高考物理压轴题--电磁场类1
- 格式:docx
- 大小:496.43 KB
- 文档页数:11
高考物理电磁感应现象压轴题综合题附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。
导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。
空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。
质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。
【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。
由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得EI R r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。
一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。
ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。
重力加速度为g 。
求:(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。
【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 72Lt g= 【解析】 【详解】(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有21sin 302mgL mv ︒=, 则线框进入磁场时的速度2sin30v g L gL =︒=线框ab 边进入磁场时产生的电动势E =BLv 线框中电流E I R=ab 边受到的安培力22B L vF BIL R==线框匀速进入磁场,则有22sin 30B L vmg R︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv 线框所受的安培力变为22422B L vF BI L mg R==''=方向沿斜面向上(2)设线框再次做匀速运动时速度为v ',则224sin 30B L v mg R︒='解得4v v ='=根据能量守恒定律有2211sin 30222mg L mv mv Q ︒'⨯+=+解得4732mgLQ =线框ab 边在上侧磁扬中运动的过程所用的时间1L t v=设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:22sin 302mg t BLIt mv mv ︒-='-其中()022BL L x I t R-=联立以上两式解得()02432L x v t vg-=-线框ab 在下侧磁场匀速运动的过程中,有0034x x t v v='=所以线框穿过上侧磁场所用的总时间为123t t t t =++=3.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。
高考物理电磁感应现象压轴题知识点及练习题及答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。
一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。
ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。
重力加速度为g 。
求:(1)线框ab 边刚越过两磁场的分界线ff ′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。
【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 72Lt g= 【解析】 【详解】(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有21sin 302mgL mv ︒=, 则线框进入磁场时的速度2sin30v g L gL =︒=线框ab 边进入磁场时产生的电动势E =BLv 线框中电流E I R=ab 边受到的安培力22B L vF BIL R== 线框匀速进入磁场,则有22sin 30B L vmg R︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv线框所受的安培力变为22422B L vF BI L mg R==''=方向沿斜面向上(2)设线框再次做匀速运动时速度为v ',则224sin 30B L v mg R︒='解得4v v ='=根据能量守恒定律有2211sin 30222mg L mv mv Q ︒'⨯+=+解得4732mgLQ =线框ab 边在上侧磁扬中运动的过程所用的时间1L t v=设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:22sin 302mg t BLIt mv mv ︒-='-其中()022BL L x I t R-=联立以上两式解得()02432L x v t vg-=-线框ab 在下侧磁场匀速运动的过程中,有0034x x t v v='=所以线框穿过上侧磁场所用的总时间为123t t t t =++=2.如图所示,CDE 和MNP 为两根足够长且弯折的平行金属导轨,CD 、MN 部分与水平面平行,DE 和NP 与水平面成30°,间距L =1m ,CDNM 面上有垂直导轨平面向下的匀强磁场,磁感应强度大小B 1=1T ,DEPN 面上有垂直于导轨平面向上的匀强磁场,磁感应强度大小B 2=2T 。
