2020年哈三中第四次高考模拟考试理科数学试题及答案解析!
- 格式:pdf
- 大小:25.84 MB
- 文档页数:13
2020年哈三中高三学年第四次模拟考试
理科综合试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H—1C—12N—14Cl—35.5I—127Pb—207
一、选择题:本题共13个小题,每小题6分,共78分。
在每小题给出的四个选项中,只
有一项是符合题目要求的。
1.细胞是生命活动的基本单位,有关细胞的说法错误的是
A.某些真核细胞中不含有细胞核
B.藓类叶片是观察叶绿体的理想材料
C.有丝分裂是真核生物进行细胞分裂的主要方式
D.肌肉细胞膜上没有神经递质的受体
2.下列符合生物学基本观点的是
A.长期使用同种杀菌牙膏会减弱对口腔细菌的杀灭作用
B.建立推广生态农业是为了实现物质和能量的循环利用
C.只要合理补充钙质和维生素D就可以避免罹患佝偻病
D.环境因素是唯一能够影响野生东北虎种群数量的原因
3.研究表明广盐性鱼类能生活在盐度变化范围较大的水环境,或能在淡水和海水之间迁移。
其调节机制与哺乳动物类似,图为美洲鳗鲡进入海水后相关指标变化,下列说法错误的是
A.美洲鳗鲡进入海水的初始阶段排尿量可能会减少
B.美洲鳗鲡在淡水中排出钠离子时不消耗ATP
C.由海水进入淡水时美洲鳗鲡抗利尿激素合成减少
D.该渗透压调节过程既有神经调节又有体液调节
哈三中四模理综试卷第1页共15页。
2020年高考模拟试卷高考数学模拟试卷(理科)(二)一、选择题1.集合A={x||x﹣1|<2},,则A∩B=()A.(1,2)B.(﹣1,2)C.(1,3)D.(﹣1,3)2.设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则“d<0”是“数列{S n}有最大项”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件3.△ABC中,=(cos A,sin A),=(cos B,﹣sin B),若•=,则角C为()A.B.C.D.4.已知a=dx,则(x﹣)6展开式中的常数项为()A.20B.﹣20C.﹣15D.155.正三棱柱ABC﹣A1B1C1的所有棱长都为2,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.6.已知函数,其图象相邻的两条对称轴方程为x=0与,则()A.f(x)的最小正周期为2π,且在(0,π)上为单调递增函数B.f(x)的最小正周期为2π,且在(0,π)上为单调递减函数C.f(x)的最小正周期为π,且在上为单调递增函数D.f(x)的最小正周期为π,且在上为单调递减函数7.2019年10月1日在庆祝中华人民共和国成立70周年大阅兵的徒步方队中,被誉为“最强大脑”的院校科研方队队员分别由军事科学院、国防大学、国防科技大学三所院校联合抽组,已知军事科学学院的甲、乙、丙三名同学被选上的概率分别为,,,这三名同学中至少有一名同学被选上的概率为()A.B.C.D.8.过抛物线y2=2px(p>0)的焦点F的直线l与抛物线在第一象限的交点为A,直线l与抛物线的准线的交点为B,点A在抛物线的准线上的射影为C,若,,则抛物线的方程为()A.y2=6x B.y2=3x C.y2=12x D.9.在平行四边形ABCD中,,,连接CE、DF相交于点M,若,则实数λ与μ的乘积为()A.B.C.D.10.《九章算术》第三章“衰分”介绍比例分配问题,“衰分”是按比例递减分配的意思,通常称递减的比例为“衰分比”.如:已知A,B,C三人分配奖金的衰分比为20%,若A分得奖金1000元,则B,C所分得奖金分别为800元和640元.某科研所四位技术人员甲、乙、丙、丁攻关成功,共获得单位奖励68780元,若甲、乙、丙、丁按照一定的“衰分比”分配奖金,且甲与丙共获得奖金36200元,则“衰分比”与丁所获得的奖金分别为()A.20%,14580元B.10%,14580元C.20%,10800元D.10%,10800元11.已知函数y=+(m+n)x+1的两个极值点分别为x1,x2且x1∈(0,1),x2∈(1,+∞),记分别以m,n为横、纵坐标的点P(m,n)表示的平面区域为D,若函数y=log a(x+4)(a>1)的图象上存在区域D内的点,则实数a的取值范围为()A.(1,3]B.(1,3)C.(3,+∞)D.[3,+∞)12.设点P在曲线y=e x上,点Q在曲线上,则|PQ|的最小值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上. 13.若复数z=1+i,则=.14.已知双曲线(a>0,b>0),其右焦点为F,过点F作双曲线渐近线的垂线,垂足为Q,线段PQ的中点恰好在双曲线上,则双曲线的离心率为.15.已知△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若a=1,2cos C+c=2b,则△ABC的周长的取值范围是.16.已知平面区域Ω=,直线l:y=mx+2m和曲线C:有两个不同的交点,直线l与曲线C围城的平面区域为M,向区域Ω内随机投一点A,点A落在区域M内的概率为P(M),若,则实数m的取值范围是.三、解答题:本题共70分,解答应写出文字说明,证明过程或演算步骤.(一)必考题:共60分.17.已知正项数列{a n}满足4S n=(a n+1)2.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.18.从某学校高三年级共1000名男生中随机抽取50人测量身高.据测量,被测学生身高全部介于155cm到195cm之间,将测量结果按如下方式分成八组,第一组[155,160),第二组[160,165),…,第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分、其中第六组、第七组、第八组人数依次构成等差数列.(1)求第六组、第七组的频率,并估算高三年级全体男生身高在180cm以上(含180cm)的人数;(2)学校决定让这50人在运动会上组成一个高旗队,在这50人中要选身高在180cm 以上(含180cm)的三人作为队长,记X为身高在[180,185)的人数,求X的分布列和数学期望.19.如图,在四棱锥P﹣ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分别为PC,CD的中点,DE=EC.(1)求证:平面ABE⊥平面BEF;(2)设PA=a,若平面EBD与平面ABCD所成锐二面角,求a的取值范围.20.已知函数f(x)=ax2+x﹣xlnx(a>0).(1)若函数满足f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围;(2)若函数f(x)在定义域上是单调函数,求实数a的取值范围.21.已知动圆P与圆F1:(x+3)2+y2=81相切,且与圆F2:(x﹣3)2+y2=1相内切,记圆心P的轨迹为曲线C;设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点.(Ⅰ)求曲线C的方程;(Ⅱ)试探究|MN|和|OQ|2的比值能否为一个常数?若能,求出这个常数;若不能,请说明理由;(Ⅲ)记△QF2M的面积为S1,△OF2N的面积为S2,令S=S1+S2,求S的最大值.[选修4-4:坐标系与参数方程]22.在极坐标系中,已知直线l的极坐标方程为,圆C的圆心是,半径为.(Ⅰ)求圆C的极坐标方程;(Ⅱ)求直线l被圆C所截得的弦长.[选修4-5:不等式选讲]23.设函数f(x)=|2x+1|﹣|x﹣3|.(1)解不等式f(x)>0;(2)已知关于x的不等式a+3<f(x)恒成立,求实数a的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A={x||x﹣1|<2},,则A∩B=()A.(1,2)B.(﹣1,2)C.(1,3)D.(﹣1,3)【分析】通过绝对值不等式求解集合A,指数不等式的求解求出集合B,然后求解交集.解:因为集合A={x||x﹣1|<2}={x|﹣1<x<3},={x|﹣1<x<2},A∩B={x|﹣1<x<3}∩{x|﹣1<x<2}={x|﹣1<x<2}.故选:B.2.设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则“d<0”是“数列{S n}有最大项”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【分析】利用等差数列的求和公式表示出S n,整理后,得到等差数列的S n为关于n的二次函数,利用配方法,即可确定数列的最大项.根据d小于0,可得此函数图象为开口向下的抛物线,函数有最大值,从而利用二次函数求最值的方法即可得出S n的最大值,即为{S n}中的最大项;反之也然.解:由等差数列的求和公式得:S n=na1+d,整理得:S n=0.5dn2+(a1﹣d)n,当d<0,∴等差数列的S n为二次函数,依题意是开口向下的抛物线,∴S n有最大值;反之,当数列{S n}有最大项时,则S n为二次函数,且图象是开口向下的抛物线,从而d <0.故选:A.3.△ABC中,=(cos A,sin A),=(cos B,﹣sin B),若•=,则角C为()A.B.C.D.【分析】利用数量积和三角形的内角和定理、诱导公式即可化简,再利用三角形内特殊角的三角函数值即可得出.解:∵=(cos A,sin A),=(cos B,﹣sin B),∴=cos A cos B﹣sin A sin B=cos(A+B)=cos(π﹣C)=﹣cos C,∴,得cos C=﹣.∵0<C<π.∴.故选:B.4.已知a=dx,则(x﹣)6展开式中的常数项为()A.20B.﹣20C.﹣15D.15【分析】利用定积分的定义求得a的值,求得展开式中的通项公式,令x的幂指数等于0,求出r的值,即可求得常数项.解:∵已知=(lnx)=1,∴=,它的展开式的通项公式为T r+1=•x6﹣r•(﹣1)r•x﹣r=(﹣1)r••x6﹣2r.令6﹣2r=0,可得r=3,∴开式中的常数项为﹣=﹣20,故选:B.5.正三棱柱ABC﹣A1B1C1的所有棱长都为2,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.【分析】通过建立空间直角坐标系,利用两条异面直线的方向向量的夹角即可得出异面直线所成的角.解:如图所示,分别取BC、B1C1的中点O、O1,由正三棱柱的性质可得AO、BO、OO1令两垂直,建立空间直角坐标系.∵所有棱长都为2,∴A,B(0,1,0),B1(0,1,2),C1(0,﹣1,2).∴,∴===.∴异面直线AB1与BC1所成角的余弦值为.故选:B.6.已知函数,其图象相邻的两条对称轴方程为x=0与,则()A.f(x)的最小正周期为2π,且在(0,π)上为单调递增函数B.f(x)的最小正周期为2π,且在(0,π)上为单调递减函数C.f(x)的最小正周期为π,且在上为单调递增函数D.f(x)的最小正周期为π,且在上为单调递减函数【分析】利用两角和差的正弦公式化简函数的解析式为f(x)=2sin(ωx﹣),由题意可得=,解得ω的值,即可确定函数的解析式为f(x)=2sin(2x﹣),由此求得周期,由2kπ﹣≤2x﹣≤2kπ+,k∈z,求得x的范围,即可得到函数的增区间,从而得出结论.解:∵函数=2[sin(ωx﹣cosωx]=2sin(ωx ﹣),∴函数的周期为.再由函数图象相邻的两条对称轴方程为x=0与,可得=,解得ω=2,故f(x)=2sin(2x﹣).故f(x)=2sin(2x﹣)的周期为=π.由2kπ﹣≤2x﹣≤2kπ+,k∈z,可得kπ﹣≤x≤kπ+,故函数的增区间为[kπ﹣,kπ+],k∈z,故函数在上为单调递增函数,故选:C.7.2019年10月1日在庆祝中华人民共和国成立70周年大阅兵的徒步方队中,被誉为“最强大脑”的院校科研方队队员分别由军事科学院、国防大学、国防科技大学三所院校联合抽组,已知军事科学学院的甲、乙、丙三名同学被选上的概率分别为,,,这三名同学中至少有一名同学被选上的概率为()A.B.C.D.【分析】利用对立事件概率计算公式直接求解.解:军事科学学院的甲、乙、丙三名同学被选上的概率分别为,,,∴这三名同学中至少有一名同学被选上的概率为:P=1﹣(1﹣)(1﹣)(1﹣)=.故选:C.8.过抛物线y2=2px(p>0)的焦点F的直线l与抛物线在第一象限的交点为A,直线l与抛物线的准线的交点为B,点A在抛物线的准线上的射影为C,若,,则抛物线的方程为()A.y2=6x B.y2=3x C.y2=12x D.【分析】设抛物线的准线与x轴的交点为D,F为线段AB的中点,进而可知|AF|和|AB|,推断出AF|=|AB|,求得∠ABC,进而根据,求得p,则抛物线方程可得.解:设抛物线的准线与x轴的交点为D,依题意,F为线段AB的中点,故|AF|=|AC|=2|FD|=2p,|AB|=2|AF|=2|AC|=4p,∴∠ABC=30°,||=2p,=4p×2p cos30°=36,解得p=,∴抛物线的方程为y2=2x.故选:D.9.在平行四边形ABCD中,,,连接CE、DF相交于点M,若,则实数λ与μ的乘积为()A.B.C.D.【分析】由题意可得=2(λ﹣μ)+μ,由E、M、C三点共线,可得2λ﹣μ=1,①同理可得=,由D、M、F三点共线,可得λ+μ=1,②,综合①②可得数值,作乘积即可.解:由题意可知:E为AB的中点,F为BC的三等分点(靠近B)故===(λ﹣μ)+μ=2(λ﹣μ)+μ,因为E、M、C三点共线,故有2(λ﹣μ)+μ=1,即2λ﹣μ=1,①同理可得===,因为D、M、F三点共线,故有λ+(μ)=1,即λ+μ=1,②综合①②可解得λ=,,故实数λ与μ的乘积=故选:B.10.《九章算术》第三章“衰分”介绍比例分配问题,“衰分”是按比例递减分配的意思,通常称递减的比例为“衰分比”.如:已知A,B,C三人分配奖金的衰分比为20%,若A分得奖金1000元,则B,C所分得奖金分别为800元和640元.某科研所四位技术人员甲、乙、丙、丁攻关成功,共获得单位奖励68780元,若甲、乙、丙、丁按照一定的“衰分比”分配奖金,且甲与丙共获得奖金36200元,则“衰分比”与丁所获得的奖金分别为()A.20%,14580元B.10%,14580元C.20%,10800元D.10%,10800元【分析】根据题意,设甲、乙、丙、丁获得的奖金组成等比数列{a n},设“衰分比”为m,则数列的公比为1﹣m,由等比数列的通项公式可得,进而计算可得m与a4的值,即可得答案.解:根据题意,设甲、乙、丙、丁获得的奖金组成等比数列{a n},设“衰分比”为m,则数列的公比为1﹣m,则有,则有a2+a4=32580,则有1﹣m=0.9,则m=0.1=10%,则有+a4=32580,解可得a4=14580,即“衰分比”为10%,丁所获得的奖金14580,故选:B.11.已知函数y=+(m+n)x+1的两个极值点分别为x1,x2且x1∈(0,1),x2∈(1,+∞),记分别以m,n为横、纵坐标的点P(m,n)表示的平面区域为D,若函数y=log a(x+4)(a>1)的图象上存在区域D内的点,则实数a的取值范围为()A.(1,3]B.(1,3)C.(3,+∞)D.[3,+∞)【分析】依题意,可得m,n满足的约束条件,进而作出图形,利用图象即可得解.解:y′=x2+mx+m+n,依题意,y′=0的两个根为x1,x2且x1∈(0,1),x2∈(1,+∞),∴,平面区域D表示的图形如下图所示,注意到直线m+n=0与直线2m+n+1=0的交点P(﹣1,1),当函数y=log a(x+4)过点P时,即log a3=1,解得a=3,要使函数y=log a(x+4)(a>1)的图象上存在区域D内的点,由图可知,a<3,又a >1,故实数a的取值范围为(1,3).故选:B.12.设点P在曲线y=e x上,点Q在曲线上,则|PQ|的最小值为()A.B.C.D.【分析】求两个曲线上不同两点的距离的最小值,显然没法利用两点间的距离公式计算,可结合函数y=e x上的点关于y=x的对称点在其反函数的图象上把问题转化为求曲线y =lnx上的点与上的点到直线y=x的距离之和最小问题,而与y=x平行的直线同时与曲线y=lnx和切于同一点(1,0),所以PQ的距离的最小值为(1,0)点到直线y=x距离的2倍.解:如图,因为y=e x的反函数是y=lnx,两个函数的图象关于直线y=x对称,所以曲线y=e x上的点P到直线y=x的距离等于在曲线y=lnx上的对称点P′到直线y =x的距离.设函数f(x)=lnx﹣1+,=,当0<x<1时,f′(x)<0,所以函数f(x)在(0,+∞)上有最小值f(1)=0,则当x>0时,除(1,0)点外函数y=lnx的图象恒在y=1﹣的上方,在(1,0)处两曲线相切.求曲线y=e x上的点P与曲线y=1﹣上的点Q的距离的最小值,可看作是求曲线y=lnx 上的点P′与Q点到直线y=x的距离的最小值的和,而函数y=lnx与y=1﹣在x=1时的导数都是1,说明与直线y=x平行的直线与两曲线切于同一点(1,0)则PQ的距离的最小值为(1,0)点到直线y=x距离的2倍,所以|PQ|的最小值为.故选:D.二、填空题:本题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上. 13.若复数z=1+i,则=﹣1.【分析】利用共轭复数和复数的运算法则即可得出.解:∵复数z=1+i,∴,∴==﹣1.故答案为﹣1.14.已知双曲线(a>0,b>0),其右焦点为F,过点F作双曲线渐近线的垂线,垂足为Q,线段PQ的中点恰好在双曲线上,则双曲线的离心率为.【分析】根据题意可表示出渐近线方程,进而可知PF的斜率,设出P的坐标代入渐近线方程求得x的表达式,则P的坐标可知,进而求得中点的表达式,代入双曲线方程整理求得a和c的关系式,进而求得离心率.解:由题意设F(c,0)相应的渐近线:y=x,则根据直线PF的斜率为﹣,设P(x,x),代入双曲线渐近线方程求出x=,则P(,),则PF的中点(),把中点坐标代入双曲线方程=1中,整理求得=,即离心率为故答案为:.15.已知△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若a=1,2cos C+c=2b,则△ABC的周长的取值范围是(2,3].【分析】由余弦定理求得cos C,代入已知等式可得(b+c)2﹣1=3bc,利用基本不等式求得b+c≤2,故a+b+c≤3.再由三角形任意两边之和大于第三边求得a+b+c>2,由此求得△ABC的周长的取值范围.解:△ABC中,由余弦定理可得2cos C=,∵a=1,2cos C+c=2b,∴+c=2b,化简可得(b+c)2﹣1=3bc.∵bc≤,∴(b+c)2﹣1≤3×,解得b+c≤2(当且仅当b=c时,取等号).