T =mg ,E k =3mgh/8B .F T =mg ,E k =3mgh/2C .F T =9mg/8,E k =3mgh/2D .F T =9mg/8,E k =3mgh/83.将一个皮球从地面以初速度v 0竖直向上抛出,皮球运动时受到空气阻力的大小与速度的大小成正比,即f =kv ,重力加速度为g ,下列说法中正确的是( ) A .从抛出到落四地面的过程中,最高点加速度最大,大小为gB .刚抛出时加速度最大,大小为g +kv mC .皮球上升所用时间比下降所用时间长D .皮球落回地面时速度大于v 04.如图(甲)所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复.通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F 随时间t 变化的图像如图(乙)所示,则A .1t 时刻小球动能最大B .2t 时刻小球动能最大C .2t ~3t 这段时间内,小球的动能先增加后减少D .2t ~3t 这段时间内,小球增加的动能等于弹簧减少的弹性势能5.如图所示,固定的竖直光滑长杆上套有质量为m的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到最大距离的过程中( )A.圆环的机械能守恒B.弹簧弹性势能变化了3mgLC.圆环下滑到最大距离时,所受合力为零D.圆环重力势能与弹簧弹性势能之和保持不变6.下述实例中,机械能守恒的是()A.物体做平抛运动B.物体沿固定斜面匀速下滑C.物体在竖直面内做匀速圆周运动D.物体从高处以0.9g(g为重力加速度的大小)的加速度竖直下落7.如图所示,斜面体放在光滑的水平面上,小物块A与斜面体间接触面光滑。
高考物理力学知识点之功和能技巧及练习题附答案解析(4)一、选择题1.如图所示,长为L 的均匀链条放在光滑水平桌面上,且使长度的垂在桌边,松手后链条从静止开始沿桌边下滑,则链条滑至刚刚离开桌边时的速度大小为( )A .B .C .D .2.将一个皮球从地面以初速度v 0竖直向上抛出,皮球运动时受到空气阻力的大小与速度的大小成正比,即f =kv ,重力加速度为g ,下列说法中正确的是( ) A .从抛出到落四地面的过程中,最高点加速度最大,大小为gB .刚抛出时加速度最大,大小为g +kv mC .皮球上升所用时间比下降所用时间长D .皮球落回地面时速度大于v 03.如图,光滑圆轨道固定在竖直面内,一质量为m 的小球沿轨道做完整的圆周运动.已知小球在最低点时对轨道的压力大小为N 1,在高点时对轨道的压力大小为N 2.重力加速度大小为g ,则N 1–N 2的值为A .3mgB .4mgC .5mgD .6mg4.小明和小强在操场上一起踢足球,若足球质量为m ,小明将足球以速度v 从地面上的A 点踢起。
当足球到达离地面高度为h 的B 点位置时,如图所示,不计空气阻力,取B 处为零势能参考面,则下列说法中正确的是( )A .小明对足球做的功等于mghB .足球在A 点处的机械能为22mvC.小明对足球做的功等于22mv+mghD.足球在B点处的动能为22mv-mgh5.如图所示,人站在电动扶梯的水平台阶上,假定人与扶梯一起沿斜面加速上升,在这个过程中,人脚所受的静摩擦力()A.等于零,对人不做功B.水平向左,对人做负功C.水平向右,对人做正功D.沿斜面向上,对人做正功6.2019年2月16日,世界游泳锦标赛跳水项目选拔赛(第一站)在京举行,重庆选手施延懋在女子3米跳板决赛中,以386.60分的成绩获得第一名,当运动员压板使跳板弯曲到最低点时,如图所示,下列说法正确的是()A.跳板发生形变是因为运动员的重力大于板对她支持力B.弯曲的跳板受到的压力,是跳板发生形变而产生的C.在最低点时运动员处于超重状态D.跳板由最低点向上恢复的过程中,运动员的机械能守恒7.如图所示,斜面体放在光滑的水平面上,小物块A与斜面体间接触面光滑。
高考物理最新力学知识点之功和能知识点总复习有答案解析一、选择题1.如图所示,一个内侧光滑、半径为R 的四分之三圆弧竖直固定放置,A 为最高点,一小球(可视为质点)与A 点水平等高,当小球以某一初速度竖直向下抛出,刚好从B 点内侧进入圆弧并恰好能过A 点。
重力加速度为g ,空气阻力不计,则( )A .小球刚进入圆弧时,不受弹力作用B .小球竖直向下抛出的初速度大小为gRC .小球在最低点所受弹力的大小等于重力的5倍D .小球不会飞出圆弧外2.如图所示为某一游戏的局部简化示意图.D 为弹射装置,AB 是长为21m 的水平轨道,倾斜直轨道BC 固定在竖直放置的半径为R =10m 的圆形支架上,B 为圆形的最低点,轨道AB 与BC 平滑连接,且在同一竖直平面内.某次游戏中,无动力小车在弹射装置D 的作用下,以v 0=10m/s 的速度滑上轨道AB ,并恰好能冲到轨道BC 的最高点.已知小车在轨道AB 上受到的摩擦力为其重量的0.2倍,轨道BC 光滑,则小车从A 到C 的运动时间是( )A .5sB .4.8sC .4.4sD .3s3.将一个皮球从地面以初速度v 0竖直向上抛出,皮球运动时受到空气阻力的大小与速度的大小成正比,即f =kv ,重力加速度为g ,下列说法中正确的是( ) A .从抛出到落四地面的过程中,最高点加速度最大,大小为gB .刚抛出时加速度最大,大小为g +kv mC .皮球上升所用时间比下降所用时间长D .皮球落回地面时速度大于v 04.美国的NBA 篮球赛非常精彩,吸引了众多观众。
经常能看到这样的场面:在终场前0.1s的时候,运动员把球投出且准确命中,获得比赛的最后胜利。
已知球的质量为m,运动员将篮球投出,球出手时的高度为h1、动能为E k、篮筐距地面高度为h2。
不计空气阻力。
则篮球进筐时的动能为A.B.C.D.5.从空中某一高度同时以大小相等的速度竖直上抛和水平抛出两个质量均为m的小球,忽略空气阻力.在小球从抛出到落至水平地面的过程中A.动能变化量不同,动量变化量相同B.动能变化量和动量变化量均相同C.动能变化量相同,动量变化量不同D.动能变化量和动量变化量均不同6.韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1900J,他克服阻力做功100J.韩晓鹏在此过程中()A.动能增加了1900JB.动能增加了2000 JC.重力势能减小了1900JD.重力势能减小了2000J7.如图所示,三个固定的斜面底边长度都相等,斜面倾角分别为 30°、45°、60°,斜面的表面情况都一样.完全相同的物体(可视为质点)A、B、C分别从三斜面的顶部滑到底部的过程中A.物体A克服摩擦力做的功最多B.物体B克服摩擦力做的功最多C.物体C克服摩擦力做的功最多D.三物体克服摩擦力做的功一样多8.如图所示,人站在电动扶梯的水平台阶上,假定人与扶梯一起沿斜面加速上升,在这个过程中,人脚所受的静摩擦力()A.等于零,对人不做功B.水平向左,对人做负功C.水平向右,对人做正功D.沿斜面向上,对人做正功9.如图所示,质量为60kg的某运动员在做俯卧撑运动,运动过程中可将她的身体视为一根直棒,已知重心在C点,其垂线与脚,两手连线中点间的距离Oa、ob分别为0.9m和0.6m,若她在1min内做了30个俯卧撑,每次肩部上升的距离均为0.4m,则克服重力做功和相应的功率为()A.430J,7WB.4300J,70WC.720J,12WD.7200J,120W10.如图所示,斜面体放在光滑的水平面上,小物块A与斜面体间接触面光滑。
