第四章线性控制系统的时域分析
- 格式:ppt
- 大小:1.75 MB
- 文档页数:82
《自动控制原理》实验报告实验一:线性系统的时域分析课程名称:自动控制原理目录1. 实验目的 (1)1.1一阶系统 (1)1.2二阶系统 (1)2. 实验内容 (2)2.1 观察比例环节的阶跃响应曲线 (2)2.2 观察惯性环节的阶跃响应曲线 (2)2.3 观察积分环节的阶跃响应曲线 (2)2.4 观察比例积分环节的阶跃响应曲线 (3)2.5 观察比例微分环节的阶跃响应曲线 (3)2.6 PID(比例积分微分)环节的响应曲线 (4)2.7 典型二阶系统的响应曲线 (4)3. 实验步骤 (5)3.1 比例环节的阶跃响应曲线 (5)3.2 惯性环节的阶跃响应曲线 (5)3.3 观察积分环节的阶跃响应曲线 (6)3.4 观察比例积分环节的阶跃响应曲线 (6)3.5 观察比例微分环节的阶跃响应曲线 (7)3.6 PID(比例积分微分)环节的响应曲线 (7)3.7 典型二阶系统的响应曲线 (8)4. 理论分析 (9)4.1 比例环节的阶跃响应曲线 (9)4.2 惯性环节的阶跃响应曲线 (9)4.3 积分环节的阶跃响应曲线 (9)4.4 比例积分环节的阶跃响应曲线 (10)4.5 比例微分环节的阶跃响应曲线 (10)4.6 PID环节的阶跃响应曲线 (11)4.7 二阶单位负反馈系统的阶跃响应曲线 (11)4.8 三阶单位负反馈系统的阶跃响应曲线 (12)5. MATLAB仿真 (14)5.1 比例环节的阶跃响应曲线 (14)5.2 惯性环节的阶跃相应曲线 (14)5.3 积分环节的阶跃相应曲线 (15)5.4 比例积分环节的阶跃相应曲线 (15)5.5 比例微分环节的阶跃相应曲线 (16)5.6 PID环节的阶跃相应曲线 (16)5.7 二阶单位负反馈系统的阶跃相应曲线 (16)5.8 三阶单位负反馈系统的阶跃相应曲线 (17)6. 实验结果 (19)6.1比例环节的阶跃响应曲线 (19)6.2惯性环节的阶跃响应曲线 (19)6.3 积分环节的阶跃响应曲线 (21)6.4比例积分环节的阶跃响应曲线 (22)6.5 比例微分环节的阶跃响应曲线 (24)6.6 (PID)比例积分微分环节的响应曲线 (24)6.7二阶系统的瞬态响应 (26)6.8 实验分析 (29)1. 实验目的1.1一阶系统1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响1.2二阶系统1.了解和掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。
竭诚为您提供优质文档/双击可除线性系统时域分析实验报告篇一:自动控制原理实验报告《线性控制系统时域分析》实验一线性控制系统时域分析1、设控制系统如图1所示,已知K=100,试绘制当h 分别取h=0.1,0.20.5,1,2,5,10时,系统的阶跃响应曲线。
讨论反馈强度对一阶系统性能有何影响?图1答:A、绘制系统曲线程序如下:s=tf(s);p1=(1/(0.1*s+1));p2=(1/(0.05*s+1));p3=(1/(0.02*s+1) );p4=(1/(0.01*s+1));p5=(1/(0.005*s+1));p6=(1/(0.002 *s+1));p7=(1/(0.001*s+1));step(p1);holdon;step(p2); holdon;step(p3);holdon;step(p5);holdon;step(p6);hol don;step(p7);holdon;b、绘制改变h系统阶跃响应图如下:stepResponse1.41.21Amplitude0.80.60.40.200.050.10.150.20.250.30.350.40.450.5Time(seconds)结论:h的值依次为0.1、0.2、0.5、1、2、5、10做响应曲线。
