请求分页虚拟存储器设计
- 格式:doc
- 大小:66.51 KB
- 文档页数:6
操作系统-存储管理(4)段页式虚拟存储物理地址:⼜称绝对地址,即程序执⾏所使⽤的地址空间(处理器执⾏指令时按照物理地址进⾏)逻辑地址:⼜称相对地址,即⽤户编程所使⽤的地址空间,从0开始编号,有两种形式:⼀维逻辑地址(地址)⼆维逻辑地址(段号:段内地址)主存储器空间的分配与去配:分配:进程装⼊主存时,存储管理软件进⾏具体的主存分配操作,并设置⼀个表格记录主存空间的分配情况去配:当某个进程撤离或主动归还主存资源时,存储管理软件要收回它所占⽤的全部或者部分存储空间,调整主存分配表信息主存储器空间的共享:多个进程共享主存储器资源:多道程序设计技术使若⼲个程序同时进⼊主存储器,各⾃占⽤⼀定数量的存储空间,共同使⽤⼀个主存储器多个进程共享主存储器的某些区域:若⼲个协作进程有共同的主存程序块或者主存数据块多道程序设计需要复⽤主存:按照分区复⽤:主存划分为多个固定/可变尺⼨的分区,⼀个程序/程序段占⽤⼀个分区按照页架复⽤:主存划分成多个固定⼤⼩的页架,⼀个程序/程序段占⽤多个页架装载程序/加载器(loader)把可执⾏程序装⼊内存的⽅式有:绝对装载可重定位装载动态运⾏时装载地址转换:⼜称重定位,即把可执⾏程序逻辑地址转换成绝对地址,可分为:静态地址重定位:由装载程序实现装载代码模块的加载和地址转换(⽆需硬件⽀持),把它装⼊分配给进程的内存指定区域,其中所有指令代码和数据的逻辑地址在执⾏前⼀次全部修改为内存物理地址。
早期单任务单⽤户OS使⽤。
动态地址重地位:由装载程序实现装载代码模块的加载,把它装⼊进程的内存在指定区域,但对链接程序处理过的应⽤程序逻辑地址不做修改,程序内存起始地址被置⼊重定位寄存器(基址寄存器)。
程序执⾏过程中每当CPU访问程序和数据引⽤内存地址时,由硬件地址转换机构截取此逻辑地址并加上重定位寄存器的值。
运⾏时链接地址重定位存储保护:为避免主存中的多个进程相互⼲扰,必须对主存中的程序和数据进⾏保护。
第十六讲存储器管理之请求分页存储管理方式1 基本概述请求分页管理是建立在基本分页基础上的,为了能支持虚拟存储器而增加了请求调页功能和页面置换功能。
基本原理:地址空间的划分同页式;装入页时,可装入作业的一部分(运行所需)页即可运行。
2 请求分页的硬件支持为实现请求分页,需要一定的硬件支持,包括:页表机制、缺页中断机构、地址变换机构。
2.1 页表机制作用:将用户地址空间的逻辑地址转换为内存空间的物理地址。
因为请求分页的特殊性,即程序的一部分调入内存,一部分仍在外存,因此页表结构有所不同。
如图:说明:(1)状态位P:指示该页是否已调入内存。
(2)访问字段A:记录本页在一段时间内被访问的次数或最近未被访问的时间。
(3)修改位M:表示该页在调入内存后是否被修改过。
若修改过,则换出时需重写至外存。
(4)外存地址:指出该页在外存上的地址。
2.2 缺页中断机构在请求分页系统中,每当所要访问的页面不在内存时,便产生缺页中断,请求OS将所缺的页调入内存。
缺页中断与一般中断的区别:(1)在指令执行期间产生和处理中断信号(2)一条指令在执行期间,可能产生多次缺页中断2.3 地址变换机构请求分页系统的地址变换机构。
是在分页系统地址变换机构的基础上,又增加了一些功能。
例:某虚拟存储器的用户空间共有32个页面,每页1KB,主存16KB。
假定某时刻系统为用户的第0、1、2、3页分别分配的物理块号为5、10、4、7,试将虚拟地址0A5C和093C 变换为物理地址。
解:虚拟地址为:页号(2^5=32)5位页内位移(1K =2^10=1024)10位物理地址为物理块号(2^4=16)4位因为页内是10 位,块内位移(1K =2^10=1024)10位虚拟地址OA5C对应的二进制为:00010 1001011100即虚拟地址OA5C的页号为2,页内位移为1001011100,由题意知对应的物理地址为:0100 1001011100即125C同理求093C。
第四章存储器管理一、单项选择题1、存储管理的目的是(C )。
A.方便用户B.提高内存利用率C.方便用户和提高内存利用率D.增加内存实际容量2、在( A)中,不可能产生系统抖动的现象。
A.固定分区管理B.请求页式管理C.段式管理D.机器中不存在病毒时3、当程序经过编译或者汇编以后,形成了一种由机器指令组成的集合,被称为(B )。
A.源程序B.目标程序C.可执行程序D.非执行程序4、可由CPU调用执行的程序所对应的地址空间为(D )。