高考物理法拉第电磁感应定律-经典压轴题及答案一、法拉第电磁感应定律1.如图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:(1) ab 棒1.5 s-2.1s 的速度大小及磁感应强度B 的大小; (2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量。
【答案】(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J 【解析】 【详解】(1)金属棒在AB 段匀速运动,由题中图象得:v =xt ∆∆=7 m/s 根据欧姆定律可得:I =BLvr R+ 根据平衡条件有mg =BIL解得:B =0.1T(2)根据电量公式:q =I Δt根据欧姆定律可得:I =()R r t∆Φ+∆ 磁通量变化量ΔΦ=S t∆∆B 解得:q =0.67 C(3)根据能量守恒有:Q =mgx -12mv 2 解得:Q =0.455 J所以Q R =Rr R+Q =0.26 J 答:(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J2.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷.(1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ;(2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E .(3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.【答案】(1)E BLv =;(2)v E BL =(3)见解析 【解析】 【分析】(1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量∆Φ ,再由法拉第电磁感应定律求得E 的表达式;(2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义WE q=计算得出E. (3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做功的变化状况. 【详解】(1)如图所示,在一小段时间∆t 内,金属棒MN 的位移 x v t ∆=∆这个过程中线框的面积的变化量S L x Lv t ∆=∆=∆ 穿过闭合电路的磁通量的变化量B S BLv t ∆Φ=∆=∆根据法拉第电磁感应定律 E t∆Φ=∆ 解得 E BLv =(2)如图所示,棒向右运动时,正电荷具有向右的分速度,受到沿棒向上的洛伦兹力1v f e B =,f 1即非静电力在f 的作用下,电子从N 移动到M 的过程中,非静电力做功v W e BL =根据电动势定义 W E q= 解得 v E BL =(3)自由电荷受洛伦兹力如图所示.设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .如图所示,沿棒方向的洛伦兹力1f q B =v ,做正功11ΔΔW f u t q Bu t =⋅=v 垂直棒方向的洛伦兹力2f quB =,做负功22ΔΔW f v t quBv t =-⋅=-所以12+=0W W ,即导体棒中一个自由电荷所受的洛伦兹力做功为零.1f 做正功,将正电荷从N 端搬运到M 端,1f 相当于电源中的非静电力,宏观上表现为“电动势”,使电源的电能增加;2f 做负功,宏观上表现为安培力做负功,使机械能减少.大量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用. 【点睛】本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒子的受力及做功情况.3.如图(a )所示,一个电阻值为R 、匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路,线圈的半径为r 1, 在线圈中半径为r 2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图(b )所示,图线与横、纵轴的截距分别为t 0和B 0,导线的电阻不计.