故a+b+c≤3.再由任意两边之和大于第三边可得b+c>a=1,故有a+b+c>2,故△ABC的周长的取值范围是(2,3],故答案为:(2,3].16.已知平面区域Ω=,直线l:y=mx+2m和曲线C:有两个不同的交点,直线l与曲线C围城的平面区域为M,向区域Ω内随机投一点A,点A落在区域M内的概率为P(M),若,则实数m的取值范围是[0,1].【分析】画出图形,不难发现直线恒过定点(﹣2,0),结合概率范围可知直线与圆的关系,直线以(﹣2,0)点为中心顺时针旋转至与x轴重合,从而确定直线的斜率范围.解:画出图形,不难发现直线恒过定点(﹣2,0),圆是上半圆,直线过(﹣2,0),(0,2)时,它们围成的平面区域为M,向区域Ω上随机投一点A,点A落在区域M内的概率为P(M),此时P(M)=,当直线与x轴重合时,P(M)=1;直线的斜率范围是[0,1].故答案为:[0,1].三、解答题:本题共70分,解答应写出文字说明,证明过程或演算步骤.(一)必考题:共60分.17.已知正项数列{a n}满足4S n=(a n+1)2.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.【分析】(1)利用数列的前n项和与第n项的关系,转化求解数列的通项公式即可.(2)化简数列的通项公式,利用裂项消项法求解数列的和即可.解:(1)正项数列{a n}满足4S n=(a n+1)2…①4S n﹣1=(a n﹣1+1)2…②两式相减①﹣②可得4a n=a n2+2a n﹣a n﹣12﹣2a n﹣1,整理得a n﹣a n﹣1=2…又a1=1,得a n=2n﹣1…(2)∵a n=2n﹣1,∴b n===(﹣).…∴数列{b n}的前n项和T n=(1﹣+…+﹣)=…18.从某学校高三年级共1000名男生中随机抽取50人测量身高.据测量,被测学生身高全部介于155cm到195cm之间,将测量结果按如下方式分成八组,第一组[155,160),第二组[160,165),…,第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分、其中第六组、第七组、第八组人数依次构成等差数列.(1)求第六组、第七组的频率,并估算高三年级全体男生身高在180cm以上(含180cm)的人数;(2)学校决定让这50人在运动会上组成一个高旗队,在这50人中要选身高在180cm 以上(含180cm)的三人作为队长,记X为身高在[180,185)的人数,求X的分布列和数学期望.【分析】(1)由频率分布直方图分析可得后三组的频率,再根据公式:频率=频数÷数据总和,计算可得答案.(2)列出X的分布列,根据分布列利用随机变量的期望公式求出X的数学期望.解:(1)由频率分布直方图知,前五组频率为(0.008+0.016+0.04+0.04+0.06)×5=0.82,后三组频率为1﹣0.82=0.18,人数为0.18×50=9人,这所学校高三男生身高在180cm以上(含180cm)的人数为1000×0.18=180人由频率分布直方图得第八组频率为0.008×5=0.04,人数为0.04×50=2人,设第六组人数为m,则第七组人数为9﹣2﹣m=7﹣m,又m+2=2(7﹣m),所以m=4,即第六组人数为4人,第七组人数为3人,频率分别为0.08,0.06.估算高三年级全体男生身高在180cm以上(含180cm)的人数为180.(2)X可能的取值为0,1,2,3,P(x=0)=,P(x=1)=,P(x=0)=,P(x=0)=,所以X的分布列X0123P…EX=…19.如图,在四棱锥P﹣ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分别为PC,CD的中点,DE=EC.(1)求证:平面ABE⊥平面BEF;(2)设PA=a,若平面EBD与平面ABCD所成锐二面角,求a的取值范围.【分析】(1)由题目给出的条件,可得四边形ABFD为矩形,说明AB⊥BF,再证明AB⊥EF,由线面垂直的判定可得AB⊥面BEF,再根据面面垂直的判定得到平面ABE ⊥平面BEF;(2)以A点为坐标原点,AB、AD、AP所在直线分别为x、y、z轴建立空间坐标系,利用平面法向量所成交与二面角的关系求出二面角的余弦值,根据给出的二面角的范围得其余弦值的范围,最后求解不等式可得a的取值范围.【解答】证明:如图,(1)∵AB∥CD,CD⊥AD,AD=CD=2AB=2,F为CD的中点,∴ABFD为矩形,AB⊥BF.∵DE=EC,∴DC⊥EF,又AB∥CD,∴AB⊥EF∵BF∩EF=F,∴AB⊥面BEF,又AE⊂面ABE,∴平面ABE⊥平面BEF.(2)解:∵DE=EC,∴DC⊥EF,又PD∥EF,AB∥CD,∴AB⊥PD又AB⊥PD,所以AB⊥面PAD,AB⊥PA.以AB所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴建立空间坐标系,则B(1,0,0),D(0,2,0),P(0,0,a),C(2,2,0),E(1,1,)平面BCD的法向量,设平面EBD的法向量为,由⇒,即,取y=1,得x=2,z=则.所以.因为平面EBD与平面ABCD所成锐二面角,所以cosθ∈,即.由得:由得:或.所以a的取值范围是.20.已知函数f(x)=ax2+x﹣xlnx(a>0).(1)若函数满足f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围;(2)若函数f(x)在定义域上是单调函数,求实数a的取值范围.【分析】(1)由已知,求得f(x)=x2+x﹣xlnx.将不等式f(x)≥bx2+2x转化为≥b.构造函数g(x)=,只需b≤g(x)min即可.因此又需求g(x)min.(2)函数f(x)在定义域上是单调函数,需f′(x)在定义域上恒非负或恒非正.考查f′(x)的取值情况,进行解答.解:(1)∵f(1)=2,∴a=1,f(x)=x2+x﹣xlnx.由f(x)≥bx2+2x⇔≥b.令g(x)=,可得g(x)在(0,1]上单调递减,在[1,+∞)上单调递增,所以g(x)min=g(1)=0,即b≤0.(2)f′(x)=2ax﹣lnx(x>0).令f′(x)>0,得2a≥,令h(x)=,当x=e时,h(x)max=∴当时,f′(x)>0(x>0)恒成立,此时.函数f(x)在定义域上单调递增.若,g(x)=2ax﹣lnx,(x>0),g′(x)=2a﹣由g′(x)=0,得出x=,,g′(x)<0,,g′(x)>0,∴x=时,g(x)取得极小值也是最小值.而当时,g()=1﹣ln<0,f′(x)=0必有根.f(x)必有极值,在定义域上不单调.综上所述,.21.已知动圆P与圆F1:(x+3)2+y2=81相切,且与圆F2:(x﹣3)2+y2=1相内切,记圆心P的轨迹为曲线C;设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点.(Ⅰ)求曲线C的方程;(Ⅱ)试探究|MN|和|OQ|2的比值能否为一个常数?若能,求出这个常数;若不能,请说明理由;(Ⅲ)记△QF2M的面积为S1,△OF2N的面积为S2,令S=S1+S2,求S的最大值.【分析】(I)设圆心P的坐标为(x,y),半径为R,由已知条件推导出|PF1|+|PF2|=8>|F1F2|=6,从而圆心P的轨迹为以F1,F2为焦点的椭圆,由此能求出圆心P的轨迹C 的方程.(II)设直线OQ:x=my,则直线MN:x=my+3,由,能求出|OQ|2,由,能求出|MN|,由此能求出|MN|和|OQ|2的比值为常数.(III)由△QF2M的面积=△OF2M的面积,能求出S=S1+S2的最大值.【解答】(本小题满分13分)解:(I)设圆心P的坐标为(x,y),半径为R由于动圆P与圆相切,且与圆相内切,所以动圆P与圆只能内切∴,∴|PF1|+|PF2|=8>|F1F2|=6…∴圆心P的轨迹为以F1,F2为焦点的椭圆,其中2a=8,2c=6,∴a=4,c=3,b2=a2﹣c2=7故圆心P的轨迹C:.…(II)设M(x1,y1),N(x2,y2),Q(x3,y3),直线OQ:x=my,则直线MN:x=my+3由,得:,∴,∴…由,得:(7m2+16)y2+42my﹣49=0,∴,∴===…∴,∴|MN|和|OQ|2的比值为一个常数,这个常数为…(III)∵MN∥OQ,∴△QF2M的面积=△OF2M的面积,∴S=S1+S2=S△OMN∵O到直线MN:x=my+3的距离,∴…令,则m2=t2﹣1(t≥1),∵(当且仅当,即,亦即时取等号)∴当时,S取最大值…[选修4-4:坐标系与参数方程]22.在极坐标系中,已知直线l的极坐标方程为,圆C的圆心是,半径为.(Ⅰ)求圆C的极坐标方程;(Ⅱ)求直线l被圆C所截得的弦长.【分析】(Ⅰ)求出圆心坐标,和圆的标准方程,即可求圆C的极坐标方程;(Ⅱ)分别求出直线的标准方程,利用直线和圆的位置关系即可求直线l被圆C所截得的弦长.解:(Ⅰ)∵圆C的圆心是,∴x=ρcosθ==1,y=ρsinθ==1,即圆心坐标为(1,1),则圆的标准方程为(x﹣1)2+(y﹣1)2=2,x2﹣2x+y2﹣2y=0圆C的极坐标方程为:;(Ⅱ)∵直线l的极坐标方程为,∴ρsinθ+ρcosθ=1+,即,圆心到直线距离为,圆半径为.故弦长为.[选修4-5:不等式选讲]23.设函数f(x)=|2x+1|﹣|x﹣3|.(1)解不等式f(x)>0;(2)已知关于x的不等式a+3<f(x)恒成立,求实数a的取值范围.【分析】(1)通过分类讨论,去掉绝对值函数中的绝对值符号,转化为分段函数,即可求得不等式f(x)>0的解集;(2)构造函数g(x)=f(x)﹣3,关于x的不等式a+3<f(x)恒成立⇔a<f(x)﹣3恒成立⇔a<g(x)min,先求得f(x)min,再求g(x)min即可.解:(1)∵f(x)=|2x+1|﹣|x﹣3|=,∵f(x)>0,∴①当x<﹣时,﹣x﹣4>0,∴x<﹣4;②当﹣≤x≤3时,3x﹣2>0,∴<x≤3;③当x>3时,x+4>0,∴x>3.综上所述,不等式f(x)>0的解集为:(﹣∞,﹣4)∪(,+∞)…(2)由(1)知,f(x)=,∴当x≤﹣时,﹣x﹣4≥﹣;当﹣<x<3时,﹣<3x﹣2<7;当x≥3时,x+4≥7,综上所述,f(x)≥﹣.∵关于x的不等式a+3<f(x)恒成立,∴a<f(x)﹣3恒成立,令g(x)=f(x)﹣3,则g(x)≥﹣.∴g(x)min=﹣.∴a<g(x)min=﹣。
2020年黑龙江省哈尔滨三中高考数学一模试卷(理科)一、单选题(本大题共12小题,共60.0分)1.已知全集U=R,集合A={x|x2−3x−4>0},B={x|xx−5<0},那么集合(∁U A)∩B=()A. {x|−1≤x≤4}B. {x|0<x≤4}C. {x|0<x<5}D. {x|−1≤x<5}2.i为虚数单位,满足i⋅z=2+i的复数z的虚部是()A. 1B. iC. −2D. −2i3.(√3x2−x4)3的展开式中的常数项为()A. −3√3B. 3√3C. −9D. 94.我国南北朝时期的数学家祖暅提出了著名的祖暅原理:“幂势既同,则积不容异”.意思是如果两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等.现有同高的圆锥和棱锥满足祖咂原理的条件,若棱锥的体积为3π,圆锥的侧面展开图是半圆,则圆锥的母线长为()A. √33B. 1C. √3D. 2√35.某商场每天的食品销售额x(万元)与该商场的总销售额y(万元)具有相关关系,且回归方程为ŷ=9.7x+2.4.已知该商场平均每天的食品销售额为8万元,估计该商场平均每天的食品销售额与平均每天的总销售额的比值为()A. 110B. 19C. 18D. 176.已知S n为等比数列{a n}的前n项和,且S3是S4与S5的等差中项,则数列{a n}的公比为()A. −2B. −12C. 12D. −2或17.某地区有10000名高三学生参加了网上模拟考试,其中数学分数服从正态分布N(120,9),成绩在(117,126]之外的人数估计有()(附:若X服从N(μ,σ2),则P(μ−σ<X≤μ+σ)=0.682,P(μ−2σ<X≤μ+ 2σ)=0.9545)A. 1814人B. 3173人C. 5228人D. 5907人8.以F1(−√2,0),F2(√2,0)为焦点的椭圆与直线x−y+2√2=0有公共点,则满足条件A.x 26+y 24=1B.x 23+y 2=1C.x 25+y 23=1D.x 24+y 22=19. 已知某同学每次射箭射中的概率为p ,且每次射箭是否射中相互独立,该同学射箭3次射中多于1次的概率为0.784,则p =( )A. 0.5B. 0.6C. 0.7D. 0.810. 已知函数y =log 2x 和函数y =log 2(x −2)的图象分别为曲线C 1,C 2,直线y =k 与C 1,C 2分别交于M ,N 两点,P 为曲线C 1上的点.如果△PMN 为正三角形,则实数k 的值为( )A. log 2(2√3−1)B. −log 2(2√3−1)C. (2√3−1)12D. −(2√3−1)1211. 将一枚骰子抛掷3次,则最大点数与最小点数之差为3的概率是( )A. 13B. 14C. 15D. 1612. 已知函数f(x)={|−|x +1|+1|,x ≤0ln(ex)x+1,x >0,若方程[f(x)]2−mf(x)+n =0(n ≠0)有7个不同的实数解,则2m +3n 的取值范围( )A. (2,6)B. (6,9)C. (2,12)D. (4,13)二、单空题(本大题共4小题,共20.0分) 13. 已知函数f(x)=4cos(x −5π6)cosx −m 在[0,π2]上有两个不同的零点,则实数m 的取值范围是______.14. 已知点P 为圆(x −6)2+(y −8)2=1上任一点,F 1,F 2分别为椭圆x 24+y 23=1的两个焦点,求PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ 的取值范围______.15. 若直线y =kx +b 是曲线y =lnx 的切线,也是曲线y =e x−2的切线,则k =______. 16. 已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的焦距为2c ,A 1,A 2是实轴顶点,以A 1A 2为直径的圆与直线bx +cy −bc =0在第一象限有两个不同公共点,则双曲线离心率e 的取值范围是______.三、解答题(本大题共7小题,共82.0分)17. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且bcosA +√32a =c .(1)若sinBsinC =cos 2A2,求C 的大小;(2)若AC 边上的中线BM 的长为1+√3,求△ABC 面积的最大值.18.如图,在四棱锥P−ABCD中,PA⊥平面ABCD,AD=CD=1,∠ADC=120°,PA=AB=BC=√3,点M是AC与BD的交点.(1)求二面角A−PC−B的余弦值;(2)若点N在线段PB上且MN//平面PDC,求直线MN与平面PAC所成角的正弦值.19.哈三中总务处的老师要购买学校教学用的粉笔,并且有非常明确的判断一盒粉笔是“优质产品”和“非优质产品”的方法.某品牌的粉笔整箱出售,每箱共有20盒,根据以往的经验,其中会有某些盒的粉笔为非优质产品,其余的都为优质产品.并且每箱含有0,1,2盒非优质产品粉笔的概率为0.7,0.2和0.1.为了购买该品牌的粉笔,校总务主任设计了一种购买的方案:欲买一箱粉笔,随机查看该箱的4盒粉笔,如果没有非优质产品,则购买,否则不购买.设“买下所查看的一箱粉笔”为事件A,“箱中有i件非优质产品”为事件B i(i=0,1,2).(1)求P(A|B0),P(A|B1),P(A|B2);(2)随机查看该品牌粉笔某一箱中的四盒,设X为非优质产品的盒数,求X的分布列及期望;(3)若购买100箱该品牌粉笔,如果按照主任所设计方案购买的粉笔中,箱中每盒粉期望大10,则所设计的方案有效.讨论该方案是否有效.20. 已知函数f(x)=x 2+mx +2lnx .(1)讨论f(x)在定义域内的极值点的个数;(2)若对∀x >0,f(x)−2e x −3x 2≤0恒成立,求实数m 的取值范围; (3)证明:若x ∈(0,+∞),不等式e x +x 2−(e +1)x +1x −1≥0成立.21. 过x 轴正半轴上一点M(m,0)做直线与抛物线E :y 2=x 交于A(x 1,y 1),B(x 2,y 2),(y 1>0>y 2)两点,且满足0<OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ <2,过定点N(4,0)与点A 做直线AC 与抛物线交于另一点C ,过点N(4,0)与点B 做直线BD 与抛物线交于另一点D.设三角形AMN 的面积为S 1,三角形DMN 的面积为S 2. (1)求正实数m 的取值范围;(2)连接C ,D 两点,设直线CD 的斜率为k 0;(i)当m =43时,直线AB 在y 轴的纵截距范围为[−83,−43],则求k 0的取值范围; (ii)当实数m 在(1)取到的范围内取值时,求S 2S 1的取值范围.22. 在平面直角坐标系中,曲线C 的参数方程为{x =2√3cosαy =√6sinα(α为参数),以原点为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的参数方程为{x =1+√22ty =√3+√22t,(t 为参数).(1)写出曲线C 的极坐标方程以及直线l 的普通方程;f(2)若点A(1,√3),直线l 与曲线C 交于P ,Q 两点,弦P ,Q 的中点为M ,求|AP|⋅|AQ||AM|的值.23. 设函数f(x)=|x +1|+|3−x|.(1)求f(x)≥5的解集;(2)若∀x ∈R ,使f(x)≥m 恒成立的m 的最大值为n.正数a ,b 满足12a+b +1a+3b =n ,求3a +4b 的最小值.答案和解析1.【答案】B【解析】解:因为集合A={x|x2−3x−4>0}={x|x<−1或x>4},B={x|0<x<5},则∁U A={x|−1≤x≤4},那么集合(∁U A)∩B={x|0<x≤4},故选:B.首先解不等式求出集合A,B,由补集的运算求出∁U A,再由交集的运算求出(∁U A)∩B.本题考查了解不等式和集合交、补集的混合运算,属于基础题.2.【答案】C【解析】解:由i⋅z=2+i,得z=2+ii =(2+i)(−i)−i2=1−2i,∴复数z的虚部是−2.故选:C.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.【答案】C【解析】解:∵(√3x2−x4)3的展开式中的通项公式为T r+1=C3r⋅(−1)r⋅(√3)3−r⋅x6r−6,令6r−6=0,求得r=1,可得常数项为−C31⋅3=−9,故选:C.