高考物理最新力学知识点之功和能知识点总复习附答案解析一、选择题1.恒力F作用于原来静止的物体上,使其分别沿粗糙水平面和光滑水平面移动一段相同距离s,则水平恒力F做的功和功率W1、P l和W2、P2相比较,正确的是( )A.W l>W2,P1>P2B.W l=W2,P I<P2C.W l=W2,P l>P2D.W l>W2,P I<P22.如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直,一小物块以速度v从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与轨道半径有关,此距离最大时,对应的轨道半径为(重力加速度为g)( )A.216vgB.28vgC.24vgD.22vg3.如图所示,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽高h处开始自由下滑,则()A.小球到达弧形槽底部时速度小于2ghB.小球到达弧形槽底部时速度等于2ghC.小球在下滑过程中,小球和槽组成的系统总动量守恒D.小球自由下滑过程中机械能守恒4.如图(甲)所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复.通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t变化的图像如图(乙)所示,则A.1t时刻小球动能最大B.2t时刻小球动能最大C .2t ~3t 这段时间内,小球的动能先增加后减少D .2t ~3t 这段时间内,小球增加的动能等于弹簧减少的弹性势能5.按压式圆珠笔内装有一根小弹簧,尾部有一个小帽,压一下小帽,笔尖就伸出来。
如图所示,使笔的尾部朝下,将笔向下按到最低点,使小帽缩进,然后放手,笔将向上弹起至一定的高度。
忽略摩擦和空气阻力。
笔从最低点运动至最高点的过程中A .笔的动能一直增大B .笔的重力势能与弹簧的弹性势能总和一直减小C .弹簧的弹性势能减少量等于笔的动能增加量D .弹簧的弹性势能减少量等于笔的重力势能增加量6.人用绳子通过定滑轮拉物体A ,A 穿在光滑的竖直杆上,当人以速度 v 竖直向下匀速拉绳使质量为m 的物体A 到达如图所示位置时,此时绳与竖直杆的夹角为θ,则物体A 的动能为( )A .222cos k mv E θ=B .222tan k mv E θ=C .212k E mv =D .221sin 2k E mv θ=7.如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L (未超过弹性限度),则在圆环下滑到最大距离的过程中( )A .圆环的机械能守恒B .弹簧弹性势能变化了3mgLC .圆环下滑到最大距离时,所受合力为零D .圆环重力势能与弹簧弹性势能之和保持不变 8.关于力对物体做功,下列说法正确的是 A .滑动摩擦力对物体一定做负功 B .静摩擦力对物体可能做正功C .作用力与反作用力的功代数和一定为零D .合外力对物体不做功,则物体速度一定不变 9.下述实例中,机械能守恒的是( ) A .物体做平抛运动 B .物体沿固定斜面匀速下滑 C .物体在竖直面内做匀速圆周运动D .物体从高处以0.9g (g 为重力加速度的大小)的加速度竖直下落10.如图所示,小明将质量为m 的足球以速度v 从地面上的A 点踢起,当足球到达B 点时离地面的高度为h .不计空气阻力,取地面为零势能面,则足球在B 点时的机械能为(足球视为质点)A .212mv B .mgh C .212mv +mgh D .212mv -mgh 11.如图所示,质量为60kg 的某运动员在做俯卧撑运动,运动过程中可将她的身体视为一根直棒,已知重心在C 点,其垂线与脚,两手连线中点间的距离Oa 、ob 分别为0.9m 和0.6m ,若她在1min 内做了30个俯卧撑,每次肩部上升的距离均为0.4m ,则克服重力做功和相应的功率为( )A .430J ,7WB .4300J ,70WC .720J ,12WD .7200J ,120W12.质量为m 的滑块沿高为h ,长为L 的粗糙斜面匀速下滑,在滑块从斜面顶端滑至底端的过程中A .滑块的机械能保持不变B .滑块克服摩擦所做的功为mgLC .重力对滑块所做的功为mghD .滑块的机械能增加了mgh13.如图所示,一表面光滑的木板可绕固定的水平轴O 转动,木板从水平位置OA 转到OB位置的过程中,木板上重为5 N 的物块从靠近转轴的位置由静止开始滑到图中虚线所示位置,在这一过程中,物块的重力势能减少了4 J 。
高考物理重点专题讲解及突破06:功和能超重点1:功和功率※考点一功的分析与计算1.判断力是否做功及做正、负功的方法判断根据适用情况根据力和位移的方向的夹角判断:α<90°力做正功;常用于恒力做功的判断α=90°力不做功;α>90°力做负功根据力和瞬时速度方向的夹角θ判断:θ<90°,力做正功;常用于质点做曲线运动时力做功的判断θ=90°,力不做功;θ>90°,力做负功根据功能关系或能量守恒定律判断常用于变力做功的判断2.3.合力做功的计算方法方法一:先求合力F合,再用W合=F合l cos α求功.方法二:先求各个力做的功W1、W2、W3…,再应用W合=W1+W2+W3+…求合力做的功.4.变力做功的常用计算方法(1)应用动能定理求解.(优先考虑)(2)用W=Pt求解,其中变力的功率P不变.[题组突破训练]1.如图所示,在匀减速向右运动的车厢内,一人用力向前推车厢,该人与车厢始终保持相对静止,则下列说法中正确的是( )A.人对车厢的推力不做功B.人对车厢的推力做负功C.车厢对人的作用力做正功D.车厢对人的作用力做负功【解析】车厢向右做匀减速运动,即a、v方向相反,加速度a向左,且人与车厢具有相同的加速度.对人受力分析,受到重力和车厢对人的作用力,则车厢对人的作用力方向为斜向左上方,与位移方向成钝角,所以车厢对人做负功,C错误,D正确.人对车厢的作用力方向斜向右下方,人对车厢的作用力与车厢位移方向成锐角,人对车厢做正功(或由动能定理,人的动能减小,故车对人做负功,人对车做正功来判断),A、B 错误.【答案】D2.