A.符号名空间B.虚拟地址空间C.相对地址空间D.物理地址空间5、存储分配解决多道作业[1C]划分问题。
为了实现静态和动态存储分配,需采用地址重定位,即把[2C]变成[3D],静态重定位由[4D]实现,动态重定位由[5A]实现。
供选择的答案:[1]:A 地址空间 B 符号名空间 C 主存空间 D 虚存空间[2]、[3]: A 页面地址 B 段地址 C 逻辑地址 D 物理地址 E 外存地址 F 设备地址[4]、[5]: A 硬件地址变换机构 B 执行程序 C 汇编程序D 连接装入程序E 调试程序F 编译程序G 解释程序6、分区管理要求对每一个作业都分配(A )的内存单元。
A.地址连续B.若干地址不连续C.若干连续的帧D.若干不连续的帧7、(C )存储管理支持多道程序设计,算法简单,但存储碎片多。
A.段式B.页式C.固定分区D.段页式8、处理器有32位地址,则它的虚拟地址空间为( B)字节。
A.2GBB.4GBC.100KBD.640KB9、虚拟存储技术是( A)。
A.补充内存物理空间的技术B.补充相对地址空间的技术C.扩充外存空间的技术D.扩充输入输出缓冲区的技术10、虚拟内存的容量只受( D)的限制。
A.物理内存的大小B.磁盘空间的大小C.数据存放的实际地址D.计算机地址字长11、虚拟存储技术与(A )不能配合使用。
A.分区管理B.动态分页管理C.段式管理D.段页式管理12、(B )是指将作业不需要或暂时不需要的部分移到外存,让出内存空间以调入其他所需数据。
实验八请求分页存储管理设计一、虚拟存储器的相关知识:1.概述:虚拟存储器(Virtual Memory):在具有层次结构存储器的计算机系统中,自动实现部分装入和部分替换功能,能从逻辑上为用户提供一个比物理贮存容量大得多,可寻址的“主存储器”。
虚拟存储区的容量与物理主存大小无关,而受限于计算机的地址结构和可用磁盘容量。
作用:虚拟内存的作用内存在计算机中的作用很大,电脑中所有运行的程序都需要经过内存来执行,如果执行的程序很大或很多,就会导致内存消耗殆尽。
为了解决这个问题,Windows中运用了虚拟内存技术,即拿出一部分硬盘空间来充当内存使用,当内存占用完时,电脑就会自动调用硬盘来充当内存,以缓解内存的紧张。
举一个例子来说,如果电脑只有128MB物理内存的话,当读取一个容量为200MB的文件时,就必须要用到比较大的虚拟内存,文件被内存读取之后就会先储存到虚拟内存,等待内存把文件全部储存到虚拟内存之后,跟着就会把虚拟内存里储存的文件释放到原来的安装目录里了。
下面,就让我们一起来看看如何对虚拟内存进行设置吧。
2.请求分页虚拟存储系统是将作业信息的副本存放在磁盘这一类辅助存储器中,当作业被调度投入运行时,并不把作业的程序和数据全部装入主存,而仅仅装入立即使用的那些页面,至少要将作业的第一页信息装入主存,在执行过程中访问到不在主存的页面时,再把它们动态地装入。
用得较多的分页式虚拟存储管理是请求分页(demand paging),当需要执行某条指令或使用某个数据,而发现它们并不在主存时,产生一个缺页中断,系统从辅存中把该指令或数据所在的页面调入内存。
3.替换算法:替换规则用来确定替换主存中哪一部分,以便腾空部分主存,存放来自辅存要调入的那部分内容。
常见的替换算法有4种。
随机算法用软件或硬件随机数产生器确定替换的页面。
先进先出先调入主存的页面先替换。
近期最少使用算法替换最长时间不用的页面。
最优算法替换最长时间以后才使用的页面。
请求分页虚拟存储器设计
管理结构图:
1.接口和全局结构定义
//----------------基本常量定义---------------------------------
#define PROCESS_SIZE //系统允许的最多进程数
#define PAGE_SIZE //页面大小
#define MEMORY_SIZE //内存所含的物理块数
#define INIT_FREEBLOCKS //内存保留的空闲的物理块数
#define MAX_PAGES //最多页面数
//----------------基本数据结构定义---------------------------
//***********************操作队列结构****************************
struct op_Que
{
int processNum; //进程编号
int time; //进程起始时间