求(1) 0~t 0时间内圆形金属线圈产生的感应电动势的大小E ; (2) 0~t 1时间内通过电阻R 1的电荷量q .【答案】(1)2020n B r E t π=(2)201203n B t r q Rt π=【解析】 【详解】(1)由法拉第电磁感应定律E n tφ∆=∆有2020n B r B E n S t t π∆==∆ ① (2)由题意可知总电阻 R 总=R +2R =3 R ② 由闭合电路的欧姆定律有电阻R 1中的电流EI R =总③ 0~t 1时间内通过电阻R1的电荷量1q It = ④由①②③④式得201203n B t r q Rt π=4.如图所示,两平行光滑的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直向下的磁场中,整个磁场由n 个宽度皆为x0的条形匀强磁场区域1、2、3、…n 组成,从左向右依次排列,磁感应强度的大小分别为B 、2B 、3B 、…nB ,两导轨左端MP 间接入电阻R ,一质量为m的金属棒ab垂直于MN、PQ放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。
物理电磁场压轴精炼14道(有答案和精细解析)1.(16分)如图所示,直角坐标系xoy位于竖直平面内,在-3m≤x≤0的区域内有磁感应强度大小B = 4.0×10-4T、方向垂直于纸面向里的条形匀强磁场,其左边界与x轴交于P点;在x>0的区域内有电场强度大小E = 4N/C、方向沿y轴正方向的条形匀强电场,其宽度d = 2m。
一质量m = 6.4×10-27kg、电荷量q =--3.2×10-19C的带电粒子从P点以速度v = 4×104m/s,沿与x轴正方向成α=60°角射入磁场,经电场偏转最终通过x轴上的Q点(图中未标出),不计粒子重力。
求:⑴带电粒子在磁场中运动时间;⑵当电场左边界与y轴重合时Q点的横坐标;⑶若只改变上述电场强度的大小,要求带电粒子仍能通过Q点,讨论此电场左边界的横坐标x′与电场强度的大小E′的函数关系。
2.(18分)如图a所示,水平直线MN下方有竖直向上的匀强电场,现将一重力不计、比荷qm=106 C/kg的正电荷置于电场中的O点由静止释放,经过15π×10-5 s后,电荷以v0=1.5×104 m/s的速度通过MN进入其上方的匀强磁场,磁场与纸面垂直,磁感应强度B按图b所示规律周期性变化(图b中磁场以垂直纸面向外为正,以电荷第一次通过MN时为t=0时刻).求:(1)匀强电场的电场强度E的大小;(保留2位有效数字)(2)图b中t=45π×10-5 s时刻电荷与O点的水平距离;(3)如果在O点右方d=68 cm处有一垂直于MN的足够大的挡板,求电荷从O点出发运动到挡板所需的时间.(sin 37°=0.60,cos 37°=0.80) (保留2位有效数字)3.(20分)一个质量m =0.1kg的正方形金属框,其电阻R=0.5Ω,金属框放在表面绝缘且光滑的斜面顶端(金属框上边与AB重合),由静止开始沿斜面下滑,下滑过程中穿过一段边界与斜面底边CD平行、宽度为d的匀强磁场后滑至斜面底端(金属框下边与CD重合)。
1、在半径为R 的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B 。
一质量为m ,带有电量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点(AP =d )射入磁场(不计重力影响)。
⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。
⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。
求入射粒子的速度。
解:qB mv =v由平抛规律,质点进入电场时v 0=v cos φ,在电场中经历时间t=d /v 0,在电场中竖直位移221tan 2t mqE d h ⋅⋅==φ,由以上各式可得3、如图所示,在第一象限有一均强电场,场强大小为E ,方向与y 轴平行;在x 轴下方有一均强磁场,磁场方向与纸面垂直。
一质量为m 、电荷量为-q(q>0)的粒子以平行于x 轴的速度从y 轴上的P 点处射入电场,在x 轴上的Q 点处进入磁场,并从坐标原点O 离开磁场。
粒子在磁场中的运动轨迹与y 轴交于M 点。
已知OP=l ,l OQ 32=。
不计重力。
求(1)M 点与坐标原点O 间的距离;(2)粒子从P 点运动到M 点所用的时间。
【解析】(1)带电粒子在电场中做类平抛运动,在y 轴负方向上做初速度为零的匀加速运动,设加速度的大小为a ;在x 轴正方向上做匀速直线运动,设速度为0v ,粒子从P 点运动到Q 点所用的时间为1t ,进入磁场时速度方向与x 轴正方向的夹角为θ,则qEa m=① 012y t a=② 001x v t =③ 其中0023,x l y l ==。
又有1tan at v θ= ④ 联立②③④式,得30θ=︒因为M O Q 、、点在圆周上,=90MOQ ∠︒,所以MQ 为直径。
从图中的几何关系可知。