如图所示,质量为m 的小球用长为L 的轻绳悬挂于O 点,用水平恒力F 拉着小球从最低点运动到使轻绳与竖直方向成θ角的位置,求此过程中,各力对小球做的总功为( )A .FL sin θB .mgL (1-cos θ)C .FL sin θ-mgL (1-cos θ)D .FL sin θ-mgL cos θ【解析】如图,小球在F 方向的位移为CB ,方向与F 同向,则W F =F ·CB =F ·L sin θ 小球在重力方向的位移为AC ,方向与重力反向,则W G =mg ·AC ·cos 180°=-mg ·L (1-cos θ)绳的拉力F T 时刻与运动方向垂直,则W F T =0 故W 总=W F +W G +W F T =FL sin θ-mgL (1-cos θ) 所以选项C 正确. 【答案】C3.如图所示,在水平面上,有一弯曲的槽道槽道由半径分别为R2和R 的两个半圆构成.现用大小恒为F 的拉力将一光滑小球从A 点沿槽道拉至B 点,若拉力F 的方向时刻与小球运动方向一致,则此过程中拉力所做的功为( )A .0B .FRC .2πFRD.32πFR 【解析】因为F 的方向不断改变,不能用W =Fl cos α求解,但由于拉力F 的方向时刻与小球运动方向一致,可采用微元法,把小球的位移分割成许多的小段,在每一小段位移上作用在小球上的力F 可视为恒力,F 做的总功即为F 在各个小段上做功的代数和,由此得W =F (12·2π·R 2+12·2πR )=32πFR .【答案】D※考点二 对功率的理解与计算1.平均功率的计算方法 (1)利用P =Wt计算.(2)利用P =F v cos α计算,其中v 为物体运动的平均速度. 2.瞬时功率的计算方法(1)利用公式P =Fv cos α计算,其中v 为t 时刻的瞬时速度.(2)利用公式P =Fv F 计算,其中v F 为物体的速度v 在力F 方向上的分速度. (3)利用公式P =F v v 计算,其中F v 为物体受到的外力F 在速度v 方向上的分力.[题组突破训练]1.如图所示,细线的一端固定于O 点,另一端系一小球.在水平拉力作用下,小球以恒定速率在竖直平面内由A 点运动到B 点.在此过程中拉力瞬时功率的变化情况为( )A .逐渐增大B .逐渐减小C .先增大,后减小D .先减小,后增大【解析】因小球速率不变,所以小球以O 点为圆心做匀速圆周运动,受力如图所示.设绳与竖直方向的夹角为θ,则在切线方向上应有mg sin θ=F cos θ,拉力F 的瞬时功率P =Fv cos θ=mgv sin θ.小球从A 运动到B 的过程中,拉力的瞬时功率随θ的增大而增大,A 正确.【答案】A2.质量为5×103kg 的汽车在水平路面上由静止开始以加速度a =2 m/s 2开始做匀加速直线运动,所受阻力是1.0×103N ,则汽车匀加速启动过程中( )A .第1 s 内汽车所受牵引力做功为1.0×104J B .第1 s 内汽车所受合力的平均功率为20 kW C .第1 s 末汽车所受合力的瞬时功率为22 kW D .第1 s 末汽车所受牵引力的瞬时功率为22 kW【解析】根据牛顿第二定律得F -F 阻=ma ,则F =F 阻+ma =11 000 N .汽车第1 s 末的速度v =at =2 m/s.第1 s 内汽车位移x =v2t =1 m ,第1 s 内汽车所受牵引力做功W =Fx =1.1×104J ,A 错误.根据动能定理,第1 s 内汽车所受合力的功W =12mv 2,其平均功率P =Wt =12mv 2t =10 kW ,B 错误.根据P =Fv 得P 1=mav =20kW ,C 错误.牵引力的瞬时功率P 2=Fv =22 kW ,D 正确.选D.【答案】D3.跳绳运动员质量m =50 kg,1 min 跳N =180次.假设每次跳跃中,脚与地面的接触时间占跳跃一次所需时间的25,试估算该运动员跳绳时克服重力做功的平均功率为多大.(g 取10m/s 2)【解析】跳跃的周期T =60180 s =13 s每个周期内在空中停留的时间t 1=35T =15s.运动员跳起时视为竖直上抛运动,设起跳初速度为v 0,由t 1=2v 0g 得v 0=12gt 1.每次跳跃人克服重力做的功为W =12mv 20=18mg 2t 21=25 J克服重力做功的平均功率为P =W T =2513W =75 W 【答案】75 W※考点三 机车启动问题 1.机车启动的两种方式恒定功率启动 恒定加速度启动Pt 图象和vt图象OA段过程 分析P 不变:v ↑⇒F =Pv ↓⇒a =F -F 阻m↓ a 不变:a =F -F 阻m⇒F 不变⇒v ↑P=Fv ↑⇒P 额=Fv 1运动 性质加速度减小的加速直线运动匀加速直线运动,维持时间t 0=v 1aAB 段过程 分析F =F 阻⇒a =0⇒v m =PF 阻v ↑⇒F =P 额v↓⇒a =F -F 阻m↓ 运动 性质做速度为v m 的匀速直线运动加速度减小的加速直线运动,在B 点达到最大速度,v m =P 额F 阻2.四个常用规律 (1)P =Fv . (2)F -F f =ma . (3)v =at (a 恒定). (4)Pt -F f x =ΔE k (P 恒定).【典例】 一列火车总质量m =500 t ,发动机的额定功率P =6×105W ,在轨道上行驶时,轨道对列车的阻力F f 是车重的0.01倍.(取g =10 m/s 2)(1)求列车在水平轨道上行驶的最大速度;(2)在水平轨道上,发动机以额定功率P 工作,求当行驶速度为v 1=1 m/s 和v 2=10 m/s 时,列车的瞬时加速度a 1、a 2的大小;(3)列车在水平轨道上以36 km/h 的速度匀速行驶时,求发动机的实际功率P ′;(4)若列车从静止开始,保持0.5 m/s 2的加速度做匀加速运动,求这一过程维持的最长时间. 【解析】 (1)列车以额定功率行驶,当牵引力等于阻力,即F =F f =kmg 时,列车的加速度为零,速度达到最大值v m ,则v m =P F =P F f =Pkmg=12 m/s.(2)当v <v m 时,列车做加速运动,若v 1=1 m/s ,则F 1=P v 1=6×105N , 根据牛顿第二定律得a 1=F 1-F f m=1.1 m/s 2若v 2=10 m/s ,则F 2=P v 2=6×104N 根据牛顿第二定律得a 2=F 2-F f m=0.02 m/s 2. (3)当v =36 km/h =10 m/s 时,列车匀速运动,则发动机的实际功率P ′=F f v =5×105W. (4)由牛顿第二定律得F ′=F f +ma =3×105N在此过程中,速度增大,发动机功率增大,当功率为额定功率时速度为v ′,即v ′=PF ′=2 m/s ,由v ′=at 得t =v ′a=4 s.【答案】 (1)12 m/s (2)1.1 m/s 20.02 m/s 2(3)5×105W (4)4 s[题组突破训练]1.