先求出二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项的值.本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.4.【答案】D【解析】解:现有同高的圆锥和棱锥满足祖暅原理的条件,棱锥的体积为3π,∴圆锥的体积为3π,∵圆锥的侧面展开图是半圆,设圆锥的侧面展开图这个半圆的半径是R,即圆锥的母线长是R,半圆的弧长是πR,圆锥的底面周长等于侧面展开图的扇形弧长,设圆锥的底面半径是r,则得到2πr=πR,∴R=2r,∴圆锥的高ℎ=√(2r)2−r2=√3r,∴圆锥的体积V=13×πr2×√3r=3π.解得r=√3,则圆锥的母线长为R=2r=2√3.故选:D.推导出圆锥的体积为3π,设圆锥的侧面展开图这个半圆的半径是R,即圆锥的母线长是R,半圆的弧长是πR,圆锥的底面周长等于侧面展开图的扇形弧长,设圆锥的底面半径是r,则R=2r,圆锥的高ℎ=√(2r)2−r2=√3r,由此能求出圆锥的母线长.本题考查圆锥的母线长的求法、考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.5.【答案】A【解析】解:∵商场每天的食品销售额x(万元)与该商场的总销售额y(万元)的线性回归方程为ŷ=9.7x+2.4,∴当商场平均每天的食品销售额为8万元时,该商场平均每天的总销售额为y=9.7×8+ 2.4=80,∴该商场平均每天的食品销售额与平均每天的总销售额的比值为:880=110,故选:A.根据线性回归方程得到该商场平均每天的总销售额,从而求出该商场平均每天的食品销售额与平均每天的总销售额的比值.本题主要考查了函数的实际应用,以及线性回归方程的应用,是基础题.6.【答案】A【解析】解:S3是S4与S5的等差中项,即为2S3=S4+S5,若公比q=1,则S n=na1,即有6a1=4a1+5a1,即a1=0,显然不成立,故q≠1,则2⋅a1(1−q 3)1−q =a1(1−q4)1−q+a1(1−q5)1−q,化为2q3=q4+q5,即q2+q−2=0,解得q=−2或1(舍去),故选:A.由等差数列的中项性质和等比数列的求和公式,解方程可得所求公比,注意公比为1的情况.本题考查等比数列的求和公式和等差数列的中项性质,考查方程思想和化简运算能力,属于基础题.7.【答案】A【解析】解:由数学分数服从正态分布N(120,9),得μ=120,σ=3.则P(117<x≤126)=P(117<X≤123)+P(123<X≤126)=P(μ−σ<X≤μ+σ)+12[P(μ−2σ<X≤μ+2σ)−P(μ−σ<X≤μ+σ)]=0.682+12(0.9545−0.682)=0.81825.则成绩在(117,126]之内的人数估计有8183,∴成绩在(117,126]之外的人数估计有1817,与1814最接近.故选:A.由已知可得μ=120,σ=3,则P(117<x≤126)=P(μ−σ<X≤μ+σ)+12[P(μ−2σ<X≤μ+2σ)−P(μ−σ<X≤μ+σ)],求出概率,乘以10000可得成绩在(117,126]之内人数的近似值,再由10000减去该近似值得答案.本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.8.【答案】C【解析】解:以F1(−√2,0),F2(√2,0)为焦点的椭圆,设椭圆方程为x2a2+y2a2−2=1(a2>2),由{x 2a 2+y 2a 2−2=1x −y +2√2=0得(2a 2−2)x 2+4√2a 2x +10a 2−a 4=0, 由题意,a 有解,∴△=(4√2a 2)2−4(2a 2−2)(10a 2−a 4)≥0, ∴a 4−7a 2+10≥0,∴a 2≥5或a 2≤2(舍),∴a min 2=5,此时椭圆方程是:x 25+y 23=1.故选:C .先设椭圆方程,然后与直线方程联立方程组,再根据该方程组有解即可求出a 的最小值,则问题解决.本题主要考查由代数方法解决直线与椭圆交点问题,是中档题.9.【答案】C【解析】解:某同学每次射箭射中的概率为p ,且每次射箭是否射中相互独立, 该同学射箭3次射中多于1次的概率为0.784,则1−[C 31p(1−p)2+C 30p 0(1−p)3]=0.784,解得p =0.7. 故选:C .利用n 次独立重复试验中事件A 恰好发生一次的概率计算公式能求出结果.本题考查概率的求法,考查n 次独立重复试验中事件A 恰好发生一次的概率计算公式等基础知识,考查运算求解能力,是基础题.10.【答案】B【解析】解:由已知可设M(2k .k),N(2k +2,k),则P 点横坐标为2k +1, 又因为点P 在函数y =log 2x 的图象C 1上,所以P(2k +1,log(2k +1)),因为△PMN 为正三角形,则∠PMN =60°,故直线PM 的∴log2(2k+1)−k2k+1−2k=√3,即log2(2k+1)=k+√3,∴2k+√3=2k+1,即2k=2√3−1,∴k=−log2(2√3−1),故选:B.由已知条件设出M,N,P的坐标,利用直线PM的倾角是60°,即斜率为√3,利用斜率的坐标公式列出关于K的方程,解指对数方程即可本题主要考查对数函数的图象和性质应用,体现了数形结合和转化的数学思想,属于中档题.11.【答案】D【解析】解:将一枚骰子抛掷3次,基本事件总数n=6×6×6=216,最大点数与最小点数之差为3包含三种情况:①取最小点为1,最大点为4,另外1个点数可能为1,2,3,4,包含的基本事件个数为C32C41=12,②取点最小点为2,最大点为5,另外1个点数可能为2,3,4,5,包含的基本事件个数为C32C41=12,③取点最小点为3,最大点为6,另外1个点数可能为3,4,5,6,包含的基本事件个数为C32C41=12,则最大点数与最小点数之差为3的概率是:P=12+12+12216=16.故选:D.将一枚骰子抛掷3次,基本事件总数n=6×6×6=216,最大点数与最小点数之差为3包含三种情况:①取最小点为1,最大点为4,另外1个点数可能为1,2,3,4,包含的基本事件个数为C32C41=12,②取点最小点为2,最大点为5,另外1个点数可能为2,3,4,5,包含的基本事件个数为C32C41=12,③取点最小点为3,最大点为6,另外1个点数可能为3,4,5,6,包含的基本事件个数为C32C41=12,由此能求出最大点数与最小点数之差为3的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.12.【答案】C【解析】解:当x >0时,f′(x)=1−ln(ex)x 2,令f′(x)=0,解得x =1,故f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,且f(1)=2,x →+∞时,f(x)→1, 作出函数f(x)的图象如下图所示,令t =f(x),则t 2−mt +n =0有两个不同的实数根t 1,t 2,要使方程[f(x)]2−mf(x)+n =0(n ≠0)有7个不同的实数解,则t 1∈(0,1),t 2∈[1,2), ∴{n(1−m +n)<0(1−m +n)(4−2m +n)≤0,即{n(m −n −1)>0(m −n −1)(2m −n −4)≤0, 作出上述不等式组表示的可行域如下图所示,由可行域可知,当(m,n)取点(1,0)时,2m +3n 最小,且最小值为2; 当(m,n)取点(3,2)时,2m +3n 最大,且最大值为12. 故2m +3n 的取值范围为(2,12). 故选:C .利用导数研究函数f(x)的性质,可作出f(x)的草图,观察图象,结合题设条件可得方程t 2−mt +n =0有两个不同的实数根t 1,t 2,且t 1∈(0,1),t 2∈[1,2),利用二次函数根的分布,可以得到m ,n 满足的约束条件,由此作出可行域,再根据2m +3n 的几何意义,求得取值范围.本题考查分段函数的综合运用,涉及了利用导数研究函数的性质,“套套”函数,二次函数根的分布,简单的线性规划等知识点,考查换元思想,数形结合思想,函数与方程思想等数学思想,考查逻辑推理能力,运算求解能力,直观想象等数学能力,属于较难题目.13.【答案】[0,2−√3)【解析】解:依题意,函数g(x)=4cos(x−5π6)cosx,x∈[0,π2]上的图象与直线y=m有两个不同的交点,g(x)=4(cosxcos5π6+sinxsin5π6)cosx=4(−√32cosx+12sinx)cosx=2sinxcosx−2√3cos2x=sin2x−√3cos2x−√3=2sin(2x−π3)−√3,又x∈[0,π2],∴2x−π3∈[−π3,2π3],∴2sin(2x−π3)−√3∈[−2√3,2−√3],函数g(x)的图象如下,由图可知,m∈[0,2−√3).故答案为:[0,2−√3).依题意,函数g(x)=4cos(x−5π6)cosx,x∈[0,π2]上的图象与直线y=m有两个不同的交点,化简g(x)=2sin(2x−π3)−√3,作出函数g(x)在x∈[0,π2]上的图象,观察图象即可得到m的取值范围.本题主要考查函数零点与方程根的关系,考查三角恒等变换以及三角函数的图象及性质,考查数形结合思想及化简求解能力,属于中档题.14.【答案】[80,120]【解析】解:如图,椭圆x 24+y 23=1的焦点F 1(−1,0),F 2(1,0),设P(6+cosθ,8+sinθ),则PF 1⃗⃗⃗⃗⃗⃗⃗ =(−7−cosθ,−8−sinθ),PF 2⃗⃗⃗⃗⃗⃗⃗ =(−5−cosθ,−8−sinθ),则PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ =100+4(4sinθ+3cosθ)=100+20sin(θ+φ)(tanφ=34).∵−20≤20sin(θ+φ)≤20, ∴PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ 的取值范围是[80,120]. 故答案为:[80,120].由椭圆方程求出焦点坐标,设P(6+cosθ,8+sinθ),得到PF 1⃗⃗⃗⃗⃗⃗⃗ 与PF 2⃗⃗⃗⃗⃗⃗⃗ 的坐标,写出数量积,再由三角函数求最值可得PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ 的取值范围.本题考查圆与椭圆综合,考查平面向量的数量积运算,训练了利用三角函数求最值,是中档题.15.【答案】1或1e【解析】解:设y =kx +b 与y =e x−2和y =lnx 的切点分别为(x 1,e x 1−2)、(x 2,lnx 2); 由导数的几何意义可得k =e x 1−2=1x 2,曲线y =e x−2在(x 1,e x 1−2)处的切线方程为y −e x 1−2=e x 1−2(x −x 1), 即y =e x 1−2⋅x +(1−x 1)e x 1−2,曲线y =lnx 在点(x 2,lnx 2)处的切线方程为y −lnx 2=1x 2(x −x 2),即y =1x 2x +lnx 2−1,则{e x 1−2=1x2(1−x 1)e x 1−2=lnx 2−1, ∴(1x 2−1)(lnx 2−1)=0,解得x 2=1,或x 2=e .当x 2=1时,切线方程为y =x −1,即k =1, 当x 2=e 时,切线方程为y =xe ,即k =1e , ∴k =1或1e . 故答案为:1或1e .分别设出直线与两曲线的切点坐标,求出导数值,得到两切线方程,由两切线重合得答斜率和截距相等,从而求得切线方程得答案.本题考查利用导数研究过曲线上某点处的切线方程,考查计算能力,是中档题.16.【答案】(√2,√5+12)【解析】解:由题意如图,要使以A 1A 2为直径的圆与直线bx +cy −bc =0在第一象限有两个不同公共点, 可得直线在x ,y 轴的交点分别为:(c,0),(0,b), 则O 到直线的距离小于半径,且b >a ,即bc√b 2+c 2<a ,b >a ,整理可得:{b 2>a 2c 4−3a 2c 2+a 4<0,即{2a 2<c 2e 4−3e 2+1<0,解得√2<e <√5+12, 故答案为:(√2,√5+12).由题意可得O 到直线的距离小于半径,且b >a ,可得a ,c 的关系,进而求出离心率的范围.本题考查双曲线的性质及点到直线的距离公式,属于中档题.17.【答案】解:(1)∵bcosA +√32a =c .∴由正弦定理可得sinBcosA +√32sinA =sinC =sin(A +B)=sinAcosB +sinBcosA ,∴√32sinA =sinAcosB ,∴由sinA ≠0,可得cosB =√32,由B ∈(0,π),可得B =π3,∵由题意sinBsinC =cos 2A2=1+cosA 2,∴sinBsinC =1−cosCcosB , ∴cos(C −B)=1, ∵C ,B ∈(0,π), ∴C =B , ∴C =B =π3,(2)∵由(1)可得B =π3,∴由向量的中点表示可得BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =2BM ⃗⃗⃗⃗⃗⃗ ,∴两边平方可得:BA ⃗⃗⃗⃗⃗ 2+BC ⃗⃗⃗⃗⃗ 2+2BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =4BM ⃗⃗⃗⃗⃗⃗ 2,可得:c 2+a 2+2⋅c ⋅a ⋅cosB =4(1+√3)2,可得:c 2+a 2+ac =16+8√3, ∴16+8√3≥2ac +ac =3ac ,解得ac ≤16+8√33,当且仅当a =c 时取等号,∴△ABC 的面积S =12acsinB =√34ac ≤4√3+63,当且仅当a =c 时取等号,即△ABC 面积的最大值是4√3+63.【解析】(1)由正弦定理,两角和的正弦函数公式可得√32sinA =sinAcosB ,结合sinA ≠0,可得cosB =√32,结合范围B ∈(0,π),可得B =π3,进而利用二倍角公式,两角差的余弦函数公式化简已知等式可得cos(C −B)=1,结合范围C ,B ∈(0,π),可得C =B =π3,即可得解.(2)由已知运用向量的中点表示可得BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =2BM ⃗⃗⃗⃗⃗⃗ ,利用向量的模的平方即为向量的平方以及基本不等式即可得到ac 的最大值,进而根据三角形的面积公式即可求解. 本题主要考查了正弦定理,两角和的正弦函数公式,二倍角公式,两角差的余弦函数公式,基本不等式,三角形的面积公式以及平面向量的运算,考查了转化思想,属于中档题.18.【答案】解:(1)在△ACD 中,AC =√AD 2+CD 2−2AD ⋅CD ⋅cos120°=√3,cos∠DAC =AD 2+AC 2−CD 22AD⋅AC=√32,则∠DAC =π6. 在△ABC 中,cos∠BAC =AB 2+AC 2−BC 22AB⋅AC =12,则∠DAC =π6, 在△ABC 中,cos∠BAC =AB 2+AC 2−BC 22AB⋅AC=12,则∠BAC =π3, ∴∠BAD =π2,∴AB ⊥AD ,∵PA ⊥平面ABCD ,∴分别以直线AB ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系, B(√3,0,0),C(√32,32,0),A(0,0,0),P(0,0,√3),N(√34,0,3√34),M(√34,34,0), AP ⃗⃗⃗⃗⃗ =(0,0,√3),AC ⃗⃗⃗⃗⃗ =(√32,32,0),BC ⃗⃗⃗⃗⃗ =(−√32,32,0),BP ⃗⃗⃗⃗⃗ =(−√3,0,√3), 设平面ACP 的法向量m⃗⃗⃗ =(x,y,z), 则{m ⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =√32x +32y =0m ⃗⃗⃗ ⋅AP ⃗⃗⃗⃗⃗ =√3z =0,取x =√3,则m ⃗⃗⃗ =(√3,−1,0), 设平面BCP 的法向量n⃗ =(a,b,c), 则{n ⃗ ⋅BC ⃗⃗⃗⃗⃗ =−√32a +32b =0n ⃗ ⋅BP ⃗⃗⃗⃗⃗ =−√3a +√3c =0,取a =√3,得n ⃗ =(√3,1,√3),则cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗ |m ⃗⃗⃗ |⋅|n ⃗⃗ |=√4×√7=√77, ∴二面角A −PC −B 的余弦值为√77. (2)设平面PCD 的法向量a ⃗ =(m,n,t), PC ⃗⃗⃗⃗⃗ =(√32,32,−√3),PD ⃗⃗⃗⃗⃗ =(0,1,−√3), 则{a ⃗ ⋅PC ⃗⃗⃗⃗⃗ =√32m +32n −√3t =0a ⃗ ⋅PD ⃗⃗⃗⃗⃗ =n −√3t =0,取n =√3,得a ⃗ =(−1,√3,1),设N(x,y,z),且BN⃗⃗⃗⃗⃗⃗ =λBP ⃗⃗⃗⃗⃗ ,(0≤λ≤1),满足(x −√3,y,z)=λ(−√3,0,√3), 则N(√3−√3λ,0,√3λ),MN⃗⃗⃗⃗⃗⃗⃗ =(3√34−√3λ,−34,√3λ),∵点N 在线段PB 上且MN//平面PDC , ∴MN ⃗⃗⃗⃗⃗⃗⃗ ⋅a ⃗ =√3λ−3√34−3√34+√3λ=0,解得λ=34.MN⃗⃗⃗⃗⃗⃗⃗ =(0,−34,3√34), ∵平面ACP 的法向量m ⃗⃗⃗ =(√3,−1,0),cos <m ⃗⃗⃗ ,MN ⃗⃗⃗⃗⃗⃗⃗ >=m ⃗⃗⃗ ⋅MN⃗⃗⃗⃗⃗⃗⃗|m ⃗⃗⃗ |⋅|MN⃗⃗⃗⃗⃗⃗⃗ |=342×32=14.∴直线MN与平面PAC所成角的正弦值为14.【解析】(1)分别以AB,AD,AP为x轴,y轴,z轴建立如图的空间直角坐标系,求出平面APC的法向量、平面PCD的法向量,利用向量法能求出二面角A−PC−D的正切值.(2)先根据条件求出点N的具体位置,再利用向量法能求出直线MN与平面PAC所成角的正弦值.本题考查线面角的正弦值、二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.【答案】解:(1)由已知P(A|B0)=1,P(A|B1)=C194C204=45,P(A|B2)=C184C204=1219.(2)X的可能取值为0,1,2,P(X=0)=0.7+0.2×C194C204+0.1×C184C204=877950,P(X=1)=0.2×C193C204+0.1×C21C138C204=70950,P(X=2)=0.1×C22C182C204=3950,∴随机变量X的分布列为:E(X)=1×70950+2×3950=38475.