23R l = ⑥ 6MO l = ⑦(2)设粒子在磁场中运动的速度为v ,从Q 到M 点运动的时间为2t , 则有0 cos v v θ=⑧ 2Rt vπ= ⑨ 带电粒子自P 点出发到M 点所用的时间为t 为12+ t t t = ⑩联立①②③⑤⑥⑧⑨⑩式,并代入数据得32+ 1mlt qE π⎛⎫= ⎪ ⎪⎝⎭⑾4、如图所示,在0≤x≤a 、o≤y≤2a 2a范围内有垂直手xy 平面向外φOyEB A φC φd h xxy OP QMv 0的匀强磁场,磁感应强度大小为B 。
1.在实验室中,需要控制某些带电粒子在某区域内的滞留时间,以达到预想的实验效果。
现设想在xOy的纸面内存在以下的匀强磁场区域,在O点到P点区域的x轴上方,磁感应强度为B,方向垂直纸面向外,在x轴下方,磁感应强度大小也为B,方向垂直纸面向里,OP两点距离为x0(如图所示)。
现在原点O处以恒定速度v0不断地向第一象限内发射氘核粒子。
(1)设粒子以与x轴成45°角从O点射出,第一次与x轴相交于A点,第n次与x轴交于P点,求氘核粒子的比荷q/m(用已知量B、x0、v0、n表示),并求OA段粒子运动轨迹的弧长(用已知量x0、v0、n表示)。
(2)求粒子从O点到A点所经历时间t1和从O点到P点所经历时间t(用已知量x0、v0、n表示)。
2如图所示,在一底边长为2L,θ=45°的等腰三角形区域内(O为底边中点)有垂直纸面向外的匀强磁场. 现有一质量为m,电量为q的带正电粒子从静止开始经过电势差为U的电场加速后,从O点垂直于AB进入磁场,不计重力与空气阻力的影响.(1)粒子经电场加速射入磁场时的速度?(2)磁感应强度B为多少时,粒子能以最大的圆周半径偏转后打到OA板?(3)增大B,可延长粒子在磁场中的运动时间,求粒子在磁场中运动的极限时间.(不计粒子与AB板碰撞的作用时间,设粒子与AB板碰撞前后,电量保持不变并以相同的速率反弹)3.磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源S发出质量为m、电量为q的α粒子沿垂直磁场方向进入磁感应强度为B的匀强磁场,被限束光栏Q限制在2φ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P上.(重力影响不计)(1)若能量在E~E+△E(△E>0,且△E≪E)范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围△x1.(2)实际上,限束光栏有一定的宽度,α粒子将在2φ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围△x2.4. 如图甲所示,两平行金属板A、B的板长l=0.20 m,板间距d=0.20 m,两金属板间加如图乙所示的交变电压,并在两板间形成交变的匀强电场,忽略其边缘效应.在金属板右侧有一方向垂直于纸面向里的匀强磁场,其左右宽度D=0.40 m,上下范围足够大,边界MN和PQ均与金属板垂直.匀强磁场的磁感应强度B=1.0×10-2 T.现从t=0开始,从两极板左端的中点O处以每秒钟1 000个的速率不停地释放出某种带正电的粒子,这些粒子均以v0=2.0×105 m/s的速度沿两板间的中线射入电场,已知带电粒子的比q/m=1.0×108C/kg,粒子的重力和粒子间的相互作用都忽略不计,在粒子通过电场区域的极短时间内极板间的电压可以看作不变.求:(1)t=0时刻进入的粒子,经边界MN射入磁场和射出磁场时两点间的距离;(2)当两金属板间的电压至少为多少时,带电粒子不能进入磁场;(3)u=3.14v时经边界MN射入磁场和射出磁场时两点间的距离;(4)粒子在磁场中运动最长时间与最短时间之比;(5)粒子在磁场中运动最长时间,此时A、B两极板所加的电压;(6)在电压变化的第一个周期内有多少个带电粒子能进入磁场.5.(16分)在如图所示的xoy坐标系中,y>0的区域内存在着沿y轴正方向、场强为E的匀强电场,y<0的区域内存在着垂直纸面向里、磁感应强度为B的匀强磁场.一带电粒子从y轴上的P(0,h)点以沿x轴正方向的初速度射出.己知带电粒子的质量为m,带电量为-q,D点坐标(d,0),不计重力的影响.(1)若粒子只在电场作用下直接通过D点,求粒子初速度的大小v(2)若粒子在第二次经过x轴时通过D点,求粒子初速度的大小v(3)若粒子在从电场进入磁场时通过D点,求粒子初速度的大小v;6.(12分)如图所示,在无限长的竖直边界AC和DE间,上、下部分分别充满方向垂直于ADEC平面向外的匀强磁场,上部分区域的磁感应强度大小为B0,OF为上、下磁场的水平分界线。
高考压轴题—电磁场类11.(09.全国卷I )(21分) 应用数学处理物理问题能力如图,在x 轴下方有匀强磁场,磁感应强度大小为B ,方向垂直于x y 平面向外。
P 是y 轴上距原点为h 的一点,N 0为x 轴上距原点为a 的一点。
A 是一块平行于x 轴的挡板,与x 轴的距离为2h ,A 的中点在y 轴上,长度略小于2a。
带点粒子与挡板碰撞前后,x 方向的分速度不变,y 方向的分速度反向、大小不变。
质量为m ,电荷量为q (q>0)的粒子从P 点瞄准N 0点入射,最后又通过P 点。