(2015·高考全国卷Ⅱ)一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P 随时间t 的变化如图所示.假定汽车所受阻力的大小f 恒定不变.下列描述该汽车的速度v 随时间t 变化的图线中,可能正确的是( )【解析】P =Fv ――→v ↑F ↓――→F -f =maa ↓――→a =0时v max =Pf,因速度不能突变,故A 正确,B 、C 、D 错误. 【答案】A2.(多选)质量为m 的汽车在平直路面上由静止开始匀加速启动,运动过程的速度—时间图象如图所示,整个运动过程中汽车所受阻力大小恒为f ,则下列说法正确的是( )A .若v 1、t 1已知,则汽车做匀加速运动的加速度大小a =v 1t 1B .若v 1、t 1和v 2已知,则汽车的额定功率P 0=(m v 1t 1+f )v 2 C .若v 1、t 1已知,则汽车运动的最大速度v 2=(mv 1ft 1+1)v 1 D .在t 1到t 2时间内,汽车的平均速度v <v 1+v 22【解析】由速度—时间图象知,0~t 1时间内,汽车做匀加速直线运动,汽车的加速度a =v 1t 1,选项A 正确;设t 1时刻汽车的牵引力大小为F 1,根据牛顿第二定律有F 1-f =ma ,得F 1=m v 1t 1+f ,在t 1时刻汽车的功率达到额定功率,则P 0=F 1v 1=(m v 1t 1+f )v 1,选项B 错误;t 2时刻,速度达到最大值v 2,此时牵引力大小F 2=f ,P 0=F 2v 2,得v 2=(mv 1ft 1+1)v 1,选项C 正确;由速度—时间图线与t 轴所围面积表示位移知,t 1~t 2时间内,汽车的平均速度v =St 2-t 1,曲线AB 与t 轴所围的面积S >S 梯形=v 1+v 22(t 2-t 1),得v >v 1+v 22,选项D 错误.【答案】AC※考点一 对动能定理的理解1.对动能定理中“力”的两点理解(1)“力”指的是合力,重力、弹力、摩擦力、电场力、磁场力或其他力,它们可以同时作用,也可以不同时作用.(2)力既可以是恒力,也可以是变力. 2.动能定理公式中体现的“三个关系”(1)数量关系:即合力所做的功与物体动能的变化具有等量替代关系.可以通过计算物体动能的变化,求合力做的功,进而求得某一力做的功.(2)单位关系:等式两边物理量的国际单位都是焦耳. (3)因果关系:合力的功是引起物体动能变化的原因.超重点2:动能定理及其应用。
高考物理广州力学知识点之功和能解析一、选择题1.汽车在平直公路上以速度v0匀速行驶,发动机功率为P.快进入闹市区时,司机减小了油门,使汽车的功率立即减小一半并保持该功率继续行驶.图四个图象中,哪个图象正确表示了从司机减小油门开始,汽车的速度与时间的关系()A.B.C.D.2.如图所示,小车A放在一个倾角为30°的足够长的固定的光滑斜面上,A、B两物体由绕过轻质定滑轮的细线相连,已知重力加速度为g,滑轮质量及细线与滑轮之间的摩擦不计,小车A的质量为3m,小球B的质量为m,小车从静止释放后,在小球B竖直上升h 的过程中,小车受绳的拉力大小F T和小车获得的动能E k分别为()A.F T=mg,E k=3mgh/8B.F T=mg,E k=3mgh/2C.F T=9mg/8,E k=3mgh/2D.F T=9mg/8,E k=3mgh/83.某人造地球卫星发射时,先进入椭圆轨道Ⅰ,在远地点A加速变轨进入圆轨道Ⅱ。
已知轨道Ⅰ的近地点B到地心的距离近似等于地球半径R,远地点A到地心的距离为3R,则下列说法正确的是()A.卫星在B点的加速度是在A点加速度的3倍B.卫星在轨道Ⅱ上A点的机械能大于在轨道Ⅰ上B点的机械能C.卫星在轨道Ⅰ上A点的机械能大于B点的机械能D.卫星在轨道Ⅱ上A点的动能大于在轨道Ⅰ上B点的动能4.将一个皮球从地面以初速度v0竖直向上抛出,皮球运动时受到空气阻力的大小与速度的大小成正比,即f=kv,重力加速度为g,下列说法中正确的是()A.从抛出到落四地面的过程中,最高点加速度最大,大小为gB .刚抛出时加速度最大,大小为g +0kv mC .皮球上升所用时间比下降所用时间长D .皮球落回地面时速度大于v 0 5.小明和小强在操场上一起踢足球,若足球质量为m ,小明将足球以速度v 从地面上的A 点踢起。
当足球到达离地面高度为h 的B 点位置时,如图所示,不计空气阻力,取B 处为零势能参考面,则下列说法中正确的是( )A .小明对足球做的功等于mghB .足球在A 点处的机械能为22mv C .小明对足球做的功等于22mv +mgh D .足球在B 点处的动能为22mv -mgh 6.2019年2月16日,世界游泳锦标赛跳水项目选拔赛(第一站)在京举行,重庆选手施延懋在女子3米跳板决赛中,以386.60分的成绩获得第一名,当运动员压板使跳板弯曲到最低点时,如图所示,下列说法正确的是( )A .跳板发生形变是因为运动员的重力大于板对她支持力B .弯曲的跳板受到的压力,是跳板发生形变而产生的C .在最低点时运动员处于超重状态D .跳板由最低点向上恢复的过程中,运动员的机械能守恒7.如图所示,一轻弹簧的左端固定在竖直墙壁上,右端自由伸长,一滑块以初速度v 0在粗糙的水平面上向左滑行,先是压缩弹簧,后又被弹回。
考点6功和能1. (2020 •新课标全国卷・T16)如图所示,在外力作用下某质点运动的v-t图像为正弦曲线。
从图中可以判断()A. 在0 ~右时间内,外力做正功B. 在0~右时间内,外力的功率逐渐增大C. 在t2时刻,外力的功率最大D. 在ti ~t3时间内,外力做的总功为零【命题立意】本题以质点运动的速度图象立意,通过分析质点的运动情况,考查外力对质点的做功情况、外力的总功、功率变化。
【思路点拨】解答本题可按以下思路分析:【规范解答】选A Do 0〜t i和t 2〜t 3时间内,质点做加速运动,外力做正功,故选项A正确;t i〜13时间内,动能变化为零,外力做的总功为零,故选项D正确;0〜t i时间内,由题图看速度大小变化且图像斜率表示加速度,而加速度对应合外力,根据P=Fv 可以得出外力的功率先减小后增大,故选项B错误;t2时刻,速率为零,此时外力的功率为零,选项C错误。
2. (2020 •福建理综• T22)如图所示,物体A放在足够长的木板B上,木板B静止于水平面。
t=0时,电动机通过水平细绳以恒力F拉木板B,使它做初速度为零,加速度a B=1.0m/s2的匀加速直线运动。
已知A的质量m和B的质量m均为2.0kg,A、B之间的动摩擦因数1=0.05,B与水平面之间的动摩擦因数2=0.1,最大静摩擦力与滑动摩擦力大小视为相等,重力加速度g取10m/s2。
求电直鶴(1)物体A刚运动时的加速度a A;(2)t=1.0s时,电动机的输出功率P;(3)若t=1.0s时,将电动机的输出功率立即调整为P' =5V y并在以后的运动过程中始终保持这一功率不变,t=3.8s时物体A的速度为1.2m/s。