(3)由(1)知P(A)=P(X=0)=877950,按照设计方案购买的一箱粉笔中,箱中每盒粉笔都是优质产品的概率为:P(B0|A)=P(AB0)P(A)=P(A|B0)P(B0)P(A)=666877,∵100×665877−100×0.7<10,∴该方案无效.【解析】(1)利用古典概型概率计算公式能求出P(A|B0),P(A|B1),P(A|B2).(2)X的可能取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.(3)由P(A)=P(X=0)=877950,得到按照设计方案购买的一箱粉笔中,箱中每盒粉笔都是优质产品的概率为P(B0|A)=P(AB0)P(A)=P(A|B0)P(B0)P(A)=666877,由100×665877−100×0.7<10,得到该方案无效.本题考查概率、离散型随机变量的分布列、数学期望的求法,考查方案是否有效的判断与求法,考查古典概型、条件概率等基础知识,考查运算求解能力,是中档题.20.【答案】解:(1)f′(x)=2x+m+2x =2x2+mx+2x(x>0),对于方程2x2+mx+2=0,Δ=m2−16,①当−4≤m≤4时,Δ=m2−16≤0,f′(x)≥0,此时f(x)没有极值点;②当m<−4时,方程2x2+mx+2=0的两根为x1,x2,不妨设x1<x2,则x1+x2=−m2>0,x1x2=1,0<x1<x2,当0<x<x1或x>x2时,f′(x)>0,当x1<x<x2时,f′(x)<0,此时x1,x2是函数f(x)的两个极值点;③当m>4时,方程2x2+mx+2=0的两根为x3,x4,且x3+x4=−m2<0,x3x4=1,故x3<0,x4<0,当x∈(0,+∞)时,f′(x)>0,故f(x)没有极值点;综上,当m<−4时,函数f(x)有两个极值点;当m≥−4时,函数f(x)没有极值点;(2)f(x)−2e x−3x2=x2+mx+2lnx−2e x−3x2≤0,即mx+2lnx−2e x−2x2≤0,则m≤2x2+2e x−2lnxx,设g(x)=x2+e x−lnxx,g′(x)=x2−1+(x−1)e x+lnxx2,当x∈(0,1)时,g′(x)<0,g(x)单调递减,当x∈(1,+∞)时,g′(x)>0,g(x)单调递增,则g(x)≥g(1)=e+1,故m≤2(e+1);(3)证明:由(2)知当m=2(e+1)时,(e+1)x+lnx−e x−x2≤0恒成立,即e x+x2−(e+1)x≥lnx,欲证e x+x2−(e+1)x≥1−1x ,只需证lnx≥1−1x,设ℎ(x)=lnx−1+1x ,ℎ′(x)=x−1x2,∴当x ∈(0,1)时,ℎ′(x)<0,ℎ(x)单调递减, 当x ∈(1,+∞),ℎ′(x)>0,ℎ(x)单调递增, ∴ℎ(x)≥ℎ(1)=0,故lnx ≥1−1x ,∴对x ∈(0,+∞),不等式e x +x 2−(e +1)x +1x −1≥0成立.【解析】本题考查利用导数研究函数的极值,以及不等式的恒成立问题,考查分类讨论思想以及推理论证能力,属于较难题目.(1)函数的定义域为(0,+∞),求导后研究方程2x 2+mx +2=0,分类讨论得出函数的单调性情况,进而得出极值点情况; (2)问题等价于m ≤2x 2+2e x −2lnxx,设g(x)=x 2+e x −lnxx,利用导数求函数g(x)的最小值即可;(3)由(2)知,(e +1)x +lnx −e x −x 2≤0恒成立,则问题转化为证明lnx ≥1−1x ,设ℎ(x)=lnx −1+1x ,利用导数证明ℎ(x)≥0恒成立即可.21.【答案】解:(1)设直线AB 方程为x =ty +m ,联立直线AB 与抛物线方程得{x =ty +my 2=x ,解得y 2−ty −m =0,则△=t 2+4m >0且{x 1x 2=m 2y 1y 2=−m,又∵0<OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ <2, ∴OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=m 2−m ∈(0,2),解得1<m <2, ∴正实数m 的取值范围为(1,2);(2)设A(y 12,y 1),B(y 22,y 2),C(y 32,y 3),D(y 42,y 4),设过点N(4,0)的直线为x =t 1y +4,过点M(43,0)的直线为x =t 2y +43,由{x =t 1y +4y 2=x ,联立解得y 2−t 1y −4=0, 由{x =t 2y +43y 2=x ,联立解得y 2−t 2y −43=0, ∴{y 1y 3=−4y 2y 4=−4y 1y 2=−43, ∴k ABkCD=y 1−y 2y 12−y 22y 3−y 4y 32−y 42=y 3+y 4y1+y 2=−4(1y 1+1y 2)y 1+y 2=−4y1y 2=3,(i)∵直线AB 在y 轴上的纵截距取值范围为[−83,−43], ∴k AB ∈[1,2],∴k CD =13k AB ∈[13,23],即k 0∈[13,23];(ii)S △AMN =12⋅MN ⋅y 1,S △DMN =12⋅MN ⋅y 4, 由(1)和(i)可知,{y 1y 2=−my 2y 4=−4,∴S 2S 1=y 4y 1=−4−m =4m ∈[2,4].【解析】(1)设直线AB 方程为x =ty +m ,与抛物线方程联立,由韦达定理可得{x 1x 2=m 2y 1y 2=−m,再结合已知条件0<OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ <2,即可求得正实数m 的取值范围; (2)设A(y 12,y 1),B(y 22,y 2),C(y 32,y 3),D(y 42,y 4),设过点N(4,0)的直线为x =t 1y +4,过点M(43,0)的直线为x =t 2y +43,与抛物线方程联立后,可得{y 1y 3=−4y 2y 4=−4y 1y 2=−43,进而求得k AB =3k CD ,(i)由题意可知,k AB ∈[1,2],进而得到k 0∈[13,23];(ii)易知S 2S 1=y 4y 1=4m ,结合(1)中m 的范围即得解.本题主要考查直线与抛物线的位置关系,考查逻辑推理能力及运算求解能力,对计算能力要求较高,属于中档题.22.【答案】解:(1)曲线C 的参数方程为{x =2√3cosαy =√6sinα(α为参数),转换为直角坐标方程为x 212+y 26=1.直线l 的参数方程为{x =1+√22ty =√3+√22t ,(t 为参数).转换为直角坐标方程为x −y −1+√3=0.(2)把直线的参数方程{x =1+√22t y =√3+√22t ,(t 为参数),代入x 212+y 26=1,得到32t 2+(2√6+√2)t −5=0, 所以t 1+t 2=−4√6+2√23,t 1t 2=−103, 所以t 1+t 22=−2√6+√23,即|AM|=|t 2+t 22|=2√6+√23,|AP|⋅|AQ|=|t 1t 2|=103,所以|AP|⋅|AQ||AM|=1032√6+√23=10√6−5√211.【解析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用一元二次方程根和系数关系式的应用和二次函数性质的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,极径的应用,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.【答案】解:(1)|x +1|+|3−x|≥5等价为{x ≥3x +1+x −3≥5或{−1<x <3x +1+3−x ≥5或{x ≤−1−x −1+3−x ≥5, 解得x ≥72或x ∈⌀或x ≤−32,则原不等式的解集为(−∞,−32]∪[72,+∞);(2)若∀x ∈R ,使f(x)≥m 恒成立,即为m ≤f(x)min ,由|x +1|+|3−x|≥|x +1+3−x|=4,当−1≤x ≤3时,取得等号,则f(x)的最小值为4,可得m ≤4,则n =4,即12a+b +1a+3b =n =4,由a >0,b >0,可得3a +4b =14[(2a +b)+(a +3b)](12a+b +1a+3b )=14(2+a+3b 2a+b +2a+b a+3b )≥14(2+2√a+3b 2a+b ⋅2a+ba+3b )=1, 当且仅当2a +b =a +3b ,即a =2b =15时取得等号,则3a +4b 的最小值为1.【解析】(1)由零点分区间法,结合绝对值的定义,去绝对值,解不等式,求并集,可得所求解集;(2)由题意可得m ≤f(x)min ,运用绝对值的性质可得其最小值,进而得到m 的最大值,再由乘1法和基本不等式,可得所求最小值,注意运用3a +4b =(2a +b)+(a +3b)的变形.本题考查绝对值不等式的解法,注意运用分类讨论思想,考查不等式恒成立问题解法,注意运用转化思想和绝对值不等式的性质,考查基本不等式的运用:求最值,化简整理的运算能力,属于中档题.。
2020届黑龙江省哈尔滨市三中高三第四次模拟数学(理)试卷★祝考试顺利★ (含答案)一、选择题1.设集合{}30A x x =-<,集合{}220B x x x =--≤,则A B =( )A. (),2-∞B. (),3-∞C. (]1,2-D. []1,2-【答案】B 【解析】先解不等式得集合A,B,再根据并集定义求结果. 【详解】{}30(,3)A x x =-<=-∞,{}220(1,2)B x x x =--≤=-(,3)A B ∴=-∞故选:B2.复数z 的共轭复数为z ,且满足5z z ⋅=,则复数z 的模是( )A. 1B. 2 D. 5【答案】C 【解析】根据复数、共轭复数和复数模的概念,即可求出结果. 【详解】设复数z a bi =+,则z a bi =-, 又5z z ⋅=,所以225a b +=,又z =,所以复数z 故选:C.3.已知向量()3,2m =,()4,n x =,若m n ⊥,则x =( ) A. -6B. 83-C. 83D. 6【答案】A 【解析】由题得3420m n x ⋅=⨯+=,解方程即得解. 【详解】因为m n ⊥, 所以3420m n x ⋅=⨯+=, 所以6x =-. 故选:A.4.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭.它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中SN叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W ,而将信噪比SN从1000提升至4000,则C 大约增加了( )附:lg 20.3010≈ A. 10% B. 20% C. 50% D. 100%【答案】B 【解析】根据题意,计算出22log 4000lg 400032lg 2 3.60201.2log 1000lg100033+==≈≈即可. 【详解】当1000S N=时,2log 1000C W =,当4000SN =时,2log 0004C W =因为22log 4000lg 400032lg 2 3.60201.2log 1000lg100033+==≈≈ 所以将信噪比SN从1000提升至4000,则C 大约增加了20% 故选:B5.若,x y 满足约束条件1215y y x x y ≥⎧⎪≤-⎨⎪+≤⎩,则3z x y =-的最大值为( )A. 2B. 4C. 11D. 14。
2020年高考数学四模试卷(理科)一、选择题(共12小题).1.已知集合A={x|x2﹣4x<0},B={x|log2x≥1},则A∪B=()A.(0,+∞)B.[2,+∞)C.(0,4)D.(0,2]2.已知复数z=1−i+2a1−i(i为虚数单位,a∈R),z在复平面上对应的点在第四象限,则a的取值范围是()A.(﹣2,0)B.(﹣1,1)C.(1,+∞)D.(﹣1,2)3.近年来,某市立足本地丰厚的文化旅游资源,以建设文化旅游强市,创建国家全域旅游示范市为引领,坚持以农为本,以乡为魂,以旅促农,多元化推动产业化发展,文化和旅游扶贪工作卓有成效,精准扶贫稳步推进.该市旅游局为了更好的了解每年乡村游人数的变化情况,绘制了如图所示的柱状图.则下列说法错误的是()A.乡村游人数逐年上升B.相比于前一年,2015年乡村游人数增长率大于2014年乡村游人数增长率C.近8年乡村游人数的平均数小于2016年乡村游人数D.从2016年开始,乡村游人数明显增多4.在等比数列{a n}中,a1=2,a5=8a2,则数列{a n}前7项的和S7=()A.253B.254C.255D.2565.执行如图所示的程序框图,若输入的x的值为2,则输出x的值为()A.123B.125C.127D.129 6.已知α,β是两个不同平面,m,n是两条不同直线,①若n⊥β,α∥β,m⊥α,则m∥n;②若m∥α,α⊥β,n⊥β,则m∥n;③若n⊥β,α∥β,m∥α,则m⊥n;④若m⊥α,α⊥β,n∥β,则m⊥n.在上述四个命题中,真命题的个数为()A.1B.2C.3D.47.已知函数f(x)=2x cosx4x+a是偶函数,则函数f(x)的最大值为()A.1B.2C.12D.38.已知α为锐角,若cos(α+π4)=35,则tan2α=()A.710B.310C.13D.7249.已知双曲线C.x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,圆O:x2+y2﹣a2﹣b2=0与双曲线的一个交点为P,若|PF1|=√3|PF2|,则双曲线的离心率为()A.√2B.√3+12C.2D.√3+110.把函数f(z)=cos(ωx +π3)(ω>0)的图象向左平移π6个单位后得到函数g (x )的图象,函数g (x )图象的一条对称轴为直线x =π6,若函数f (x )在(π3,2π3)上单调递增,则ω的取值范围是( ) A .2或5B .2或3C .2D .511.已知三棱锥P ﹣ABC (记△ABC 所在的平面为底面)内接于球O ,PA :PB :PC =1:2:3,当三棱锥P ﹣ABC 侧面积最大时,球O 的体积为56√143π.则此时△ABC 的面积为( )A .12B .13C .14D .1512.若不等式mxe mx 2≥lnx 恒成立,则实数m 的取值范围为( ) A .[1e 2,+∞) B .[12e,+∞) C .(1e,+∞)D .[√e+∞) 二、填空题:本题共4小题,每小题5分,共20分13.已知x ,y 满足{x −y ≥0x +y −2≥0x ≤2,则z =2x +y 的最小值为 .14.已知平面向量a →,b →,|a →|=2,|b →|=√3,若a →⊥(3a →−4b →),则向量a →与b →的夹角的大小为 .15.设S n 为等差数列{a n }的前n 项和,已知在S n 中只有S 7最小,则S 15﹣2S 13 0.(填“>”或“=”或“<”)16.已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与抛物线相交于A 、B 两点,O 为坐标原点,直线OA 、OB 与抛物线的准线分别相交于点P ,Q ,则|PQ |的最小值为 . 三、解答题:共70分解答应写出文字说明、证明过程或演算步骤.第17\~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17\~2117.在△ABC 中,角A ,B ,C 所对的边分别为a 、b 、c ,已知√3b =(a cos C +c cos A )tan A . (1)求角A 的大小;(2)若△ABC 的面积为√3,且a =√6,求b ,c .18.如图,在三棱锥A ﹣BCD 中,O 为AB 的中点,E 为AC 的中点,F 为AD 的中点,DC =AC =BC =√2,AB =2,DO ⊥平面ABC . (1)求证:平面OEF ∥平面BCD ; (2)求二面角D ﹣OE ﹣F 的余弦值.19.“扶贫帮困”是中华民族的传统美德,某大型企业为帮扶贫困职工,设立“扶贫帮困基金”,采用如下方式进行一次募捐:在不透明的箱子中放入大小均相同的白球六个,红球三个,每位献爱心的参与者投币100元有一次摸奖机会,一次性从箱中摸球三个(摸完球后将球放回),若有一个红球,奖金20元,两个红球奖金40元,三个全为红球奖金200元.(1)求一位献爱心参与者不能获奖的概率;(2)若该次募捐有300位献爱心参与者,求此次募捐所得善款的数学期望. 20.在平面直角坐标系xOy 中,已知椭圆C :x 2a +y 2b =1(a >b >0)的右焦点为F ,上顶点为B ,∠OBF =30°,点A (−√2,√62)在椭圆C 上. (1)求椭圆C 的标准方程;(2)动直线l 与椭圆C 相交于P 、Q 两点,与x 轴相交于点M ,与y 轴的正半轴相交于点N ,T 为线段PQ 的中点,若7OP →⋅OQ →−4OT →⋅OM →−4OT →⋅ON →为定值n ,请判断直线l 是否过定点,求实数n 的值,并说明理由. 21.已知函数f (x )=2xe x ﹣ax ﹣alnx (a ∈R ).(1)若曲线y =f (x )在点(1,f (1))处的切线l 过点(0,﹣2e ﹣1),求实数a 的值;(2)若函数f (x )有两个零点,求实数a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,已知曲线C 的参数方程为:{x =√3cosβ,y =sinβ,(β为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin(θ−π4)=3√22.(1)求曲线C 和直线l 的直角坐标方程;(2)若点P在曲线C上,且点P到直线l的距离最小,求点P的坐标.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|﹣|x|.(1)求不等式f(x)≥1的解集;(2)若x∈[﹣2,2]时,f(x)≥mx恒成立,求实数m的值.参考答案一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣4x<0},B={x|log2x≥1},则A∪B=()A.(0,+∞)B.[2,+∞)C.(0,4)D.(0,2]【分析】可以求出集合A,B,然后进行并集的运算即可.解:∵A={x|0<x<4},B={x|x≥2},∴A∪B=(0,+∞).故选:A.2.已知复数z=1−i+2a1−i(i为虚数单位,a∈R),z在复平面上对应的点在第四象限,则a的取值范围是()A.(﹣2,0)B.(﹣1,1)C.(1,+∞)D.(﹣1,2)【分析】利用复数代数形式的乘除运算化简,再由实部大于0且虚部小于0联立不等式组求解.