不计重力。
求粒子入射速度的所有可能值。
1. 【解析】设粒子的入射速度为v,第一次射出磁场的点为,与板碰撞后再次进入磁场的位置为.粒子在磁场中运动的轨道半径为R,有 …⑪, 粒子速率不变,每次进入磁场与射出磁场位置间距离保持不变有…⑫,粒子射出磁场与下一次进入磁场位置间的距离始终不变,与相等.由图可以看出……⑬设粒子最终离开磁场时,与档板相碰n 次(n=0、1、2、3…).若粒子能回到P 点,由对称性,出射点的x 坐标应为-a,即 ……⑭,由⑬⑭两式得……⑮ 'O N 1N qBm vR =1x =1x θsin 2R N N O O ='2x 1N N O 'a x =2()a nx x n 2121=-+121n x a n +=+若粒子与挡板发生碰撞,有 ……⑯ 联立⑬⑭⑯得 n<3………⑰ 联立⑪⑫⑮得 ………⑱把代入⑱中得…………⑲…………⑾…………⑿2.(2012全国卷)(18分)如图,一半径为R 的圆表示一柱形区域的横截面(纸面)。
在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线在圆上的a 点射入柱形区域,在圆上的b 点离开该区域,离开时速度方向与直线垂直。
圆心O 到直线的距离为 。
现将磁场换为平等于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a 点射入柱形区域,也在b 点离开该区域。
若磁感应强度大小为B ,不计重力,求电场强度的大小。
2. 解:粒子在磁场中做圆周运动。
设圆周的半径为r ,由牛顿第二定律和洛仑兹力公式得2v qvB m r=①式中v 为粒子在a 点的速度。
过b 点和O 点作直线的垂线,分别与直线交于c 和d 点。
由几何关系知,线段ac bc 、和过a 、b 两点的轨迹圆弧的两条半径(未画出)围成一正方形。
因此421ax x >-a n n m qB v 12sin 2++⋅=θ22sin ha h +=θ0,22=+=n mh h a qBa v o 1,43221=+=n mh h a qBa v 2,32222=+=n mhh a qBavac bc r ==②设,cd x =有几何关系得45ac R x =+③35bc R =+ 联立②③④式得 75r R =再考虑粒子在电场中的运动。
设电场强度的大小为E ,粒子在电场中做类平抛运动。
设其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE=ma ⑥粒子在电场方向和直线方向所走的距离均为r ,有运动学公式得212r at =⑦ r=vt ⑧ 式中t 是粒子在电场中运动的时间。
联立①⑤⑥⑦⑧式得2145qRB E m=⑨3.(2011安徽卷物理倒数第二题)(16分)如图所示,在以坐标原点O 为圆心、半径为R 的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B ,磁场方向垂直于xOy 平面向里。
一带正电的粒子(不计重力)从O 点沿y 轴正方向以某一速度射入,带电粒子恰好做匀速直线运动,经t 0时间从P 点射出。
(1)求电场强度的大小和方向。
(2)若仅撤去磁场,带电粒子仍从O 点以相同的速度射入,经时间恰从半圆形区域的边界射出。
求粒子运动加速度的大小。
(3)若仅撤去电场,带电粒子仍从O 点射入,且速度为原来的4倍,求粒子在磁场中运动的时间。
3. 解析:(1)设带电粒子的质量为m ,电荷量为q ,初速度为v ,电场强度为E 。
可判断出粒子受到的洛伦磁力沿x 轴负方向,于是可知电场强度沿x 轴正方向且有 qE =qvB ① 又 R =vt 0 ②则 ③ (2)仅有电场时,带电粒子在匀强电场中作类平抛运动在y 方向位移 ④ 由②④式得 ⑤设在水平方向位移为x ,因射出位置在半圆形区域边界上,于是2t 0BRE t =22t y v=2Ry =x y PB又有 ⑥ 得 ⑦ (3)仅有磁场时,入射速度,带电粒子在匀强磁场中作匀速圆周运动,设轨道半径为r ,由牛顿第二定律有⑧又 qE =ma ⑨ 由⑦⑧⑨式得 ⑩ 由几何关系 ○11 即 ○12带电粒子在磁场中运动周期 则带电粒子在磁场中运动时间 所以 ○13三步法:画轨迹——找联系(r,t 与v,T,ϴ关系)——用规律(牛二,圆周运动规律)4. (2010浙江物理)(22分)有一个放射源水平放射出α、β和γ三种射线,垂直射入如图所示磁场。
区域Ⅰ和Ⅱ的宽度均为d ,各自存在着垂直纸面的匀强磁场,两区域的磁感强度大小B 相等,方向相反(粒子运动不考虑相对论效应)。
(1)若要筛选出速率大于v 1的β粒子进入区域Ⅱ,求磁场宽度2x R =201()22t x a=2a t =4v v '=2v qv B m r''=r =sin 2Rrα=sin α=3πα=2mT qB π=22R t T απ=0R t=d 与B 和v 1的关系。
(2)若B =0.0034T ,v 1=0.1c (c 是光速),则可得d ; α粒子的速率为0.001c ,计算α和γ射线离开区域Ⅰ时的距离;并给出去除α和γ射线的方法。