则在t=1.0s到t=3.8s 这段时间内木板B的位移为多少?【命题立意】本题以电动机拉木板为背景,主要考查考生对物理概念、物理现象、物理规律的深刻理解及灵活应用,尤其是对物理过程的分析能力要求较高,能够真正甄别、选拔出具有物理思想方法和能力水平的考生。
专题06 功和能一、单项选择题(每道题只有一个选项正确)1、如图5所示,长1 m的轻杆BO一端通过光滑铰链铰在竖直墙上,另一端装一轻小光滑滑轮,绕过滑轮的细线一端悬挂重为15 N的物体G,另一端A系于墙上,平衡时OA恰好水平,现将细线A端滑着竖直墙向上缓慢移动一小段距离,同时调整轻杆与墙面夹角,系统重新平衡后轻杆受到的压力恰好也为15 N,则该过程中物体G 增加的重力势能约为( )图5A.1.3 JB.3.2 JC.4.4 JD.6.2 J【答案】A【解析】轻杆在O点处的作用力方向必沿杆,即杆会平分两侧绳子间的夹角.开始时,AO绳子水平,此时杆与竖直方向的夹角是45°;这时杆中的弹力大小等于滑轮两侧绳子拉力的合力.当将A点达到新的平衡,由于这时轻杆受到的压力大小等于15 N(等于物体重力),说明这时两段绳子夹角为120° 那么杆与竖直方向的夹角是60°;设杆的长度是L.状态1时,AO段绳子长度是L1=Lsin 45°=22L,滑轮O 点到B 点的竖直方向距离是h 1=Lcos 45°=22L , 状态2,杆与竖直方向夹角是60°,这时杆与AO 绳子夹角也是60°(∠AOB =60°),即三角形AOB 是等边三角形.所以,这时AO 段绳子长度是L 2=L ;滑轮到B 点的竖直距离是h 2=Lcos 60°=12L ,可见,后面状态与原来状态相比,物体的位置提高的竖直高度是h =(h 2-h 1)+(L 2-L 1)=(12L -22L)+(L -22L)=(32-2)L.重力势能的增加量E p =Gh =G×(32-2)L =15 N×(32-2)×1 m≈1.3 J. 2、有一竖直放置的“T”形架,表面光滑,滑块A 、B 分别套在水平杆与竖直杆上,A 、B 用一不可伸长的轻细绳相连,A 、B 质量相等,且可看做质点,如图8所示,开始时细绳水平伸直,A 、B 静止.由静止释放B 后,已知当细绳与竖直方向的夹角为60°时,滑块B 沿着竖直杆下滑的速度为v ,则连接A 、B 的绳长为( )图8A.4v 23gB.3v 2gC.2v 23gD.2v 2g【答案】A【解析】将A 、B 的速度分解为沿绳的方向和垂直于绳的方向,两滑块沿绳方向的速度相等,有:vB cos 60°=vAcos 30°,所以:vA=33v,A、B组成的系统机械能守恒,有:mgh=12mv 2A+12mv 2B,所以:h=2v23g,绳长l=2h=4v23g.3、如图5所示,在某旅游景点的滑沙场有两个坡度不同的滑道AB和AB′(都可看做斜面),一名旅游者乘同一个滑沙橇从A点由静止出发先后沿AB和AB′滑道滑下,最后停在水平沙面BC或B′C上.设滑沙者保持一定坐姿,滑沙橇和沙面间的动摩擦因数处处相同.下列说法中正确的是( )图5A.到达B点的速率等于到达B′点的速率B.到达B点时重力的功率大于到达B′时重力的功率C.沿两滑道滑行的时间一定相等D.沿两滑道滑行的总路程一定相等【答案】B【解析】设滑道的倾角为θ,动摩擦因数为μ.滑沙者在由斜面滑到水平面的过程中,由动能定理,mgh-μmgcos θ·hsin θ=12mv2-0,即得:mgh-μmgtan θ=12mv2.由于AB′与水平面的夹角小于AB与水平面的夹角,所以得知滑沙者在B点的速率大于在B′点的速率.故A错误.由前面可知,滑沙者在B点的速率大于在B′点的速率,且B点的速度与重力的夹角小于在B′点的夹角,根据P=Gvcos θ,故B正确;再对滑沙者滑行全过程用动能定理可知:mgh-μmgcos θ·hsin θ-μmgs′=0,得到:水平滑行位移s=htan θ+s′=hμ,与斜面的倾角无关,所以滑沙者在两滑道上将停在离出发点水平位移相同的位置,由几何知识可知,沿两滑道滑行的总路程不等.故D错误.由题意可知,到达B′的速度大小相同,从而根据路程不同,可以确定,沿两滑道滑行的时间不等,故C错误.4、如图1所示,缆车在牵引索的牵引下沿固定的倾斜索道加速上行,所受阻力不能忽略.在缆车向上运动的过程中,下列说法正确的是( )图1A.缆车克服重力做的功小于缆车增加的重力势能B.缆车增加的动能等于牵引力对缆车做的功和克服阻力做的功之和C.缆车所受牵引力做的功等于缆车克服阻力和克服重力做的功之和D.缆车增加的机械能等于缆车受到的牵引力与阻力做的功之和【答案】D【解析】根据重力做功与重力势能的变化关系可知,缆车克服重力做的功等于缆车增加的重力势能.故A错误;由动能定理可知,牵引力对缆车做的功等于缆车增加的动能、增加的重力势能与克服摩擦力所做的功之和,即:等于缆车增加的机械能与缆车克服摩擦力做的功之和,故B、C错误,D正确.5、如图2所示,用两根金属丝弯成一光滑半圆形轨道,竖直固定在地面上,其圆心为O、半径为R.轨道正上方离地h处固定一水平长直光滑杆,杆与轨道在同一竖直平面内,杆上P点处固定一定滑轮,P点位于O点正上方.A、B是质量均为m的小环,A套在杆上,B套在轨道上,一条不可伸长的细绳绕过定滑轮连接两环.两环均可看做质点,且不计滑轮大小与质量.现在A环上施加一个水平向右的恒力F,使B 环从地面由静止沿轨道上升.则( )图2A.力F所做的功等于系统动能的增加量B.在B环上升过程中,A环动能的增加量等于B环机械能的减少量C.当B环到达最高点时,其动能为零D.当B环与A环动能相等时,sin ∠OPB=R h【答案】D【解析】力F做正功,系统的机械能增加,由功能关系可知,力F所做的功等于系统机械能的增加量,不等于系统动能的增加量.故A错误;由于力F做正功,A、B 组成的系统机械能增加,则A环动能的增加量大于B环机械能的减少量,故B错误;当B环到达最高点时,A环的速度为零,动能为零,但B环的速度不为零,动能不为零,故C错误;当PB线与圆轨道相切时,vB =vA,根据数学知识有sin ∠OPB=Rh,故D正确.6、如图1所示,在竖直面内固定一光滑的硬质杆ab,杆与水平面的夹角为θ,在杆的上端a处套一质量为m的圆环,圆环上系一轻弹簧,弹簧的另一端固定在与a 处在同一水平线上的O点,O、b两点处在同一竖直线上.由静止释放圆环后,圆环沿杆从a运动到b,在圆环运动的整个过程中,弹簧一直处于伸长状态,则下列说法正确的是( )图1A.圆环的机械能保持不变B.弹簧对圆环一直做负功C.弹簧的弹性势能逐渐增大D.圆环和弹簧组成的系统机械能守恒【答案】D【解析】由几何关系可知,当环与O点的连线与杆垂直时,弹簧的长度最短,弹簧的弹性势能最小.所以在环从a到C的过程中弹簧对环做正功,而从C到b的过程中弹簧对环做负功,所以环的机械能是变化的.故A、B错误;当环与O点的连线与杆垂直时,弹簧的长度最短,弹簧的弹性势能最小,所以弹簧的弹性势能先减小后增大.