解:因为z=1−i+2a1−i=1﹣i+2a(1+i)(1−i)(1+i)=1﹣i+a(1+i)=1+a+(a﹣1)i;由题意可得:1+a>0且a﹣1<0;即﹣1<a<1;故选:B.3.近年来,某市立足本地丰厚的文化旅游资源,以建设文化旅游强市,创建国家全域旅游示范市为引领,坚持以农为本,以乡为魂,以旅促农,多元化推动产业化发展,文化和旅游扶贪工作卓有成效,精准扶贫稳步推进.该市旅游局为了更好的了解每年乡村游人数的变化情况,绘制了如图所示的柱状图.则下列说法错误的是()A .乡村游人数逐年上升B .相比于前一年,2015年乡村游人数增长率大于2014年乡村游人数增长率C .近8年乡村游人数的平均数小于2016年乡村游人数D .从2016年开始,乡村游人数明显增多 【分析】根据所给柱状图,逐一对照分析即可解:从柱状图可看出,乡村游人数逐年上升,故A 正确;2015年乡村游增长人数为250﹣180=70万人,2014年乡村游增长人数为180﹣150=30万人,由70180>30150,故B 正确;近8年乡村游人数平均数为110+150+180+250+330+510+720+9508=400>330,即近8年乡村游人数的平均数大于2016年乡村游人数,故C 错误; 从2016年开始,乡村游人数增长速度明显加快,故D 正确. 故选:C .4.在等比数列{a n }中,a 1=2,a 5=8a 2,则数列{a n }前7项的和S 7=( ) A .253B .254C .255D .256【分析】根据题意,设等比数列{a n }的公比为q ,由a 5=8a 2,变形分析可得q 的值,进而计算可得答案.解:根据题意,设等比数列{a n }的公比为q , 又由a 5=8a 2,变形可得a 5a 2=8,即a 5a 2=q 3=a5a 2=8,变形可得q =2;则数列{a n }前7项的和S 7=a 1(1−q 7)1−q=254;故选:B .5.执行如图所示的程序框图,若输入的x 的值为2,则输出x 的值为( )A.123B.125C.127D.129【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量x的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:模拟程序的运行,可得x=2执行循环体,x=3不满足判断框内的条件x>100,执行循环体,x=7不满足判断框内的条件x>100,执行循环体,x=127此时,满足判断框内的条件x>100,退出循环,输出x的值为127.故选:C.6.已知α,β是两个不同平面,m,n是两条不同直线,①若n⊥β,α∥β,m⊥α,则m∥n;②若m∥α,α⊥β,n⊥β,则m∥n;③若n⊥β,α∥β,m∥α,则m⊥n;④若m⊥α,α⊥β,n∥β,则m⊥n.在上述四个命题中,真命题的个数为()A.1B.2C.3D.4【分析】利用空间中直线与平面、平面与平面之间的位置关系逐个判断即可得到答案. 解:①若n ⊥β,α∥β,则n ⊥α, 而m ⊥α,则m ∥n ; 故①正确;②若m ∥α,α⊥β,n ⊥β,则m ∥n 或m ⊥n ; 故②错误;③若n ⊥β,α∥β,m ∥α,则m ⊥n ; 故③正确;④若m ⊥α,α⊥β,n ∥β,则m ∥n , 故④错误; 故选:B .7.已知函数f(x)=2xcosx4x +a是偶函数,则函数f (x )的最大值为( )A .1B .2C .12D .3【分析】根据题意,由偶函数的定义可得2−x cos(−x)4−x +a=2x cosx 4x +a,变形可得a 的值,即可得f (x )的解析式,据此分析可得答案.解:根据题意,函数f(x)=2x cosx4x +a 是偶函数,则有2−x cos(−x)4−x +a =2x cosx 4x+a, 变形可得:a (4x ﹣1)=4x ﹣1,分析可得a =1;则f (x )=2xcosx 4x +a =cosx2x +2−x ,又由当x =0时,cos x 取得最大值为1,同时2x +2﹣x 取得最小值2, 则此时f (x )取得最大值12;故选:C .8.已知α为锐角,若cos(α+π4)=35,则tan2α=( )A .710B .310C .13D .724【分析】由已知利用同角三角函数关系式可求sin (α+π4)的值,从而利用sin α=sin[(α+π4)−π4],可求sin α,cos α,即可得解tan α的值,利用二倍角的正切函数公式即可求解tan2α的值.解:∵a 为锐角,且cos (α+π4)=35,α+π4∈(π4,3π4),∴sin (α+π4)=45,∴sin α=sin[(α+π4)−π4]=sin (α+π4)cos π4−cos (α+π4)sin π4=45×√22−35×√22=√210,cos α=√1−sin 2α=7√210∴tan α=sinαcosα=17, ∴tan2α=2tanα1−tan 2α=2×171−(17)2=724. 故选:D .9.已知双曲线C.x 2a 2−y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,圆O :x 2+y 2﹣a 2﹣b 2=0与双曲线的一个交点为P ,若|PF 1|=√3|PF 2|,则双曲线的离心率为( ) A .√2B .√3+12C .2D .√3+1【分析】设|PF 2|=x ,则|PF 1|=√3x ,由于圆O :x 2+y 2﹣a 2﹣b 2=0可化简为x 2+y 2=c 2,是以O 为圆心,c 为半径的圆,所以PF 1⊥PF 2,由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2,即3x 2+x 2=4c 2,解得c =x ;由双曲线的定义知,|PF 1|﹣|PF 2|=2a =(√3−1)x ,解得a =√3−12x ,最后由离心率e =ca 代入化简即可得解.解:设|PF 2|=x ,则|PF 1|=√3x ,∵圆O :x 2+y 2﹣a 2﹣b 2=0,即x 2+y 2=a 2+b 2=c 2,是以O 为圆心,c 为半径的圆, ∴PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=|F 1F 2|2,即3x 2+x 2=4c 2, ∴c =x ,由双曲线的定义知,|PF 1|﹣|PF 2|=2a =(√3−1)x ,∴a =√3−12x ,∴离心率e =c a =√3−12x =√3+1.故选:D .10.把函数f(z)=cos(ωx +π3)(ω>0)的图象向左平移π6个单位后得到函数g (x )的图象,函数g (x )图象的一条对称轴为直线x =π6,若函数f (x )在(π3,2π3)上单调递增,则ω的取值范围是( ) A .2或5B .2或3C .2D .5【分析】由题意利用函数y =A sin (ωx +φ)的图象变换规律,余弦函数的单调性以及图象的对称性,得出结论.解:把函数f(z)=cos(ωx +π3)(ω>0)的图象向左平移π6个单位后,得到函数g (x )=cos (ωx +ωπ6+π3)的图象, ∵函数g (x )图象的一条对称轴为直线x =π6, ∴ω•π6+ω•π6+π3=k π,即ω=3k ﹣1,k ∈Z ①.若函数f (x )在(π3,2π3)上单调递增,则12⋅2πω≥2π3−π3,∴ω≤3②. 根据①②,综合所给的选项,可得ω的取值范围是ω=2, 故选:C .11.已知三棱锥P ﹣ABC (记△ABC 所在的平面为底面)内接于球O ,PA :PB :PC =1:2:3,当三棱锥P ﹣ABC 侧面积最大时,球O 的体积为56√143π.则此时△ABC 的面积为( )A .12B .13C .14D .15【分析】设PA =x ,PB =2x ,PC =3x ,可知当三棱锥P ﹣ABC 三个侧面的面积之和最大时,PA ,PB ,PC 两两垂直,由球的体积求出外接球的半径,再由长方体对角线长与棱长的关系求得x ,则三条侧棱长可求,进一步求得△ABC 的面积. 解:设PA =x ,PB =2x ,PC =3x ,当三棱锥P ﹣ABC 三个侧面的面积之和最大时,PA ,PB ,PC 两两垂直, 有43πR 3=56√143,得R =√14. 又由PA 2+PB 2+PC 2=4R 2,有14x 2=4×(√14)2,得x =2. 此时AB =2√5,AC =2√10,BC =2√13. 由cos ∠BAC =2×25×210=√210,sin ∠BAC =7√210.∴△ABC 的面积为12×2√5×2√10×7√210=14.故选:C .12.若不等式mxe mx 2≥lnx 恒成立,则实数m 的取值范围为( )A.[1e2,+∞)B.[12e,+∞)C.(1e,+∞)D.[√e+∞)【分析】当x=e时,me•e me2≥1,可得m>0,①当0<x≤1时,不等式显然成立,②当x≥1时,问题可转化为mx2e mx2≥xlnx,两边取对数有ln(mx2)+mx2≥lnx+ln (lnx),令g(x)=x+lnx,可得g(mx2)≥g(lnx),由函数g(x)单调递增,有mx2≥lnx,得m≥lnx2,令h(x)=lnx2,只需要m大于等于h(x)的最大值即可.解:当x=e时,me•e me2≥1,可得m>0,①当0<x≤1时,lnx<0,mxe mx2>0,不等式显然成立,②当x≥1时,不等式mxe mx2≥lnx,可化为mx2e mx2≥xlnx,两边取对数有ln(mx2)+mx2≥lnx+ln(lnx),令g(x)=x+lnx,可得g(mx2)≥g(lnx),又由函数g(x)单调递增,有mx2≥lnx,得m≥lnx x2,令h(x)=lnxx2,有h′(x)=x−2xlnxx4=1−2lnxx3(x≥1),由h′(x)>0,有1<x<√e,可得函数h(x)的递增区间为(1,√e),减区间为(√e,+∞),有h(x)max=h(√e)=ln√e(√e)2=12e,故实数m的取值范围为[12e,+∞).故选:B.二、填空题:本题共4小题,每小题5分,共20分13.已知x,y满足{x−y≥0x+y−2≥0x≤2,则z=2x+y的最小值为3.【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=2x+y对应的直线进行平移,可得当x=y=1时,z=2x+y取得最小值为3.解:作出不等式组{x−y≥0x+y−2≥0x≤2表示的平面区域,得到如图的△ABC及其内部,其中A(1,1),B(2,2),C(2,0)设z=F(x,y)=2x+y,将直线l:z=2x+y进行平移,当l经过点A时,目标函数z达到最小值∴z 最小值=F (1,1)=3 故答案为:314.已知平面向量a →,b →,|a →|=2,|b →|=√3,若a →⊥(3a →−4b →),则向量a →与b →的夹角的大小为π6.【分析】根据a →⊥(3a →−4b →)可得出a →⋅(3a →−4b →)=0,进行数量积的运算即可求出a →⋅b →=3,从而可得出cos <a →,b →>的值,进而得出a →与b →的夹角. 解:∵|a →|=2,|b →|=√3,a →⊥(3a →−4b →),∴a →⋅(3a →−4b →)=3a →2−4a →⋅b →=12−4a →⋅b →=0, ∴a →⋅b →=3,∴cos <a →,b →>=a →⋅b→|a →||b →|=32√3=√32,且0≤<a →,b →>≤π,∴a →与b →的夹角为π6.故答案为:π6.15.设S n 为等差数列{a n }的前n 项和,已知在S n 中只有S 7最小,则S 15﹣2S 13 > 0.(填“>”或“=”或“<”)【分析】由题意可知a 7<0,a 8>0,由等差数列的前n 项和公式结合等差数列的性质可得S 15>0,S 13<0,则答案可求.解:由题意,S 6>S 7<S 8,则a 7<0,a 8>0.S 13=13(a 1+a 13)2=13a 7<0,S 15=15(a 1+a 15)2=15a 8>0. ∴S 15﹣2S 13>0. 故答案为:>.16.已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与抛物线相交于A 、B 两点,O 为坐标原点,直线OA 、OB 与抛物线的准线分别相交于点P ,Q ,则|PQ |的最小值为 4 . 【分析】设点A 、B 的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为x =my +1,将其与抛物线的方程联立,消去x ,写出韦达定理可得{y 1+y 2=4m y 1y 2=−4,x 1x 2=y 12y 2216=1;写出直线OA 的方程为y =y 1x 1x ,从而得点P (﹣1,−y 1x 1),同理可得点Q (﹣1,−y2x 2),记抛物线的准线与x 轴的交点为D ,则有|PD |•|QD |=|y 1y2x 1x 2|=41=4,然后根据均值不等式有,|PQ |=|PD |+|QD |≥2√|PD|⋅|QD|=4,故而得解. 解:根据题意,作出如下所示的图形,由题可知,焦点F (1,0),设点A 、B 的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为x =my +1,联立{x =my +1y 2=4x ,得y 2﹣4my ﹣4=0,∴{y 1+y 2=4my 1y 2=−4,x 1x 2=y 12y 2216=1,∵直线OA 的方程为y =y1x 1x ,∴令x =﹣1,则y =−y 1x 1,∴P (﹣1,−y1x 1),同理可得,Q (﹣1,−y2x 2),记抛物线的准线与x 轴的交点为D ,则有|PD |•|QD |=|y 1y2x 1x 2|=41=4,由|PQ |=|PD |+|QD |≥2√|PD|⋅|QD|=4,可知|PQ |的最小值为4.故答案为:4.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤.第17\~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17\~2117.在△ABC 中,角A ,B ,C 所对的边分别为a 、b 、c ,已知√3b =(a cos C +c cos A )tan A . (1)求角A 的大小;(2)若△ABC 的面积为√3,且a =√6,求b ,c .【分析】(1)由已知结合正弦定理及和差角公式进行化简可求tan A ,进而可求A ; (2)由已知结合三角形的面积公式可求bc ,然后结合余弦定理即可求解. 解:(1)∵√3b =(a cos C +c cos A )tan A ,由正弦定理可得,√3sin B =(sin A cos C +sin C cos A )tan A =sin (A +C )tan A =sin B tan A , 因为sin B ≠0, 故tan A =√3, 因为A ∈(0,π), 故A =π3,(2)S △ABC =12bcsinA =√34bc =√3,∴bc =4,因为cos A =b 2+c 2−a 22bc =12,∴b 2+c 2=10,∴(b +c )2=10+2×4=18, 则b +c =3√2, 由{b +c =3√2bc =4, 解可得{b =√2c =2√2或{b =2√2c =√2.18.如图,在三棱锥A ﹣BCD 中,O 为AB 的中点,E 为AC 的中点,F 为AD 的中点,DC =AC =BC =√2,AB =2,DO ⊥平面ABC . (1)求证:平面OEF ∥平面BCD ; (2)求二面角D ﹣OE ﹣F 的余弦值.【分析】(1)先证明OE ∥平面BCD 及EF ∥平面BCD ,进而可证平面OEF ∥平面BCD ; (2)建立空间直角坐标系,求得平面ODE 及平面OEF 的法向量,再利用向量的夹角公式求解即可.解:(1)证明:∵AO =OB ,AE =EC ,AF =FD , ∴OE ∥BC ,EF ∥CD ,∵OE 不在平面BCD 内,BC 在平面BCD 内, ∴OE ∥平面BCD ;∵EF 不在平面BCD 内,CD 在平面BCD 内, ∴EF ∥平面BCD ;又EF ∩OE =E ,且都在平面OEF 内, ∴平面OEF ∥平面BCD ;(2)如图,连接CO ,由AC =BC ,AO =OB ,有CO ⊥AB ,在△AOC 中,OC =√AC 2−AO 2=√2−1=1,可得AO =OB =OC =OD =1, ∵OD ⊥平面ABC ,可得OB ,OC ,OD 两两垂直,以O 为坐标原点,OB ,OC ,OD 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系, 则O(0,0,0),B(1,0,0),A(−1,0,0),C(0,1,0),D(0,0,1),E(−12,12,0),F(−12,0,12), 设平面OED 的一个法向量为m →=(a ,b ,c),OE →=(−12,12,0),OD →=(0,0,1),有{OE →⋅m →=−12a +12b =0OD →⋅m →=c =0,则可取m →=(1,1,0),同理可求得平面OEF 的一个法向量为n →=(1,1,1),∴cos <m →,n →>=m →⋅n→|m →||n →|=√63,∴二面角D ﹣OE ﹣F 的余弦值为√63.19.“扶贫帮困”是中华民族的传统美德,某大型企业为帮扶贫困职工,设立“扶贫帮困基金”,采用如下方式进行一次募捐:在不透明的箱子中放入大小均相同的白球六个,红球三个,每位献爱心的参与者投币100元有一次摸奖机会,一次性从箱中摸球三个(摸完球后将球放回),若有一个红球,奖金20元,两个红球奖金40元,三个全为红球奖金200元.(1)求一位献爱心参与者不能获奖的概率;(2)若该次募捐有300位献爱心参与者,求此次募捐所得善款的数学期望. 【分析】(1)设“献爱心参与者中奖”为事件A ,求出献爱心参与者中奖的概率. (2)设一个献爱心参与者参加活动,学校所得善款为X ,则X =100,80,60,﹣100,由此能求出X 学校所得善款的数学期望,由此能求出募捐所得善款的数学期望. 解:(1)“一位献爱心参与者不能获奖”记为事件A , 则P (A )=C 63C 93=521;(2)设一位献爱心参与者参加活动,企业所得善款为X 元, 则X =100,80,60,﹣100, 则P (X =100)=C 63C 93=521,P (X =80)=C 31C 62C 93=1528,P (X =60)=C 32C 61C 93=314, P (X =﹣100)=C 33C 93=184,故若只有一个参与者募捐,学校所得善款的数学期望为E (X )=100×521+80×1528+60×314+100×184=2353,故此次募捐所得善款的数学期望为2353×300=23500(元).20.在平面直角坐标系xOy 中,已知椭圆C :x 2a +y 2b =1(a >b >0)的右焦点为F ,上顶点为B ,∠OBF =30°,点A (−√2,√62)在椭圆C 上.