(3)当d 满足第(1)小题所给关系时,请给出速率在 v 1>v >v 2区间的β粒子离开区域Ⅱ时的位置和方向。
(4)请设计一种方案,能使离开区域Ⅱ的β粒子束在右侧聚焦且水平出射。
已知:电子质量-319.110e m kg =⨯,α粒子质量-276.710a m kg =⨯,电子电荷量191.610q C -=⨯12x ≈+(x<<1时)4. 【答案】(1) 1e m v d qB=(2)0.7m 区域Ⅰ的磁场不能将α射线和γ射线分离,可用薄纸片挡住α射线,用厚铅板挡住γ射线 (3)112222()e e m v m y y v qB qB==、 水平 (4)见解析【解析】(1)作出临界轨道,⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯I IIBB由几何关系知 r =d 由211e v qv B m r =得 1e m v d qB=(2)对电子: 3181199.1100.13100.051.6100.0034e m v d m qB --⨯⨯⨯⨯===⨯⨯ α粒子: 2781196.7100.1310 1.842 1.6100.0034m v r m d q B ααα--⨯⨯⨯⨯===>⨯⨯⨯ 作出轨道如图竖直方向上的距离0.7y r m α=-=区域Ⅰ的磁场不能将α射线和γ射线分离,可用薄纸片挡住α射线,用厚铅板挡住γ射线。
(3)画出速率分别为1v 和2v 的粒子离开区域Ⅱ的轨迹如下图速率在12v v v <<区域间射出的β粒子束宽为12(22)y y -12y d =IIBy22y r =122e e m v m vd r qB qB== 、112222()e e m v m y y v qB qB∴==、 (4)由对称性可设计如图所示的磁场区域,最后形成聚集且水平向右射出。
35、(2011广东)(18分)如图19(a )所示,在以O 为圆心,内外半径分别为1R 和2R 的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U 为常量,1020,3R R R R ==,一电荷量为+q ,质量为m 的粒子从内圆上的A 点进入该区域,不计重力。
(1) 已知粒子从外圆上以速度1v 射出,求粒子在A 点的初速度0v 的大小(2) 若撤去电场,如图19(b ),已知粒子从OA 延长线与外圆的交点C 以速度2v 射出,方向与OA 延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间(3) 在图19(b )中,若粒子从A 点进入磁场,速度大小为3v ,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少?35、解析:(1)由动能定理:Uq=21mv 12-21mv 02 ① 得:v 0=mUqv 221-(2)如右图:粒子在磁场中作圆周运动的 半径为r ,则r 2=2(212R R -)2② B 1qv 2=m rv 22 ③由②③得:B 1=)(2122R R q mv -T=r v 22π④ t =T ππ22/ ⑤ 由④⑤ t =r v 22π(3)由B 2qv 3=m Rv23 ⑥可知,B 越小,R 越大。
与磁场边界相切的圆的最大半径为R=221R R + ⑦所以 B 2<)(2123R R q mv +答案:(1)v 0=mUqv 221- (2)B 1=)(2122R R q mv - t =r v 22π(3)B 2<)(2123R R q mv +O /rRV 325.(2009浙江)(22分)如图所示,x 轴正方向水平向右,y 轴正方向竖直向上。
在xOy 平面内与y 轴平行的匀强电场,在半径为R 的圆内还有与xOy 平面垂直的匀强磁场。
在圆的左边放置一带电微粒发射装置,它沿x 轴正方向发射出一束具有相同质量m 、电荷量q(q >0)和初速度v 的带电微粒。
发射时,这束带电微粒分布在0<y <2R 的区间内。
已知重力加速度大小为g 。
(1)从A 点射出的带电微粒平行于x 轴从C 点进入有磁场区域,并从坐标原点O 沿y 轴负方向离开,求电场强度和磁感应强度的大小与方向。
(2)请指出这束带电微粒与x 轴相交的区域,并说明理由。
(3)在这束带电磁微粒初速度变为20,那么它们与x 轴相交的区域又在哪里?并说明理由。
答案(1)mvqR;方向垂直于纸面向外(2)见解析(3)与x 同相交的区域范围是x>0. 【解 析】本题考查带电粒子在复合场中的运动。
带电粒子平行于x 轴从C 点进入磁场,说明带电微粒所受重力和电场力平衡。
设电场强度大小为E ,由mg qE = 可得 mgE q=方向沿y 轴正方向。
带电微粒进入磁场后,将做圆周运动。
且 r=R如图(a )所示,设磁感应强度大小为B 。
由2qvB mv R=得 mv B qR=方向垂直于纸面向外(2)这束带电微粒都通过坐标原点。
方法一:从任一点P 水平进入磁场的带电微粒在磁场中做半径为R 的匀速圆周运动,其圆心位于其正下方的Q 点,如图b 所示,这束带电微粒进入磁场后的圆心轨迹是如图b 的虚线半圆,此圆的圆心是坐标原点。