int pages; //进程包含的页面数
int oper; //进程要求的操作:1=提交; 2=释放
int protection; //权限:0=PAGE_READONLY;
// 1=PAGE_READWRITE
// 2=PAGE_EXECUTE
};
struct QueNode
{
struct op_Que opQuene;
struct opQue *next
};
struct opQue
{
struct QueNode *front;
struct QueNode *rear;
};
//****************************************************************** //***********************模拟内存使用情况**********************
struct block//内存中每一个物理块的结构
{
int state; //当前块的状态:1=空闲;2=已被分配;
int array[PAGE_SIZE]; //块内字节的使用情况(程序扩展用)
};
struct freeQueNode//系统保留的物理块队列结构
{
int blockNumber; //当前块的编号
int *next;
};
struct freeQue //空闲物理块队列
{
freeQueNode *front;
freeQueNode *rear;
}
struct memory//内存的模拟结构
{
block blocks[MEMORY_SIZE]; //物理块
freeQue fQ; //空闲队列,每一数据项为内存块的编号
};
//*******************************************************************
//*************************页表*****************************
struct page//页表项结构
{
int processNum; //进程号
int pageNumber; //特定进程pricess中虚拟页面的编号
int blockNumber; //物理块号
int state; //当前页的状态:0=外存;1=内存;
int accessNum; //当前页被访问的次数
int address; //外存地址(程序扩展用)
};
struct pageTable//页表结构
{
page pages[MEMORY_SIZE]
};
//******************************************************************* //******************************************************************* struct accessArrayStruct//虚拟地址结构
{
int processNum; //访问的进程号
int pageNumber; //该进程的页号
int pageAddress; //页内地址
};
//*******************************************************************
2.模拟进程的申请,形成进程申请队列
本模块包括2个子模块。
子模块1:模拟进程的申请。
随机形成一队列,模拟请求分页系统中进程的执行顺序。
随机队列的每一项元素包含进程编号、进程中含有的页面数、进程要求的操作以及权限。
其中:
process //进程编号
pages //进程要访问的页面数
oper //进程要求的操作:1=提交;2=释放
protection //权限:0=PAGE_READONLY
1=PAGE_READWRITE
2=PAGE_EXECUTE
子模块2:模拟进程对页面的访问序列。
随即产生一队列,模拟请求分页系统中进程对页面的访问序列。
随机队列的每一项元素包含进程编号、页号、页内地址。
其中:process //进程号
pageNumber //将要访问的该进程的页面
pageAddress //页内地址
3.读取opQue队列,进行内存分配和回收,同时生成和修改页表pageTable
4.读取accessArray,通过查找pageTable进行地址转换,同时更新pageTable。
系统生成流程和程序设计流程详细流程图:。