故C错误;在整个的过程中只有重力和弹簧的弹力做功,所以圆环和弹簧组成的系统机械能守恒.故D正确.7、如图4所示,把小车放在倾角为30°的光滑斜面上,用轻绳跨过定滑轮使之与盛有沙子的小桶相连,不计滑轮质量及摩擦,已知小车的质量为3m,小桶与沙子的总质量为m,小车从静止释放后,在小桶上升竖直高度为h的过程中( )图4A.小桶处于失重状态B.小桶的最大速度为12ghC.小车受绳的拉力等于mgD.小车的最大动能为32 mgh【答案】B【解析】在整个的过程中,小桶向上做加速运动,所以小桶受到的拉力大于重力,小桶处于超重状态.故A、C错误;在小桶上升竖直高度为h的过程中只有重力对小车和小桶做功,由动能定律得:3mg·h·sin 30°-mgh=12(3m+m)v2解得:v=12gh,故B正确;小车和小桶具有相等的最大速度,所以小车的最大动能为:Ekm =12·3mv2=38mgh,故D错误.二、多项选择题(每道题至少有二个选项正确)8、如图2所示,斜面与足够长的水平横杆均固定,斜面与竖直方向的夹角为θ,套筒P套在横杆上,与绳子左端连接,绳子跨过不计大小的定滑轮,其右端与滑块Q相连接,此段绳与斜面平行,Q放在斜面上,P与Q质量相等且为m,O为横杆上一点且在滑轮的正下方,滑轮距横杆h.手握住P且使P和Q均静止,此时连接P的绳与竖直方向夹角为θ,然后无初速度释放P.不计绳子的质量和伸长及一切摩擦,重力加速度为g.关于P描述正确的是( )图2A.释放P前绳子拉力大小为mgcos θB.释放后P做匀加速运动C.P达O点时速率为D.P从释放到第一次过O点,绳子拉力对P做功功率一直增大【答案】AC【解析】释放P前,对Q分析,根据共点力平衡得,FT=mgcos θ,故A正确;释放后对P分析,知P所受的合力在变化,则加速度在变化,做变加速直线运动,故B 错误;当P 到O 点时,Q 的速度为零,对P 和Q 系统研究,mg(h cos θ-h)cos θ=12mv 2,解得v =,故C 正确;P 从释放到第一次过O 点,速度逐渐增大,拉力在水平方向的分力在减小,则拉力的功率不是一直增大,故D 错误.9、如图2所示,轻质弹簧的一端与内壁光滑的试管底部连接,另一端连接质量为m 的小球,小球的直径略小于试管的内径,开始时试管水平放置,小球静止,弹簧处于原长.若缓慢增大试管的倾角θ至试管竖直,弹簧始终在弹性限度内,在整个过程中,下列说法正确的是( )图2A.弹簧的弹性势能一定逐渐增大B.弹簧的弹性势能可能先增大后减小C.小球重力势能一定逐渐增大D.小球重力势能可能先增大后减小【答案】AD【解析】弹簧弹力逐渐增大,弹性势能一定逐渐增大,选项A 正确,B 错误;以地面为势能零点,倾角为θ时小球重力势能E p =mg(l 0-mgsin θk)sin θ,若sin θ=kl 02mg<1,则在达到竖直位置之前,重力势能有最大值,所以选项C 错误,D 正确. 10、如图3所示,在粗糙水平面上有甲、乙两木块,与水平面间的动摩擦因数均为μ,质量均为m ,中间用一原长为L 、劲度系数为k 的轻质弹簧连接起来,开始时两木块均静止且弹簧无形变.现用一水平恒力F(F>2μmg)向左推木块乙,直到两木块第一次达到加速度相同时,下列说法正确的是(设木块与水平面间的最大静摩擦力等于滑动摩擦力)( )图3A.此时甲的速度可能等于乙的速度B.此时两木块之间的距离为L-F 2kC.此阶段水平恒力F做的功大于甲、乙两木块动能增加量与弹性势能增加量的总和D.此阶段甲、乙两木块各自克服摩擦力所做的功相等【答案】BC【解析】现用一水平恒力F(F>2μmg)向左推木块乙,直到两木块第一次达到加速度相同时,在此过程中,乙的加速度减小,甲的加速度增大,所以此时甲的速度小于乙的速度,故A错误;对系统运用牛顿第二定律得:a=F-2μmg2m,对甲分析,有:F弹-μmg=ma,根据胡克定律得:x=F弹k=F2k,则两木块的距离为:s=L-x=L-F2k,故B正确;根据能量守恒得此阶段水平力F做的功等于甲、乙两木块动能增加量与弹性势能增加量和与水平面摩擦产生的热量的总和,故C正确;由于甲、乙两木块各自所受摩擦力大小相等,但位移不同,故甲、乙两木块各自所受摩擦力所做的功不相等,故D错误.11、如图4所示,一质量为m的小球置于半径为R的光滑竖直圆轨道最低点A处,B 为轨道最高点,C、D为圆的水平直径两端点.轻质弹簧的一端固定在圆心O点,另一端与小球拴接,已知弹簧的劲度系数为k=mgR,原长为L = 2R,弹簧始终处于弹性限度内,若给小球一水平初速度v,已知重力加速度为g,则( )图4A.无论v多大,小球均不会离开圆轨道B.若2gR<v<5gR,则小球会在B、D间脱离圆轨道C.只要v>4gR,小球就能做完整的圆周运动D.只要小球能做完整圆周运动,则小球与轨道间最大压力与最小压力之差与v无关【答案】ACD【解析】小球运动到最高点速度为零时假设没有离开圆轨道,则此时弹簧的弹力F弹=kΔx=mgRR=mg,此时小球没有离开圆轨道,故选项A正确,B错误;若小球到达最高点的速度恰为零,则根据动能定理12mv 2=mg·2R,解得v=4gR,故只要v 0>4gR,小球就能做完整的圆周运动,选项C正确;在最低点时:FN1-mg-kΔx=m v 2R,其中kΔx=mg;从最低点到最高点,根据动能定理12mv 2=12mv2+mg·2R,在最高点:FN2+mg-kΔx=mv2R,联立解得:FN1-FN2=6mg,故选项D正确;故选A、C、D.12、如图9所示,将质量为2m的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m的环,环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d.杆上的A点与定滑轮等高,杆上的B点在A点正下方距离为d处.现将环从A处由静止释放,不计一切摩擦阻力,下列说法正确的是( )图9A.环到达B处时,重物上升的高度h=d 2B.环到达B处时,环与重物的速度大小相等C.环从A到B,环减少的机械能等于重物增加的机械能D.环能下降的最大高度为4 3 d【答案】CD【解析】根据几何关系有,环从A下滑至B点时,重物上升的高度h=2d-d,故A错误;对B的速度沿绳子方向和垂直于绳子方向分解,在沿绳子方向上的分速度等于重物的速度,有:vcos 45°=v重物,故B错误;环下滑过程中无摩擦力对系统做功,故系统机械能守恒,即满足环减小的机械能等于重物增加的机械能,故C正确;环下滑的最大高度为h1时环和重物的速度均为0,此时重物上升的最大高度为h 2 1+d2-d,根据机械能守恒有mgh1=2mg(h 21+d2-d),解得:h1=43d,故D正确.故选C、D.13、蹦床类似于竖直放置的轻弹簧(弹力满足F=kx,弹性势能满足Ep =12kx2,x为床面下沉的距离,k为常量).