matlab曲线默认从第一条到第七条颜色依次为蓝、黄、紫、绿、红、青、黑,图中可知随着h值得增大系统上升时间减小,调整时间减小,有更高的快速性。
2?n?(s)?22,设已知s?2??ns??n2、二阶系统闭环传函的标准形式为?n=4,试绘制当阻尼比?分别取0.2,0.4,0.6,0.8,1,1.5,2,5等值时,系统的单位阶跃响应曲线。
求出?取值0.2,0.5,0.8时的超调量,并求出?取值0.2,0.5,0.8,1.5,5时的调节时间。
讨论阻尼比变化对系统性能的影响。
答:A、绘制系统曲线程序如下:s=tf(s);p1=16/(s^2+1.6*s+16);p2=16/(s^2+3.2*s+16);p3=16/(s^ 2+4.8*s+16);p4=16/(s^2+6.4*s+16);p5=16/(s^2+8*s+16) ;p6=16/(s^2+12*s+16);p7=16/(s^2+16*s+16);p8=16/(s^2 +40*s+16);step(p1);holdon;step(p2);holdon;step(p3); holdon;step(p4);holdon;step(p5);holdon;step(p6);hol don;step(p7);holdon;step(p8);holdon;b、绘制系统阶跃响应图如下:c、?取值为0.2、0.5、0.8、1.5、5时的参数值。
线性系统的时域分析实验报告线性系统的时域分析实验报告引言:线性系统是控制理论中的重要概念,它在工程领域中有广泛的应用。
时域分析是研究线性系统的一种方法,通过对系统输入和输出的时域信号进行观察和分析,可以得到系统的动态特性。
本实验旨在通过对线性系统进行时域分析,探究系统的稳定性、阶数和频率响应等特性。
实验一:稳定性分析稳定性是线性系统的基本性质之一,它描述了系统对于不同输入的响应是否趋于有界。
在本实验中,我们选取了一个简单的一阶系统进行稳定性分析。
首先,我们搭建了一个一阶系统,其传递函数为H(s) = 1/(s+1),其中s为复变量。
然后,我们输入了一个单位阶跃信号,观察系统的输出。
实验结果显示,系统的输出在输入信号发生变化后,经过一段时间后稳定在一个有限的值上,没有出现发散的情况。
因此,我们可以判断该系统是稳定的。
实验二:阶数分析阶数是线性系统的另一个重要特性,它描述了系统的动态响应所需的最小延迟时间。
在本实验中,我们选取了一个二阶系统进行阶数分析。
我们搭建了一个二阶系统,其传递函数为H(s) = 1/(s^2+2s+1)。
然后,我们输入了一个正弦信号,观察系统的输出。
实验结果显示,系统的输出在输入信号发生变化后,经过一段时间后才稳定下来。
通过进一步分析,我们发现系统的输出波形具有两个振荡周期,这表明系统是一个二阶系统。
实验三:频率响应分析频率响应是线性系统的另一个重要特性,它描述了系统对于不同频率输入信号的响应情况。
在本实验中,我们选取了一个低通滤波器进行频率响应分析。
我们搭建了一个低通滤波器,其传递函数为H(s) = 1/(s+1),其中s为复变量。
然后,我们输入了一系列不同频率的正弦信号,观察系统的输出。
实验结果显示,随着输入信号频率的增加,系统的输出幅值逐渐减小,表明系统对高频信号有较强的抑制作用。
这一结果与低通滤波器的特性相吻合。
结论:通过以上实验,我们对线性系统的时域分析方法有了更深入的了解。
第四章 分析自动控制系统性能常用的方法(10 学时)目的、教学要求:在经典控制理论中常用的分析方法有时域分析法(由时域响应及传递函 数出发去进行分析)、根轨迹分析法和频率特性分析法。