(1)求椭圆C 的标准方程;(2)动直线l 与椭圆C 相交于P 、Q 两点,与x 轴相交于点M ,与y 轴的正半轴相交于点N ,T 为线段PQ 的中点,若7OP →⋅OQ →−4OT →⋅OM →−4OT →⋅ON →为定值n ,请判断直线l 是否过定点,求实数n 的值,并说明理由.【分析】(1)由题意可知a =2c ,b =√3c ,所以椭圆C 的标准方程为x 24c 2+y 23c 2=1,把点A 的坐标代入求出c 的值,进而求出a ,b 的值,即可得到椭圆C 的坐标方程; (2)由题意可知直线l 的斜率存在且不为0,设直线l 的方程为y =kx +m ,与椭圆方程联立,利用韦达定理可得x 1x 2+y 1y 2,和点T ,点M ,点N 的坐标,代入7OP →⋅OQ →−4OT →⋅OM →−4OT →⋅ON →化简整理得7OP →⋅OQ →−4OT →⋅OM →−4OT →⋅ON →=−21[4k 2+(4−m 2)]4k 2+3,若7OP →⋅OQ →−4OT →⋅OM →−4OT →⋅ON →为定值,则必有4﹣m 2=3,可得m =1,故直线l 过定点(0,1),实数n 的值为﹣21.解:(1)设点F 的坐标为(c ,0),由|OF |=c ,|OB |=b ,|BF |=a ,∠OBF =30°,有a =2c ,b =√3c ,可得椭圆C 的标准方程为x 24c 2+y 23c 2=1,代入点A 的坐标有12c 2+12c 2=1,解得c =1, ∴椭圆C 的坐标方程为x 24+y 23=1;(2)由题意可知直线l 的斜率存在且不为0,设直线l 的方程为y =kx +m (m >0),联立方程{x 24+y 23=1y =kx +m,消去y 后整理得(4k 2+3)x 2+8kmx +4m 2﹣12=0,∴x 1+x 2=−8km 4k 2+3,x 1x 2=4m 2−124k 2+3,由△=64k 2m 2﹣4(4k 2+3)(4m 2﹣12)>0,得4k 2﹣m 2+3>0, ∴y 1+y 2=(kx 1+m )+(kx 2+m )=k (x 1+x 2)+2m =−8k 2m 4k 2+3+2m =6m4k 2+3,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km(x 1+x 2)+m 2=k 2(4m 2−12)4k 2+3−8k 2m 24k 2+3+m 2=3m 2−12k 24k 2+3,∴x 1x 2+y 1y 2=7m 2−12k 2−124k 2+3,点T 的坐标为(−4km 4k 2+3,3m 4k +3),点M 的坐标为(−mk ,0),点N 的坐标为(0,m ),∴OM →+ON →=(−mk ,m),∴OT →⋅(OM →+ON →)=4m 24k 2+3+3m 24k 2+3=7m 24k 2+3, ∴7OP →⋅OQ →−4OT →⋅OM →−4OT →⋅ON →=7OP →⋅OQ →−4OT →⋅(OM →+ON →) =7(x 1x 2+y 1y 2)−28m 24k 2+3=7(7m 2−12k 2−12)4k 2+3−28m 24k 2+3=7(3m 2−12k 2−12)4k 2+3=7[−12k 2+(3m 2−12)]4k 2+3=−21[4k 2+(4−m 2)]4k 2+3,若7OP →⋅OQ →−4OT →⋅OM →−4OT →⋅ON →为定值,必有4﹣m 2=3,解得m =±1,由m >0可得m =1,故直线l 过定点(0,1),实数n 的值为﹣21. 21.已知函数f (x )=2xe x ﹣ax ﹣alnx (a ∈一、选择题).(1)若曲线y =f (x )在点(1,f (1))处的切线l 过点(0,﹣2e ﹣1),求实数a 的值;(2)若函数f (x )有两个零点,求实数a 的取值范围.【分析】(1)求出原函数的导函数,得到f ′(1)=4e ﹣2a ,再求出f (1)=2e ﹣a ,由直线方程点斜式写出切线方程,代入已知点的坐标求解a 值; (2)函数f (x )的定义域为(0,+∞),f ′(x )=2(x +1)e x ﹣a −ax=(x+1)(2xe x −a)x.当a≤0时,f (x )单调递增,最多只有一个零点;当a >0时,令g (x )=2xe x ﹣a (x ≥0),利用导数可知存在x 0∈(0,a ),使得g (x 0)=0,有x 0e x 0=a2,函数f (x )的减区间为(0,x 0),增区间为(x 0,+∞).由f (x 0)<0,得a >2e .然后证明当x >lna 时,f (x )>0.即可说明函数f (x )有两个零点.由此可得实数a 的取值范围. 解:(1)由f ′(x )=2(x +1)e x ﹣a −ax ,得f ′(1)=4e ﹣2a , 又f (1)=2e ﹣a ,∴切线l 的方程为y ﹣(2e ﹣a )=(4e ﹣2a )(x ﹣1),代入点(0,﹣2e ﹣1), 有﹣2e ﹣1﹣(2e ﹣a )=﹣(4e ﹣2a ),解得a =﹣1. 故实数a 的值为﹣1;(2)函数f (x )的定义域为(0,+∞).由f ′(x )=2(x +1)e x ﹣a −ax =(x +1)(2e x −ax )=(x+1)(2xe x −a)x.①当a ≤0时,f ′(x )>0,此时f (x )单调递增,最多只有一个零点; ②当a >0时,令g (x )=2xe x ﹣a (x ≥0).由g ′(x )=2(x +1)e x >0,可知函数g (x )单调递增,又g (0)=﹣a <0, g (a )=2ae a ﹣a =a (2e a ﹣1)>0,可得存在x 0∈(0,a ),使得g (x 0)=0, 有x 0e x 0=a2,可知函数f (x )的减区间为(0,x 0),增区间为(x 0,+∞). 若函数f (x )有两个零点,必有f (x 0)=2x 0e x 0−ax 0−alnx 0 =a ﹣a (x 0+lnx 0)=a −aln(x 0e x 0)=a −aln a2<0,得a >2e . 又由f (e ﹣a )>﹣ae ﹣a ﹣alne ﹣a =a 2−a e a =a(ae a −1)e a >0. 令h (x )=x ﹣lnx ,有h ′(x )=1−1x=x−1x,令h ′(x )>0, 可得x >1,故函数h (x )的增区间为(1,+∞),减区间为(0,1),有h (x )≥h (1)=1.当x >lna 时,e x >a ,f (x )=x (2e x ﹣a )﹣alnx >ax ﹣alnx =a (x ﹣lnx )≥a >0. 可得此时函数f (x )有两个零点.由上可知,若函数f (x )有两个零点,则实数a 的取值范围是(2e ,+∞).(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,已知曲线C 的参数方程为:{x =√3cosβ,y =sinβ,(β为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin(θ−π4)=3√22.(1)求曲线C 和直线l 的直角坐标方程;(2)若点P 在曲线C 上,且点P 到直线l 的距离最小,求点P 的坐标.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用点到直线的距离公式的应用和三角函数关系式的变换,及正弦型函数的性质的应用求出结果.解:(1)曲线C 的参数方程为:{x =√3cosβ,y =sinβ,(β为参数),转换为直角坐标方程为x 23+y 2=1.直线l 的极坐标方程为ρsin (θ−π4)=3√22.根据{x =ρcosθy =ρsinθ转换为直角坐标方程为x ﹣y +3=0.(2)设点P (√3cosα,sinα)为曲线上一点,所以点P 到直线的距离d =√3cosα−sinα+3|√1+1=|2cos(α+π6)+3|2,当cos (α+π6)=﹣1时,即α=5π6时, 点P 到直线l 的距离的最小值为√22,且P (−32,12). [选修4-5:不等式选讲]23.已知函数f (x )=|x ﹣2|﹣|x |. (1)求不等式f (x )≥1的解集;(2)若x ∈[﹣2,2]时,f (x )≥mx 恒成立,求实数m 的值.【分析】(1)由题意可得|x ﹣2|﹣|x |≥1,由绝对值的意义,去绝对值,解不等式,求并集,可得所求解集;(2)可得f (﹣2)=2,f (2)=﹣2,结合不等式f (x )≥mx 恒成立,可得m 的值,检验即可得到结论.解:(1)不等式|x ﹣2|﹣|x |≥1等价为{x ≥2x −2−x ≥1或{0<x <22−x −x ≥1或{x ≤02−x +x ≥1, 解得x ∈∅或0<x ≤12或x ≤0,则原不等式的解集为{x |x ≤12};(2)x ∈[﹣2,2]时,f (x )≥mx 恒成立,由f (﹣2)=2,f (2)=﹣2,可得{f(2)≥2m f(−2)≥−2m ,即{−2≥2m 2≥−2m, 解得﹣1≤m ≤﹣1,故m =﹣1,当m =﹣1时,且﹣2≤x ≤2时,f (x )+x =|x ﹣2|+x ﹣|x |=2﹣x +x ﹣|x |=2﹣|x |≥0, 故实数m 的值为﹣1.。
2020年黑龙江省哈尔滨三中高考数学四模试卷1一、选择题(本大题共12小题,共36.0分)1.设集合A={x∈N∗|x≤2},B={2,6},则A∪B=()A. {2}B. {2,6}C. {1,2,6}D. {0,1,2,6}2.若复数z=2i+4i−1,则z=()A. −1+3iB. −1−3iC. 1+3iD. 1−3i3.已知a⃗=(−√3,1),b⃗ =(1,x),若a⃗⊥b⃗ ,则x等于()A. 2B. √2C. 3D. √34.已知p,q是简单命题,那么“p∧q是真命题”是“¬p是真命题”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5.设实数x,y满足约束条件{3x+y≥5x−4y≥−7x≤2,则z=x+4y的最大值为()A. −2B. 9C. 11D. 4146.将函数f(x)=2sin(2x−π4)的图象向左平移π4个单位,得到函数g(x)的图象,则g(0)=()A. √2B. 2C. 0D. −√27.函数y=x33x−3−x的图象大致是()A. B.C. D.8.直线y=kx+3与圆(x−3)2+(y−2)2=4相交于M,N两点,若|MN|≥2√3,则k的取值范围是()A. [−34,0] B. [−∞,−34]∪[0,+∞]C. [−√33,√33] D. [−23,0]9.设a>0,b>0,若a+2b=8,则ab的最大值为()A. 2B. 4C. 8D. 1610.射线测厚技术原理公式为I=I0e−ρμt,其中I0,I分别为射线穿过被测物前后的强度,e是自然对数的底数,t为被测物厚度,ρ为被测物的密度,μ是被测物对射线的吸收系数.工业上通常用镅241(241Am)低能γ射线测量钢板的厚度.若这种射线对钢板的半价层厚度为0.8,钢的密度为7.6,则这种射线的吸收系数为()(注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,ln2≈0.6931,结果精确到0.001)A. 0.110B. 0.112C. 0.114D. 0.11611.如图是一个正方体被切掉部分后所得几何体的三视图,则该几何体的体积为()A. 43B. 83C. 8√23D. 4√2312.已知函数若方程|f(x)|−a=0有四个不同的解,则a的取值范围是()A. (0,4)B. [0,4)C. [ln2,4)D. (ln2,4]二、填空题(本大题共4小题,共12.0分)13.若函数f(x)=x2+ax−1是偶函数,则a=______ .14.若cosα=13,则sin(π2+2α)______ .15.将4本不同的书随机赠给3位同学,恰有一位同学有2本书的概率为______ .16.已知P是椭圆E:x2a2+y2b2=1(a>b>0)上异于点A(−a,0),B(a,0)的一点,E的离心率为√32,则直线AP与BP的斜率之积为______.三、解答题(本大题共7小题,共84.0分)17.已知数列{a n2n }是公差为1的等差数列,且a1+25,a2,a3成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列b n=4na n a n+1,求数列{b n}前n项的和S n.18.如图,在四棱锥P−ABCD中,AB⊥平面BCP,CD//平面ABP,AB=BC=CP=BP=2CD=2(1)证明:平面ABP⊥平面ADP;(2)若直线PA与平面PCD所成角为α,求sinα的值.19.下表数据为某地区某基地某种农产品的年产量x(单位:吨)及对应销售价格y(单位:万元/吨).x123y543(1)若y与x有较强的线性相关关系,请用最小二乘法求出y关与x的线性回归方程y^=b^x+a^;(2)若每吨该农产品的成本为1万元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润z最大?最大利润是多少?参考公式:b̂=ni=1i−x)(y i−y)∑(n x−x)2=∑(ni=1x i y i)−nxy∑x i2ni=1−nx2,a^=y−b^x.20.如图,在平面直角坐标系x,圆E:x2a2+y2b2(ab>0)的离心率为√22直线l:y=12与椭圆E相交,B两点,AB=4√5,C,D是椭圆上异于A,点且直线AC,相于点M,直线AD,B相交于点.求证:直线M的率定值.21.已知函数f(x)=4lnx−mx2+1(m∈R).(1)若函数在点(1,f(1))处的切线与直线2x−y−1=0平行,求实数m的值;(2)若对任意x∈[1,e),都有f(x)≤0恒成立,求实数m的取值范围.22.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方)=2√2,两条曲线交于A,B两点.程为ρ=4cosθ,直线l的极坐标方程为ρcos(θ+π4(1)求A,B两点的极坐标;(2)P为曲线C2:为参数)上的动点,求△PAB的面积的最小值.23.已知函数f(x)=|x|+|x+1|.(Ⅰ)解关于x的不等式f(x)≥2;(Ⅱ)若a,b,c∈R+,函数f(x)的最小值为m,若a+b+c=m,求证:ab+bc+ac≤1.3-------- 答案与解析 --------1.答案:C解析:【分析】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.求出集合A={x∈N∗|x≤2}={1,2},B={2,6},由此能求出A∪B.【解答】解:∵集合A={x∈N∗|x≤2}={1,2},B={2,6},∴A∪B={1,2,6}.故选:C.2.答案:A解析:解:∵z=2i+4i−1=(4+2i)(−1−i) (−1+i)(−1−i)=−2−6i2=−1−3i,∴z=−1+3i.故选:A.直接利用复数的乘除运算化简得z=−1−3i,则z=−1+3i.本题考查复数的乘除运算,考查共轭复数,是基础题.3.答案:D解析:解:由题意可得a⃗⋅b⃗ =−√3+x=0,∴x=√3,故选:D.由题意可得a⃗⋅b⃗ =−√3+x=0,由此求得x的值.本题主要考查两个两个向量的数量积公式,两个向量垂直的性质,属于基础题.4.答案:D解析:解:p,q是简单命题,那么“p∧q是真命题”说明p.q都是真命题,推不出¬p是真命题,反之¬p是真命题则p是假命题,则p∧q是假命题,所以“p ∧q 是真命题”是“¬p 是真命题”既不充分也不必要条件.故选:D .利用复合命题的真假.以及充要条件的判断方法,判断即可.本题考查充要条件的判断,复合命题的真假的判断,是基本知识的考查.5.答案:C解析:【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合即可求解.本题考查线性规划问题,考查数形结合的数学思想以及运算求解能力,是中档题.【解答】解:作出约束条件表示的可行域如图,化目标函数z =x +4y 为y =−x 4+z 4,联立{x =2x −4y =−7,解得A(2,94), 由图可知,当直线z =x +4y 过点(2,94)时,z 取得最大值11.故选C . 6.答案:A解析:【分析】由条件利用函数y =Asin(ωx +φ)的图象变换规律,可得所得图象对应的函数的解析式g(x)=2sin(2x +π4),再利用特殊角三角函数函数值计算即可得解.本题主要考查函数y=Asin(ωx+φ)的图象变换规律,特殊角的三角函数值的应用,体现了转化的数学思想,属于基础题.【解答】解:将函数f(x)=2sin(2x−π4)的图象向左平移π4个单位长度,所得图象对应的函数的解析式为g(x)=2sin[2(x+π4)−π4]=2sin(2x+π4),则g(0)=2sinπ4=√2.故选:A.7.答案:B解析:解:函数y=x33x−3−x,在x=0时,没有意义,排除A;f(−x)=−x33−x−3x =x33x−3−x=f(x),函数是偶函数,排除D;x=3时,y=2727−127>1,可得函数的图象的最大值大于1,排除选项C,故选:B.利用函数的定义域与函数的特殊点的位置,函数的奇偶性判断选项即可.本题考查函数的图象的判断,函数的定义域,奇偶性以及特殊点的位置是判断函数的图象的常用方法.8.答案:A解析:解:设圆心(3,2)到直线y=kx+3的距离为d,由弦长公式得,MN=2√4−d2≥2√3,故d≤1,即2≤1,化简得8k(k+34)≤0,∴−34≤k≤0,故k的取值范围是[−34,0].故选:A.由弦长公式得,当圆心到直线的距离等于1时,弦长等于2√3,故当弦长大于或等于2√3时,圆心到直线的距离小于或等于1,解此不等式求出k的取值范围.本题主要考查点到直线的距离公式,以及弦长公式的应用,属于中档题.9.答案:C解析:解:∵a>0,b>0且a+2b=8,∴8=a+2b≥2√2ab,∴ab≤8,当且仅当a=2b,即a=4,b=2时取等号,∴ab的最大值为8.故选:C.由a>0,b>0且a+2b=8,可利用基本不等式求出ab的范围,从而得到ab的最大值.本题考查了利用基本不等式求最值,考查了转化思想,属基础题.10.答案:C解析:【分析】本题考查根据实际问题选择函数模型,考查对数的运算性质,是基础的计算题.=1×e−7.6×0.8μ,两边取自然对数,则答案可求.由题意可得12【解答】=1×e−7.6×0.8μ,解:由题意可得,12∴−ln2=−7.6×0.8μ,即6.08μ≈0.6931,则μ≈0.114.∴这种射线的吸收系数为0.114.故选:C.11.答案:B解析:解:由三视图可知:该几何体为正方体先切割得到三棱柱后,再切割得到四棱锥S−ABCD,如图所示,则其体积为:V S−ABCD =13×S 正方形ABCD ×AS =13×2×2×2=83. 