质量为m的运动员静止站在蹦床上时,床面下沉x;蹦床比赛中,运动员经过多次蹦跳,逐渐增加上升高度,测得某次运动员离开床面在空中的最长时间为Δt.运动员可视为质点,空气阻力忽略不计,重力加速度为g.则可求( )A.常量k =mgx 0B.运动员上升的最大高度h =12g(Δt)2C.床面压缩的最大深度x =x 0+D.整个比赛过程中运动员增加的机械能ΔE=18mg 2(Δt)2【答案】AC【解析】质量为m 的运动员静止站在蹦床上时,床面下沉x 0,故有mg =kx 0,解得k =mgx 0,A 正确;离开床面后做竖直上抛运动,根据对称性可得运动员上升的时间为t =12Δt,故上升的最大高度为h =12gt 2=18g(Δt)2,B 错误;离开床面时的速度为v =gΔt 2,从压缩最深处到运动员刚离开床面过程中有12kx 2-mgx =12mv 2,联立v =gΔt2,mg =kx 0,解得x =x 0+,C 正确;以床面为零势能面,则刚开始时,人的机械能为E 1=-mgx 0,到最高点时人的机械能为E 2=mgh =18mg 2(Δt)2,故运动员的机械能增量为ΔE=18mg 2(Δt )2+mgx 0,D 错误.14、如图6甲所示,以斜面底端为重力势能零势能面,一物体在平行于斜面的拉力作用下,由静止开始沿光滑斜面向下运动.运动过程中物体的机械能与物体位移关系的图象(E -x 图象)如图乙所示,其中0~x 1过程的图线为曲线,x 1~x 2过程的图线为直线.根据该图象,下列判断正确的是( )图6A.0~x1过程中物体所受拉力始终沿斜面向下B.0~x1过程中物体所受拉力先变小后变大C.x1~x2过程中物体可能在做匀速直线运动D.x1~x2过程中物体可能在做匀减速直线运动【答案】BCD【解析】机械能与物体位移关系的图象的斜率表示拉力,可知0~x1过程中物体所受拉力先变小后变大,A错误,B正确;x1~x2过程中拉力沿斜面向上恒定,物体可能匀速直线运动也可能匀减速直线运动,C、D正确.15、如图7所示,一质量为m的小球以初动能Ek0从地面竖直向上抛出,已知运动过程中受到恒定阻力Ff=kmg作用(k为常数且满足0<k<1).图中两条图线分别表示小球在上升过程中动能和重力势能与其上升高度之间的关系(以地面为零势能面),h0表示上升的最大高度.则由图可知,下列结论正确的是( )图7A.E1是最大势能,且E1=Ek0k+1B.上升的最大高度h0=0(1)kEk mgC.落地时的动能Ek =kEk0 k+1D.在h1处,小球的动能和势能相等,且h1=0(2)kEk mg+【答案】ABD【解析】对于小球上升过程,根据动能定理可得:0-Ek0=-(mg+Ff)h,又Ff=kmg,得上升的最大高度h0=0(1)kEk mg+,则最大的势能为 E1=mgh=Ek0k+1,故A、B正确.下落过程,由动能定理得:Ek =(mg-Ff)h,又Ff=kmg,解得落地时的动能E k =0(1)1kk Ek-+,故C错误.h1高度时重力势能和动能相等,由动能定理得:Ek1-Ek0=-(mg+Ff )h1,又 mgh1=Ek1,解得h1=0(2)kEk mg+.故D正确.16、一足够长的传送带与水平面的夹角为θ,以一定的速度匀速运动.某时刻在传送带适当的位置放上具有一定初速度的物块(如图3a所示),以此时为t=0时刻记录了物块之后在传送带上运动的速度随时间的变化关系.如图b所示(图中取沿斜面向上的运动方向为正方向,其中两坐标大小v1>v2).已知传送带的速度保持不变.则下列判断正确的是( )图3A.若物块与传送带间的动摩擦因数为μ,则μ>tan θB.0~t1内,传送带对物块做正功C.0~t2内,系统产生的热量一定比物块动能的减少量大D.0~t2内,传送带对物块做的功等于物块动能的减少量【答案】AC【解析】在t1~t2内,物块向上运动,则有μmgcos θ>mgsin θ,得μ>tan θ,故A 正确;由题意知,物块先向下运动后向上运动,则知传送带的运动方向应向上.0~t 1内,物块所受摩擦力沿斜面向上,则传送带对物块做负功,故B 错误;物块的重力势能减小,动能也减小都转化为系统产生的内能,则由能量守恒得知,系统产生的热量大小一定大于物块动能的变化量大小.故C 正确;0~t 2内,传送带对物块做功等于物块机械能的变化量,故D 错误.17、如图4所示,半径为R 的竖直光滑圆轨道与光滑水平面相切,质量均为m 的小球A 、B 与轻杆连接,置于圆轨道上,A 位于圆心O 的正下方,B 与O 等高.它们由静止释放,最终在水平面上运动.下列说法正确的是( )图4A.下滑过程中重力对B 做功的功率先增大后减小B.当B 滑到圆轨道最低点时,轨道对B 的支持力大小为3mgC.下滑过程中B 的机械能增加D.整个过程中轻杆对A 做的功为12mgR【答案】AD【解析】因为初位置速度为零,则重力的功率为0,最低点速度方向与重力的方向垂直,重力的功率为零,可知重力的功率先增大后减小.故A 正确;A 、B 小球组成的系统,在运动过程中,机械能守恒,设B 到达轨道最低点时速度为v ,根据机械能守恒定律得:12(m +m)v 2=mgR ,解得:v =gR ,在最低点,根据牛顿第二定律得: F N -mg =m v 2R 解得:F N =2mg ,故B 错误;下滑过程中,B 的重力势能减小ΔE p =mgR ,动能增加量ΔE k =12mv 2=12mgR ,所以机械能减小12mgR ,故C 错误;整个过程中对A ,根据动能定理得:W=12mv2=12mgR,故D正确.三、计算题18、风洞飞行表演是一种高科技的惊险的娱乐项目.如图9所示,在某次表演中,假设风洞内向上的总风量和风速保持不变.质量为m的表演者通过调整身姿,可改变所受的向上的风力大小,以获得不同的运动效果.假设人体受风力大小与正对面积成正比,已知水平横躺时受风力面积最大,且人体站立时受风力面积为水平横躺时受风力面积的18,风洞内人体可上下移动的空间总高度AC=H.开始时,若人体与竖直方向成一定角度倾斜时,受风力有效面积是最大值的一半,恰好使表演者在最高点A点处于静止状态;后来,表演者从A点开始,先以向下的最大加速度匀加速下落,经过某处B点后,再以向上的最大加速度匀减速下落,刚好能在最低点C处减速为零,试求:图9(1)表演者向上的最大加速度大小和向下的最大加速度大小;(2)AB两点的高度差与BC两点的高度差之比;(3)表演者从A点到C点减少的机械能.【答案】(1)g 34g (2)3∶4 (3)mgH【解析】(1)在A点受力平衡时,则mg=k S 2向上最大加速度为a1,kS-mg=ma1得到a 1=g向下最大加速度为a 2,mg -k S8=ma 2得到a 2=34g(2)设B 点的速度为v B2a 1h AB =v 2B2a 2h BC =v 2B 得到:h AB h BC =a 2a 1=34或者由v -t 图象法得到结论. (3)整个过程的动能变化量为ΔE k =0 整个过程的重力势能减少量为ΔE p =mgH 因此机械能的减少量为ΔE=mgH或者利用克服摩擦力做功可也得到此结论.19、如图1所示,劲度系数k =25 N/m 轻质弹簧的一端与竖直板P 拴接(竖直板P 固定在木板B 的左端),另一端与质量m A =1 kg 的物体A 相连,P 和B 的总质量为M B =4 kg 且B 足够长.A 静止在木板B 上,A 右端连一细线绕过光滑定滑轮与质量m C =1 kg 的物体C 相连.