本章主要介绍其中的两种分析方法, 即:时域分析法和频域分析法。
因此在本章中主要掌握:² 时域分析法的基本概念及分析方法² 频域分析法的基本概念及分析方法重点、难点:本章的重点是: 频率特性的基本概念, 开环对数频率特性的绘制及幅值穿越频率的求取, 控制系统的对数稳定性判据,系统频域性能分析及与时域性能指标之间的关系。
本章的难点是:自动控制系统开环对数频率特性的绘制及幅值穿越频率的求取、控制系 统的频域性能分析及与时域性能指标之间的关系。
主要内容:² 频率特性的基本概念² 频率特性的图形表示法² 典型环节的 Bode 图² 自动控制系统的开环对数频率特性² 习题² 实验教学方式:该部分内容较难理解,应采用 PPT+《自动控制原理频域分析工具箱》教学软件 的多媒体教学方式;习题课采用课堂教学, 但至少应用一次课堂练习用来让学生学习绘制伯 德图。
教学设计:① 通过多媒体教学演示软件《自动控制原理频域分析工具箱》生动说明频率响应的概 念,引导学生对实验演示结果进行分析,从而引出占有率特性的基本概念。
② 通过一个案例(一阶 RC 电路)及多媒体教学演示软件来讲解:输出信号的幅值与相 位与频率之间的关系及频率特性与系统结构参数之间的关系(简要介绍,用 PPT+媒体教学 演示软件来讲)。
③ 采用课堂练习的方法,引导学生按步骤进行伯德图的绘制,学习绘制前要求学生准 备好二张以上的三级半对数坐标纸(从校园网上下载)。
教学内容:一、频率特性的基本概念1. 频率响应与频率特性频率响应的概念:线性定常系统对正弦输入信号的稳态响应称为频率响应。
线性系统的 频域分析的出发点仍然是它的传递函数。
自动控制原理实验报告《线性控制系统时域分析》一、实验目的1. 理解线性时间不变系统的基本概念,掌握线性时间不变系统的数学模型。
2. 学习时域分析的基本概念和方法,掌握时域分析的重点内容。
3. 掌握用MATLAB进行线性时间不变系统时域分析的方法。
二、实验内容本实验通过搭建线性时间不变系统,给出系统的数学模型,利用MATLAB进行系统的时域测试和分析,包括系统的时域性质、单位脉冲响应、单位阶跃响应等。
三、实验原理1. 线性时间不变系统的基本概念线性时间不变系统(Linear Time-Invariant System,简称LTI系统)是指在不同时间下的输入信号均可以通过系统输出信号进行表示的系统,它具有线性性和时不变性两个重要特性。
LTI系统的数学模型可以表示为:y(t) = x(t) * h(t)其中,y(t)表示系统的输出信号,x(t)表示系统的输入信号,h(t)表示系统的冲激响应。
2. 时域分析的基本概念和方法时域分析是一种在时间范围内对系统进行分析的方法,主要涉及到冲激响应、阶跃响应、单位脉冲响应等方面的内容。
针对不同的输入信号,可以得到不同的响应结果,从而确定系统的时域特性。
四、实验步骤与结果1. 搭建线性时间不变系统本实验中,实验者搭建了一个简单的一阶系统,系统的阻尼比为0.2,系统时间常数为1。
搭建完成后,利用信号发生器输出正弦信号作为系统的输入信号。
2. 获取系统的响应结果利用MATLAB进行系统的时域测试和分析,得到了系统的冲激响应、单位阶跃响应和单位脉冲响应等结果。
其中,冲激响应、阶跃响应和脉冲响应分别如下所示:冲激响应:h(t) = 0.2e^(-0.2t) u(t)阶跃响应:H(t) = 1-(1+0.2t) e^(-0.2t) u(t)脉冲响应:g(t) = h(t) - h(t-1)3. 绘制响应图表通过绘制响应图表,可以更好地展示系统的时域性质。
下图展示了系统的冲激响应、阶跃响应和脉冲响应的图表。