故选B .该几何体为正方体先切割得到三棱柱后,再切割得到四棱锥,由此能求出该几何体的体积. 本题考查该几何体的体积的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.12.答案:C解析: 【分析】本题主要考查由函数零点的个数求参数范围,根据函数与方程之间的关系转化为两个函数图象的交点问题是解决本题的关键,属于中档题.根据分段函数的表达式,作出|f(x)|的图象,利用数形结合进行求解即可. 【解答】解:当x <0时,|f(x)|=|x 2+4x|={x 2+4x,x <−4,−x 2−4x =−(x +2)2+4,−4≤x <0,即当−4≤x <0时,|f(x)|≤4,当x ≥0时,|f(x)|=|ln(x +2)|=ln(x +2)为增函数, 且此时|f(x)|≥ln2.若方程|f(x)|−a =0有四个不同的解, 即|f(x)|=a 有四个不同的解,作出函数y =|f(x)|与y =a 的图象,则两函数图象有四个不同的交点,由图象知ln2≤a <4, 即实数a 的取值范围是[ln2,4).故选C.13.答案:0解析:解:∵f(x)=x2+ax−1是偶函数,∴f(−x)=f(x).即(−x)2−ax−1=x2+ax−1,∴2ax=0,又x不恒为0,∴a=0.故答案为:0.由偶函数的定义f(−x)=f(x)即可求得a的值.本题考查函数奇偶性的性质,利用偶函数的定义求得2ax=0是关键,属于基础题.14.答案:−79解析:解:∵cosα=13,∴sin(π2+2α)=cos2α=2cos2α−1=2×19−1=−79.故答案为:−79.由诱导公式和二倍角的正弦函数公式化简所求后根据已知即可求值.本题主要考查了诱导公式和二倍角的正弦函数公式的应用,属于基础题.15.答案:49解析:【分析】首先用分步乘法计数原理,分析可得,将4本不同的书全发给3名同学的情况总数,再根据排列组合公式,可得恰有一位同学有2本书的分法数,由概率的计算方法可得答案.本题考查概率的计算,分析时要结合排列、组合的公式,可以减少计算量,属基础题.【解答】解:将4本不同的书全发给3名同学共有3×3×3×3=34=81种分法,先选2本书送给其中的一位同学,剩下的2本书分给2名同学,有C42C31⋅2=36种,故恰有一位同学有2本书的概率为3681=49,故答案为:49.16.答案:−14解析:解:设P(x,y),点A(−a,0),B(a,0),椭圆E:x2a2+y2b2=1(a>b>0),y2=b2(a2−x2a2)椭圆的离心率为√32,∴ca =√32,c2a2=34,则a2−b2a2=34,所以b2a2=14,∴点P与双曲线实轴两顶点连线的斜率之积为:yx+a ⋅yx−a=y2x2−a2=−b2a2=−14,故答案为:−14.利用点P与双曲线实轴两顶点连线的斜率之积的不等式,建立等式,考查双曲线的方程,即可确定a,b的关系,从而通过双曲线的离心率,求解即可.本题考查斜率的计算,考查双曲线的几何性质,考查学生的计算能力,属于中档题.17.答案:解:(Ⅰ)数列{a n2n}是公差为1的等差数列,可得a n2n =a12+n−1,a1+25 , a2 , a3成等比数列,可得a22=a3(a1+25),即为(2a1+4)2=(4a1+16)(a1+25),解得a1=6,可得a n=(n+2)⋅2n;(Ⅱ)数列b n=4na n a n+1=4n(n+2)⋅2n⋅(n+3)⋅2n+1=12(n+2)(n+3)=12(1n+2−1n+3),则数列{b n}前n项的和S n=12(13−14+14−15+⋯+1n+2−1n+3)=12(13−1n+3)=n6(n+3).解析:本题考查等差数列的通项公式和等比数列的中项的性质,以及数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.(Ⅰ)运用等差数列的通项公式,以及等比数列的中项性质,解方程可得首项,即可得到所求通项公式;(Ⅱ)求得数列b n=12(n+2)(n+3)=12(1n+2−1n+3),运用数列的求和方法:裂项相消求和,化简整理可得所求和.18.答案:(1)证明:取AP的中点E,PB的中点F,连结DE,EF,CF,则EF−//12AB,∵CD//平面ABP,CD⊂平面ABCD,平面ABCD∩平面ABP=AB,∴CD//AB,又CD=12AB,∴EF−//CD,∴四边形DEFC是平行四边形,∴CF//DE,∵AB⊥平面BCP,CF⊂平面BCP,∴AB⊥CF,∵BC=CP=BP,∴CF⊥PB,又PB∩AB=B,∴CF⊥平面ABP,∴DE⊥平面ABP,又DE⊂平面ADP,∴平面ABP⊥平面ADP.(2)解:过P作PP′//AB,使得PP′=2,延长CD到C′,使得CC′=2,连结AC′,AP′,C′P′,则直三棱柱PBC−P′AC′所有棱长均为2,取P′C′的中点M,连结AM,则AM⊥平面PCC′P′,∴∠APM是直线AP与平面PCD所成的角,即∠APM=α,∵AM=√AP′2−P′M2=√3,PA=√PB2+AB2=2√2,∴sinα=sin∠APM=AMAP =√32√2=√64.解析:(1)取AP的中点E,PB的中点F,连结DE,EF,CF,利用平行四边形得出DE//CF,通过证明CF⊥平面APB得出DE⊥平面PAB,于是平面ABP⊥平面ADP;(2)将几何体补成直三棱柱,作出线面角,从而可求出sinα的值. 本题考查了面面垂直的判定,直线与平面所成角的计算,属于中档题.19.答案:解:(1)由表格得,x =1+2+33=2,y =5+4+33=4,b ̂=1×5+2×4+3×3−3×2×412+22+32−3×22=−1,a ̂=4−(−1)×2=6, 故所求的线性回归方程为ŷ=−x +6. (2)由题意得,年利润z =x(−x +6)−x =−x 2+5x =−(x −52)2+254,所以,预测当年产量为2.5吨时,年利润最大,最大利润为6.25万元.解析:(1)求出样本中心,通过求解b ̂=ni=1i −x)(y i −y)∑(n x −x)2=∑(ni=1x i y i )−nxy ∑x i2n i=1−nx2,a ^=y −b ^x ,然后求解直线方程.(2)利用回归直线方程求解即可.本题考查回归直线方程的求法,回归直线方程的应用,考查计算能力.20.答案:解:因e =c a =√22,即c =122即a2−b2=12a ,则a =2b2;∴{y +2−12k 1(x4)y2=k 2x −4)∴{x =8k 1k 2−8k 1−42k 1k 2+1y =−4k 1k 2−8k 2+22k 1k 2+1,B :y −2,A :y2=k2(x −4),它点N(4−4k 2,2),明:由知,椭E 的方程为x 224+y 212=1, 当CA ,CB ,D ,D 中,有直斜率不存在, 由{y =12x x 2+2y 2=2b 2解得(2√33b,√33b);所以CB =−12k 1; 理kB =−12k 2,故不直线CA 的斜率不存,从而C 4,−); 仍然DA 的斜率为2由kDB =−12k 2;由题不妨设点A 在第一限,B 在第三象限, ∴k MN =−4k 1k 2−8k 2+22k 1k 2+1−−4k 1k 2−8k 1+22k 1k 2+18k 1k 2−8k 1−42k 1k 2+1−8k 1k 2−4k 2−42k 1k 2+1=8(k 1−k 2)8(k 2−k 1)=−1,A(4,2,B(−4,−2);于直线D的方程为−2=2(4),直线BC的方为y+2=−12k1(x+);从而N的坐标为(8k1k2−8k1−42k1k2+1,−4k1k2−8k2+22k1k2+1);此时Ax=4,B:y+=−=−12k2+4)它们交点M(4,−4k2−2);当CA,CBDA,D斜率都存,根据题要求,至多有一直斜率存在,设直线A,A的斜率分别为k1k2C(x0y0,又B=4√5,所以OA2√5,即43b2+13b=20,解b2=12;由可知,直MN的率定值−1.解析:用离心率公式和线方程和椭圆方程,求得的坐标方程可得a,b;出椭圆方程求得,B,当CA,C,DA,率都存在时,出直线AD方程为y−=k2(x−4),直线C的方程为y+2=−12k1(x+4),联立直线方程MN坐标,可直线N的斜率当,CB,DA,DB中,有直线的斜率不存在时,同求MN的坐标,得直线MN的.本题考查椭圆的方程性质考查直线和方程联立,求交点,查类讨论思想法,注意线的斜率和直线方程的运,考查运算能力属题.21.答案:解:(1)由题知:f′(x)=4x−2mx,函数f(x)在x=1处的切线斜率为2,即f′(1)=2,即4−2m=2,得m=1,经检验m=1满足题意,∴实数m的值为1.(2)由题知:4lnx−mx2+1≤0在x∈[1,e)上恒成立,即m≥4lnx+1x2在x∈[1,e)上恒成立.令g(x)=4lnx+1x2,x∈[1,e),所以g′(x)=2(1−4lnx)x3,令g′(x)>0,则1⩽x<e14;令g′(x)<0,则e14<x<e.∴g(x)在[1,e14)上单调递增,在(e14,e)上单调递减.∴g(x)max =g(e 14)=2√ee, ∴m ≥2√e e.故m 的取值范围是[2√ee,+∞).解析:本题主要考查了导数的几何意义,利用导数研究函数恒成立问题,是中档题. (1)求出函数的导数,根据切线斜率得到关于m 的方程,求解验证即可; (2)问题转化为m ≥4lnx+1x 2在x ∈[1,e)上恒成立.令g(x)=4lnx+1x 2,x ∈[1,e),利用导数结合函数的单调性求解即可.22.答案:解:(1)由曲线C 1的极坐标方程为ρ=4cosθ,转化为直角坐标方程为:x 2+y 2=4x , 直线l 的极坐标方程为ρcos(θ+π4)=2√2, 即,转化为直角坐标方程为:x −y −4=0, 联立{x 2+y 2=4x x −y =4,解得:{x =2y =−2或{x =4y =0,直线l 与曲线C 1交点的为(2,−2)或(4,0), 所以直线l 与曲线C 1交点的极坐标为(2√2,7π4)或(4,0).(2)由(1)知直线l 与曲线C 1交点的直角坐标为(2,−2),(4,0), |AB|=√(2−4)2+(−2)2=2√2,因此,△PAB 的面积取得最小时也就是P 到直线l 的距离最小的时候, 设点P(2cosθ,sinθ),则点P 到直线l 的距离为: d =√2=√5sin(θ−α)+4|√2, 当sin(θ−α)=−1时,d min =√5√2,所以S △PAB =12|AB|d min =12×2√2×√5√2=4−√5.解析:本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,三角函数关系式的恒等变换,点到直线的距离公式的应用.(1)直接把参数方程和极坐标方程与直角坐标方程进行转化.(2)利用点到直线的距离公式和三角函数的关系式的恒等变换求出三角形的面积.23.答案:解:(Ⅰ)f(x)≥2即|x|+|x +1|≥2,可得{x ≥0x +x +1≥2或{−1<x <0−x +x +1≥2或{x <−1−x −x −1≥2,解得x ≥12或x ∈⌀或x ≤−32,则原不等式的解集为{x|x ≥12或x ≤−32};(Ⅱ)证明:f(x)=|x|+|x +1|≥|x −x −1|=1, 当且仅当x(x +1)≤0,即−1≤x ≤0时,上式取得等号, 可得函数f(x)的最小值为1, 则a +b +c =1,且a ,b ,c ∈R +,由(a +b +c)2=a 2+b 2+c 2+2ab +2bc +2ca ≥ab +bc +ca +2ab +2bc +2ca =3(ab +bc +ca),可得3(ab +bc +ca)≤1,当且仅当a =b =c =13取得等号, 即ab +bc +ac ≤13.解析:(Ⅰ)由绝对值的意义去绝对值,解不等式,求并集可得所求解集;(Ⅱ)运用绝对值不等式的性质可得f(x)的最小值m ,再由三个数的完全平方公式和基本不等式,结合不等式的性质即可得证.本题考查绝对值不等式的解法和绝对值不等式的性质的运用,考查不等式的证明,注意运用均值不等式和不等式的性质,考查化简运算能力、推理能力,属于中档题.。
黑龙江省哈三中2013届高三第四次模拟考试数学(理)试题考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B 铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,字迹清楚;(3)请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I 卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知全集{1,3,5,7,9,11}U =,{3,5,9}M =,{7,9}N =,则集合{1,11}= A .MN B .MN C .()U C M N D .()U C MN2. 设a ,b R ∈,i 是虚数单位,则“复数z a bi =+为纯虚数”是“0=ab ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3. 一个棱锥的三视图如右图所示,则这个棱锥的体积为A .12B .36C .16D .484. 已知双曲线12222=-by a x 的左、右焦点分别为21,F F ,左、右顶点将线段21F F 三等分,则该双曲线的渐近线方程为 A .x y 22±= B .x y 2±= C .x y 22±= D .x y ±= 5. 如右图,若输入n 的值为4,则输出m 的值为A .3-B .31C .2D .21- 6. 函数()52ln -+=x x x f 的零点个数为A .0B .1C .2D .37. 在直角梯形ABCD 中,已知BC ∥AD ,AB ⊥AD ,AB =4,BC =2,AD =4,若P 为CD 的中点,则PA →·PB →的值为 A .-5 B .-4 C .4 D .58. 若6(a x -的展开式中常数项为10π,则直线0,,x x a x ==轴与曲线cos y x =围成的封闭图形的面积为 A .32-B 3C 31-D .1 9. 函数()sin()f x A x ωϕ=+(其中0,2A πϕ><)的图象如右图所示,为了得到()sin g x x ω=的图象,可以将()f x 的图象 A .向左平移6π个单位长度 B .向左平移3π个单位长度C .向右平移6π个单位长度 D .向右平移3π个单位长度10.已知椭圆()012222>>=+b a by a x ,21,F F 为左、右焦点,1A 、2A 、1B 、2B 分别是其左、右、上、下顶点,直线21F B 交直线22A B 于P 点,若21PA B ∠为直角,则此椭圆的离心率为 A 21- B 51- C 2 D 3 11.已知PC 为球O 的直径,A ,B 是球面上两点,且2AB =,4APC BPC π∠=∠=,若球O的体积为323π,则棱锥A PBC -的体积为 A .43432 D 3212.已知函数32()3sin f x x x x π=--,则1240244025()()()()2013201320132013f f f f ++++= A .4025 B .4025- C .8050 D .8050-哈尔滨市第三中学第四次高考模拟考试数学试卷(理工类)第Ⅱ卷 (非选择题, 共90分)二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.) 13.已知实数0a >, 0b >且2a b +=,则14a b+的最小值为 . 14.已知()y x ,满足:()00,0x y m m x y +≤>⎧⎪⎨≥≥⎪⎩,若y x z +=2的最大值为2,则=m . 15.某高校“统计初步”课程的教师为了检验主修统计专业是否与性别有关系,随机调查了选该课的学生人数情况,具体数据如右表,则最大有 的把握认为主修统计专业与性别有关系. 参考公式:22()()()()()n ad bc K a b c d a c bd -=++++16.△ABC 中,∠A =60°,点D 在边AC 上,DB =()()0sin sin BA BC BD BA ABC Cλλ=+>,则AC +AB 的最大值为 .三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)已知数列{}n a 满足:*22()n n S a n N =-∈. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令(1)n n b n a =-,求数列{}n b 的前n 项和n T .18.(本小题满分12分)小建大学毕业后要出国攻读硕士学位,他分别向三所不同的大学提出了申请.根据统计历年数据,在与之同等水平和经历的学生中,申请A 大,B 大,C 大成功的频率分别为123,,234.若假设各大学申请成功与否相互独立,且以此频率为概率计算. (Ⅰ)求小建至少申请成功一所大学的概率;(Ⅱ)设小建申请成功的学校的个数为X ,试求X 的分布列和期望.19.(本小题满分12分)如图,四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD , 且PA =AB =1,E 为PB 中点. (Ⅰ)求证:AE ⊥平面PBC ;(Ⅱ)若AD =2,求二面角D -EC -B的平面角的余弦值.20.(本小题满分12分)已知抛物线()02:2>=p px y C ,过焦点F 作动直线交C 于B A ,两点,过B A ,分别作圆12:22=+⎪⎭⎫ ⎝⎛-y p x D 的两条切线,切点分别为Q P ,.若AB 垂直于x 轴时,114sin sin PAF QBF+=∠∠.(Ⅰ)求抛物线方程;(Ⅱ)若点H 也在曲线C 上,O 为坐标原点,且OH t OB OA =+8,求实数t 的取值范围.PAB C DE21.(本小题满分12分)已知函数()()b ax x e x f x++=2在点()()0,0f 处的切线方程为046=++y x .(Ⅰ)求函数()x f 的解析式及单调区间;(Ⅱ)若方程()()R k kx x f ∈=有三个实根,求实数k 的取值范围.请考生在第22、23、24 22.(本小题满分10分)如图,四边形ABCD 内接于⊙O ,边AD ,BC 的延长线交于点P ,直线AE 切⊙O 于点A ,且PC AD CD AB ⋅=⋅.求证: (Ⅰ)ABD ∆∽CPD ∆; (Ⅱ)AE ∥BP . 23.(本小题满分10分)已知曲线1C:cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),2C:cos sin x t y t αα⎧=⋅⎪⎨⎪=⋅⎩(t 为参数). (Ⅰ)将1C 、2C 的方程化为普通方程;(Ⅱ)若2C 与1C 交于M 、N ,与x 轴交于P ,求PN PM ⋅的最小值及相应α的值.24.(本小题满分10分)设函数212)(++-=x x x f . (Ⅰ)求不等式4)(≥x f 的解集;(Ⅱ)若不等式2)(-<m x f 的解集是非空集合,求实数m 的取值范围.2013年哈尔滨市第三中学第四次高考模拟考试数学试卷(理工类)答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C A A A C B D A C B B D。