木板B 的上表面光滑,下表面与地面的动摩擦因数μ=0.4.开始时用手托住C ,让细线恰好伸直但没拉力,然后由静止释放C ,直到B 开始运动.已知弹簧伸长量为x 时其弹性势能为12kx 2,全过程物体C 没有触地,弹簧在弹性限度内,g 取10 m/s 2.求:图1(1)释放C的瞬间A的加速度大小;(2)释放C后A的最大速度大小;(3)若C的质量变为mC′=3 kg,则B刚开始运动时,拉力对物体A做功的功率. 【答案】(1)5 m/s2(2) 2 m/s (3)45 2 W【解析】(1)对物体C:mC g-FT=mCa对物体A:FT =mAa所以a=mCgmC+mA=5 m/s2(2)水平面对B的摩擦力Ff =μFN=μ(mA+MB)g=20 N,释放C后B不会运动.所以,当A的加速度为0时其速度最大,有kx=mCg,x=0.4 m对物体A、C用动能定理mCgx+W=W=Fl=-kx2·x=-kx22v m =2mCgx-kx2mA+mC= 2 m/s(3)设B刚开始运动时弹簧伸长量为x1,弹力F=kx1,当F=Ff时木板B开始运动,则kx1=μ(mA+MB)g,x1=0.8 m弹簧弹力对物体A所做的功W1=-kx 212,若B刚开始运动时A的速度为v,对物体A、C用动能定理mC ′gx1+W1=v=2mC′gx1-kx 21mA+mC′=2 2 m/s设B刚要运动时细线的拉力为FT1对物体C :m C ′g-F T1=m C ′a′对物体A :F T1-kx 1=m A a′,F T1==22.5 N功率P =F T1v =45 2 W.20、为研究物体的运动,在光滑的水平桌面上建立如图2所示的坐标系xOy ,O 、A 、B 是水平桌面内的三个点,OB 沿x 轴正方向,∠BOA =60°,OB =32OA.第一次将一质量为m 的滑块以一定的初动能从O 点沿y 轴正方向滑出,并同时施加沿x 轴正方向的恒力F 1,滑块恰好通过A 点.第二次,在恒力F 1仍存在的情况下,再在滑块上施加一个恒力F 2,让滑块从O 点以同样的初动能沿某一方向滑出,恰好也能通过A 点,到达A 点时动能为初动能的3倍;第三次,在上述两个恒力F 1和F 2的同时作用下,仍从O 点以同样初动能沿另一个方向滑出,恰好通过B 点,且到达B 点时的动能是初动能的6倍.求:图2(1)第一次运动经过A 点时的动能与初动能的比值;(2)两个恒力F 1、F 2的大小之比F 1F 2是多少?并求出F 2的方向与x 轴正方向所成的夹角.【答案】(1)73(2)2 3 30°【解析】(1)设滑块的初速度为v 0,初动能为E k0,从O 点运动到A 点的时间为t ,令OA =d ,则OB =3d2,只有恒力F 1,根据平抛运动的规律有:dsin 60°=v 0t ①a x =F1m②dcos 60°=12axt2③又有Ek0=12mv 2④由①②③④式得Ek0=38F1d⑤设滑块到达A点时的动能为EkA,则EkA=Ek0+F1d2⑥由⑤⑥式得EkAEk0=73(2)加了恒力F2后,滑块从O点分别到A点和B点,由功能关系及⑤式得WF2=3Ek0-Ek0-F1d2=23Ek0⑦WF2′=6Ek0-Ek0-3F1d2=Ek0⑧由恒力做功的特点,可在OB上找到一点M,从O到M点F2做功与A点做功相同,M 与O点的距离为x,如图,则有x3d2=WF2WF2′⑨解得x=d⑩则据恒力做功特点,F2的方向必沿AM的中垂线,设F2与x轴正方向的夹角为α,由几何关系可得α=30°,F1F2=2 3.21、光滑圆轨道和两倾斜直轨道组成如图3所示装置,其中直轨道bc粗糙,直轨道cd 光滑,两轨道相接处为一很小的圆弧.质量为m =0.1 kg 的滑块(可视为质点)在圆轨道上做圆周运动到达轨道最高点a 时的速度大小为v =4 m/s ,当滑块运动到圆轨道与直轨道bc 的相切处b 时,脱离圆轨道开始沿倾斜直轨道bc 滑行,到达轨道cd 上的d 点时速度为零.若滑块变换轨道瞬间的能量损失可忽略不计,已知圆轨道的半径为R =0.25 m ,直轨道bc 的倾角θ=37°,其长度为L =26.25 m ,d 点与水平地面间的高度差为h =0.2 m ,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:图3(1)滑块与直轨道bc 间的动摩擦因数; (2)滑块在直轨道bc 上运动的时间. 【答案】(1)0.8 (2)7.66 s【解析】(1)从a 点到d 点全过程应用动能定理 mg(R +Rcos θ+Lsin θ-h)-μmgcos θ·L=0-mv 22解得μ=0.8(2)设滑块在bc 上向下滑动的加速度为a 1,时间为t 1,向上滑动的加速度为a 2,时间为t 2,在c 点时的速度v c ,由c 到d 有mv 2c2=mgh ,得v c =2 m/sa 点到b 点的过程中,有mgR(1+cos θ)=mv 2b2-mv 22解得v b =5 m/s在轨道bc 上 下滑时L =1()2b c v v tt 1=7.5 s上滑时mgsin θ+μmgcos θ=ma 2 解得a 2=12.4 m/s 2 由于0=v c -a 2t 2 t 2=v ca 2≈0.16 s由于μ>tan θ,滑块在轨道bc 上停止后不再下滑. 滑块在直轨道bc 上运动的总时间为t =t 1+t 2=7.66 s.22、水上滑梯可简化成如图4所示的模型:倾角θ=37°的斜滑道AB 和光滑圆弧滑道BC 在B 点相切连接,圆弧末端C 点切线水平,C 点到水面的高度h =2 m ,顶点A 距水面的高度H =12 m ,点A 、B 的高度差H AB =9 m ,一质量m =50 kg 的人从滑道起点A 点无初速度滑下,人与滑道AB 间的动摩擦因数μ=0.25.(取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,人在运动过程中可视为质点)图4(1)求人从A 点滑到C 点的过程克服摩擦力所做的功; (2)求人在圆弧滑道末端C 点时对滑道的压力大小;(3)现沿BA 方向移动圆弧滑道,调节圆弧滑道与斜滑道AB 相切的位置,使人从滑梯平抛到水面的水平位移最大,求圆弧滑道与AB 滑道的相切点B′到A 点的距离. 【答案】(1)1 500 J (2)1 900 N (3)7.9 m【解析】(1)人在AB 滑道下滑过程中,由受力分析可知 F f =μmgcos θ W f =-F f s AB s AB =H ABsin θ。