绝密★启用前2019-2020年高三第四次模拟考试数学(理)含答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。
第I卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,则A. B. C. D.2.已知,则在复平面内,复数所对应的点在A.第一象限B.第二象限C.第三象限D.第四象限3.已知向量,,则“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知成等差数列,成等比数列,则等于A. B. C. C. 或5.已知,,则函数为增函数的概率是A. B. C. D.6.已知一个几何体的正视图和俯视图如右图所示,正视图是边长为2a的正三角形,俯视图是边长为a 的正六边形,则该几何体的侧视图的面积为A.B.C.D.7.执行如下图的程序框图,则输出的值P=A.12B.10C.8D.68.过抛物线的焦点F的直线交该抛物线于A,B两点,O为坐标原点. 若|AF|=3,则 AOB的面积为A.B.C.D.9.设,满足约束条件,若目标函数(,)的最小值为,则的最大值是A.B.C.D.10.若函数在是增函数,则的取值范围是A. B. C. D.11.已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形。
2020年黑龙江省哈尔滨三中高考数学一模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知全集,集合,那么集合A. B.C. D.2.i为虚数单位,满足的复数z的虚部是A. 1B. iC.D.3.的展开式中的常数项为A. B. C. D. 94.我国南北朝时期的数学家祖暅提出了著名的祖暅原理:“幂势既同,则积不容异”意思是如果两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等.现有同高的圆锥和棱锥满足祖咂原理的条件,若棱锥的体积为,圆锥的侧面展开图是半圆,则圆锥的母线长为A. B. 1 C. D.5.某商场每天的食品销售额万元与该商场的总销售额万元具有相关关系,且回归方程为已知该商场平均每天的食品销售额为8万元,估计该商场平均每天的食品销售额与平均每天的总销售额的比值为A. B. C. D.6.已知为等比数列的前n项和,且是与的等差中项,则数列的公比为A. B. C. D. 或17.某地区有10000名高三学生参加了网上模拟考试,其中数学分数服从正态分布,成绩在之外的人数估计有附:若X服从,则,A. 1814人B. 3173人C. 5228人D. 5907人8.以为焦点的椭圆与直线有公共点,则满足条件的椭圆中长轴最短的为A. B. C. D.9.已知某同学每次射箭射中的概率为p,且每次射箭是否射中相互独立,该同学射箭3次射中多于1次的概率为,则A. B. C. D.10.已知函数和函数的图象分别为曲线,,直线与,分别交于M,N两点,P为曲线上的点.如果为正三角形,则实数k的值为A. B. C. D.11.将一枚骰子抛掷3次,则最大点数与最小点数之差为3的概率是A. B. C. D.12.已知函数,若方程有7个不同的实数解,则的取值范围A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知函数在上有两个不同的零点,则实数m的取值范围是______.14.已知点P为圆上任一点,,分别为椭圆的两个焦点,求的取值范围______.15.若直线是曲线的切线,也是曲线的切线,则______.16.已知双曲线的焦距为2c,,是实轴顶点,以为直径的圆与直线在第一象限有两个不同公共点,则双曲线离心率e的取值范围是______.三、解答题(本大题共7小题,共82.0分)17.在中,角A,B,C的对边分别为a,b,c,且.若,求C的大小;若AC边上的中线BM的长为,求面积的最大值.18.如图,在四棱锥中,平面ABCD,,,,点M是AC与BD的交点.求二面角的余弦值;若点N在线段PB上且平面PDC,求直线MN与平面PAC所成角的正弦值.19.哈三中总务处的老师要购买学校教学用的粉笔,并且有非常明确的判断一盒粉笔是“优质产品”和“非优质产品”的方法.某品牌的粉笔整箱出售,每箱共有20盒,根据以往的经验,其中会有某些盒的粉笔为非优质产品,其余的都为优质产品.并且每箱含有0,1,2盒非优质产品粉笔的概率为,和为了购买该品牌的粉笔,校总务主任设计了一种购买的方案:欲买一箱粉笔,随机查看该箱的4盒粉笔,如果没有非优质产品,则购买,否则不购买.设“买下所查看的一箱粉笔”为事件A,“箱中有i件非优质产品”为事件1,.求,,;随机查看该品牌粉笔某一箱中的四盒,设X为非优质产品的盒数,求X的分布列及期望;若购买100箱该品牌粉笔,如果按照主任所设计方案购买的粉笔中,箱中每盒粉笔都是优质产品的箱数的期望比随机购买的箱中每盒粉笔都是优质产品的箱数的期望大10,则所设计的方案有效.讨论该方案是否有效.20.已知函数.讨论在定义域内的极值点的个数;若对,恒成立,求实数m的取值范围;证明:若,不等式成立.21.过x轴正半轴上一点做直线与抛物线E:交于,,两点,且满足,过定点与点A做直线AC与抛物线交于另一点C,过点与点B做直线BD与抛物线交于另一点设三角形AMN的面积为,三角形DMN的面积为.求正实数m的取值范围;连接C,D两点,设直线CD的斜率为;当时,直线AB在y轴的纵截距范围为,则求的取值范围;当实数m在取到的范围内取值时,求的取值范围.22.在平面直角坐标系中,曲线C的参数方程为为参数,以原点为极点,x轴的正半轴为极轴,建立极坐标系,直线l的参数方程为,为参数.写出曲线C的极坐标方程以及直线l的普通方程;f若点,直线l与曲线C交于P,Q两点,弦P,Q的中点为M,求的值.23.设函数.求的解集;若,使恒成立的m的最大值为正数a,b满足,求的最小值.-------- 答案与解析 --------1.答案:B解析:解:因为集合或,,则,那么集合,故选:B.首先解不等式求出集合A,B,由补集的运算求出,再由交集的运算求出.本题考查了解不等式和集合交、补集的混合运算,属于基础题.2.答案:C解析:解:由,得,复数z的虚部是.故选:C.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.答案:C解析:解:的展开式中的通项公式为,令,求得,可得常数项为,故选:C.先求出二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项的值.本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.4.答案:D解析:解:现有同高的圆锥和棱锥满足祖咂原理的条件,棱锥的体积为,圆锥的体积为,圆锥的侧面展开图是半圆,设圆锥的侧面展开图这个半圆的半径是R,即圆锥的母线长是R,半圆的弧长是,圆锥的底面周长等于侧面展开图的扇形弧长,设圆锥的底面半径是r,则得到,,圆锥的高,圆锥的体积.解得,则圆锥的母线长为.故选:D.推导出圆锥的体积为,设圆锥的侧面展开图这个半圆的半径是R,即圆锥的母线长是R,半圆的弧长是,圆锥的底面周长等于侧面展开图的扇形弧长,设圆锥的底面半径是r,则,圆锥的高,由此能求出圆锥的母线长.本题考查圆锥的母线长的求法、考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.5.答案:A解析:解:商场每天的食品销售额万元与该商场的总销售额万元的线性回归方程为,当商场平均每天的食品销售额为8万元时,该商场平均每天的总销售额为,该商场平均每天的食品销售额与平均每天的总销售额的比值为:,故选:A.根据线性回归方程得到该商场平均每天的总销售额,从而求出该商场平均每天的食品销售额与平均每天的总销售额的比值.本题主要考查了函数的实际应用,以及线性回归方程的应用,是基础题.6.答案:A解析:解:是与的等差中项,即为,若公比,则,即有,即,显然不成立,故,则,化为,即,解得或舍去,故选:A.由等差数列的中项性质和等比数列的求和公式,解方程可得所求公比,注意公比为1的情况.本题考查等比数列的求和公式和等差数列的中项性质,考查方程思想和化简运算能力,属于基础题.7.答案:A解析:解:由数学分数服从正态分布,得,.则.则成绩在之内的人数估计有8183,成绩在之外的人数估计有1817,与1814最接近.故选:A.由已知可得,,则,求出概率,乘以10000可得成绩在之内人数的近似值,再由10000减去该近似值得答案.本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量和的应用,考查曲线的对称性,属于基础题.8.答案:C解析:解:以为焦点的椭圆,设椭圆方程为,由得,由题意,a有解,,,或舍,,此时椭圆方程是:.故选:C.先设椭圆方程,然后与直线方程联立方程组,再根据该方程组有解即可求出a的最小值,则问题解决.本题主要考查由代数方法解决直线与椭圆交点问题,是中档题.9.答案:C解析:解:某同学每次射箭射中的概率为p,且每次射箭是否射中相互独立,该同学射箭3次射中多于1次的概率为,则,解得.故选:C.利用n次独立重复试验中事件A恰好发生一次的概率计算公式能求出结果.本题考查概率的求法,考查n次独立重复试验中事件A恰好发生一次的概率计算公式等基础知识,考查运算求解能力,是基础题.10.答案:B解析:解:由已知可设,,则P点横坐标为,又因为点P在函数的图象上,所以,因为为正三角形,则,故直线PM的斜率等于,,即,,即,,故选:B.由已知条件设出M,N,P的坐标,利用直线PM的倾角是,即斜率为,利用斜率的坐标公式列出关于K的方程,解指对数方程即可本题主要考查对数函数的图象和性质应用,体现了数形结合和转化的数学思想,属于中档题.11.答案:D解析:解:将一枚骰子抛掷3次,基本事件总数,最大点数与最小点数之差为3包含三种情况:取最小点为1,最大点为4,另外1个点数可能为1,2,3,4,包含的基本事件个数为,取点最小点为2,最大点为5,另外1个点数可能为2,3,4,5,包含的基本事件个数为,取点最小点为3,最大点为6,另外1个点数可能为3,4,5,6,包含的基本事件个数为,则最大点数与最小点数之差为3的概率是:.故选:D.将一枚骰子抛掷3次,基本事件总数,最大点数与最小点数之差为3包含三种情况:取最小点为1,最大点为4,另外1个点数可能为1,2,3,4,包含的基本事件个数为,取点最小点为2,最大点为5,另外1个点数可能为2,3,4,5,包含的基本事件个数为,取点最小点为3,最大点为6,另外1个点数可能为3,4,5,6,包含的基本事件个数为,由此能求出最大点数与最小点数之差为3的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.12.答案:C解析:解:当时,,令,解得,故在上单调递增,在上单调递减,且,时,,作出函数的图象如下图所示,令,则有两个不同的实数根,,要使方程有7个不同的实数解,则,,,即,作出上述不等式组表示的可行域如下图所示,由可行域可知,当取点时,最小,且最小值为2;当取点时,最大,且最大值为12.故的取值范围为.故选:C.利用导数研究函数的性质,可作出的草图,观察图象,结合题设条件可得方程有两个不同的实数根,,且,,利用二次函数根的分布,可以得到m,n满足的约束条件,由此作出可行域,再根据的几何意义,求得取值范围.本题考查分段函数的综合运用,涉及了利用导数研究函数的性质,“套套”函数,二次函数根的分布,简单的线性规划等知识点,考查换元思想,数形结合思想,函数与方程思想等数学思想,考查逻辑推理能力,运算求解能力,直观想象等数学能力,属于较难题目.13.答案:解析:解:依题意,函数,上的图象与直线有两个不同的交点,,又,,,函数的图象如下,由图可知,.故答案为:.依题意,函数,上的图象与直线有两个不同的交点,化简,作出函数在上的图象,观察图象即可得到m的取值范围.本题主要考查函数零点与方程根的关系,考查三角恒等变换以及三角函数的图象及性质,考查数形结合思想及化简求解能力,属于中档题.14.答案:解析:解:如图,椭圆的焦点,,设,则,,则,的取值范围是.故答案为:.由椭圆方程求出焦点坐标,设,得到与的坐标,写出数量积,再由三角函数求最值可得的取值范围.本题考查圆与椭圆综合,考查平面向量的数量积运算,训练了利用三角函数求最值,是中档题.15.答案:1或解析:解:设与和的切点分别为、;由导数的几何意义可得,曲线在处的切线方程为,即,曲线在点处的切线方程为,即,则,,解得,或.当时,切线方程为,即,当时,切线方程为,即,或.故答案为:1或.分别设出直线与两曲线的切点坐标,求出导数值,得到两切线方程,由两切线重合得答斜率和截距相等,从而求得切线方程得答案.本题考查利用导数研究过曲线上某点处的切线方程,考查计算能力,是中档题.16.答案:解析:解:由题意如图,要使以为直径的圆与直线在第一象限有两个不同公共点,可得直线在x,y轴的交点分别为:,,则O到直线的距离小于半径,且,即,,整理可得:,即,解得,故答案为:由题意可得O到直线的距离小于半径,且,可得a,c的关系,进而求出离心率的范围.本题考查双曲线的性质及点到直线的距离公式,属于中档题.17.答案:解:.由正弦定理可得,,由,可得,由,可得,由题意,,,,,,,由可得,由向量的中点表示可得,两边平方可得:,可得:,可得:,,解得,当且仅当时取等号,的面积,当且仅当时取等号,即面积的最大值是.解析:由正弦定理,两角和的正弦函数公式可得,结合,可得,结合范围,可得,进而利用二倍角公式,两角差的余弦函数公式化简已知等式可得,结合范围C,,可得,即可得解.由已知运用向量的中点表示可得,利用向量的模的平方即为向量的平方以及基本不等式即可得到ac的最大值,进而根据三角形的面积公式即可求解.本题主要考查了正弦定理,两角和的正弦函数公式,二倍角公式,两角差的余弦函数公式,基本不等式,三角形的面积公式以及平面向量的运算,考查了转化思想,属于中档题.18.答案:解:在中,,,则.在中,,则,在中,,则,,,平面ABCD,分别以直线AB,AD,AP为x,y,z轴建立空间直角坐标系,0,,,0,,0,,0,,,0,,,,,设平面ACP的法向量y,,则,取,则,设平面BCP的法向量b,,则,取,得,则,二面角的余弦值为.设平面PCD的法向量n,,,1,,则,取,得,设y,,且,,满足,则0,,,点N在线段PB上且平面PDC,,解得.,平面ACP的法向量,.直线MN与平面PAC所成角的正弦值为.解析:分别以AB,AD,AP为x轴,y轴,z轴建立如图的空间直角坐标系,求出平面APC的法向量、平面PCD的法向量,利用向量法能求出二面角的正切值.先根据条件求出点N的具体位置,再利用向量法能求出直线MN与平面PAC所成角的正弦值.本题考查线面角的正弦值、二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.答案:解:由已知,,.的可能取值为0,1,2,,,,随机变量X的分布列为:X 0 1 2P.由知,按照设计方案购买的一箱粉笔中,箱中每盒粉笔都是优质产品的概率为:,,该方案无效.解析:利用古典概型概率计算公式能求出,,的可能取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.由,得到按照设计方案购买的一箱粉笔中,箱中每盒粉笔都是优质产品的概率为,由,得到该方案无效.本题考查概率、离散型随机变量的分布列、数学期望的求法,考查方案是否有效的判断与求法,考查古典概型、条件概率等基础知识,考查运算求解能力,是中档题.20.答案:解:,对于方程,,当时,,,此时没有极值点;当时,方程的两根为,,不妨设,则,当或时,,当时,,此时,是函数的两个极值点;当时,方程的两根为,,且,故,,当时,,故没有极值点;综上,当时,函数有两个极值点;当时,函数没有极值点;,即,则,设,当时,,单调递减,当时,,单调递增,则,故;证明:由知当时,恒成立,即,欲证,只需证,设,当时,,单调递减,当,,单调递增,,故,对,不等式成立.解析:函数的定义域为,求导后研究方程,分类讨论得出函数的单调性情况,进而得出极值点情况;问题等价于,设,利用导数求函数的最小值即可;由知,恒成立,则问题转化为证明,设,利用导数证明恒成立即可.本题考查利用导数研究函数的极值,以及不等式的恒成立问题,考查分类讨论思想以及推理论证能力,属于较难题目.21.答案:解:设直线AB方程为,联立直线AB与抛物线方程得,解得,则且,又,,解得,正实数m的取值范围为;设,设过点的直线为,过点的直线为,由,联立解得,由,联立解得,,,直线AB在y轴上的纵截距取值范围为,,,即;,由和可知,,.解析:设直线AB方程为,与抛物线方程联立,由韦达定理可得,再结合已知条件,即可求得正实数m的取值范围;设,设过点的直线为,过点的直线为,与抛物线方程联立后,可得,进而求得,由题意可知,,进而得到;易知,结合中m的范围即得解.本题主要考查直线与抛物线的位置关系,考查逻辑推理能力及运算求解能力,对计算能力要求较高,属于中档题.22.答案:解:曲线C的参数方程为为参数,转换为直角坐标方程为.直线l的参数方程为,为参数转换为直角坐标方程为.把直线的参数方程,为参数,代入,得到,所以,,所以,即,,所以.解析:直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.利用一元二次方程根和系数关系式的应用和二次函数性质的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,极径的应用,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.答案:解:等价为或或,解得或或,则原不等式的解集为;若,使恒成立,即为,由,当时,取得等号,则的最小值为4,可得,则,即,由,,可得,当且仅当,即时取得等号,则的最小值为1.解析:由零点分区间法,结合绝对值的定义,去绝对值,解不等式,求并集,可得所求解集;由题意可得,运用绝对值的性质可得其最小值,进而得到m的最大值,再由乘1法和基本不等式,可得所求最小值,注意运用的变形.本题考查绝对值不等式的解法,注意运用分类讨论思想,考查不等式恒成立问题解法,注意运用转化思想和绝对值不等式的性质,考查基本不等式的运用:求最值,化简整理的运算能力,属于中档题.。