钢管桩验算
- 格式:doc
- 大小:23.43 KB
- 文档页数:2
钢管桩的计算公式条件:地基土粘土、可塑,承载力特征值f ak ,重度γ,摩擦角φ,作用在基础顶面处内力标准值为:弯距M k ,剪力V k ,竖向轴力N k一、根据结构力学知识,进行桩顶作用效应计算求出每个桩顶的力弯距ki M ,剪力ki V ,竖向轴力ki N , 如左图所示。
二、桩下压承载力计算 (参见《建筑桩基技术规范》)单桩竖向承载力标准值为:p pk p j sjk pk sk uk A q l q u Q Q Q λ+=+=∑sjk q ——桩侧第j 层土的极限侧阻力标准值,查表5.3.5-1。
pk q ——极限端阻力标准值,查表5.3.5-2。
j l ——桩周第j 层土的厚度u ——桩身周长p λ——桩端土塞效应系数,对于闭口钢管桩取1,对于敞口钢管桩按下式计算:当5/<d h b 时,d n h b p /16.0=λ当5/≥d h b 时,8.0=p λn 为桩端隔板分割数。
若: K Q R N uk ki /2.12.1=≤则桩基满足竖向承载力要求K ——安全系数,取2.0。
R ——单桩竖向承载力特征值三、 桩上拔承载力计算,即当0<kil N 时p uk kil G T N +≤2/j sjk j j uk l q u T ∑=λuk T ——抗拔极限承载力标准值P G ——桩基自重j λ——抗拔系数,砂土取0.5~0.7,黏性土、粉土取0.7~0.8。
当桩长与桩径之比小于20时取小值。
如满足上式则桩基满足上拔承载力要求四、抗倾覆稳定性验算根据《架空送电线路基础设计技术规范》,土压力系数:)2/45(20βγ+= tg m 空间增大系数:ββζtg d l k )245cos(3210++= 基础的计算宽度:00dk d =ζ土的侧压力系数,粘性土取0.72,粉质粘土和粉土取0.6,砂土取0.38。
倾覆力ki V 的作用点到地面的高度kiki V M h =0 lh 0=η,查表8.1.4得 638.12=μ若极限倾覆力ki f u V r l md V ≥=ημ20,极限倾覆力ki f u M r l md V ≥=μ3则桩基满足抗倾覆稳定性要求五、桩身承载力验算 强度验算:d n ki n ki f W M A N ≤+ 整体稳定性验算:d Eki n ki n ki f N N W M A N ≤-+)8.01(ϕ 22λπEA N E =。
北延桥钢管桩验算验算部位:选取全桥最不利荷载处-中支点墩柱一侧5m范围进行验算。
5m范围内钢管桩数量:顺桥向,按施工单位提供的钢管桩顺桥向支点位置5m,跨中位置6.5m间距可知,此段5m 范围内共计考虑顺桥向1排钢管桩。
横桥向,按施工单位提供图示,横桥向6根钢管桩,入土20m。
按上所述,顺桥向5m、横桥向18m桥宽范围内(桥梁面积90m2),共计6根钢管桩,桩入土20m。
一、施工单位提供的各项荷载值如下:恒载:1、底模、侧模采用竹胶板覆膜竹胶板自重:0.34kn/m22、顺桥向木枋(5×10)间距30cm自重:0.10kn/m23、横桥向木枋(12×12)间距60cm自重:0.30kn/m24、支架体系(碗扣式)自重:1.74kn/m2(腹板处)自重:1.06kn/m2(底板、翼缘板处)5、平台满铺木枋(15×15)自重:1.20kn/m26、纵联I36C工字钢(间距1.0m)自重:0.712kn/m27、横梁I36C工字钢(双拼)43m宽平台每排钢管桩受横联工字钢自重61.23kn活载:1、施工机具及人员荷载:2.5kn/m22、倾倒混凝土产生的荷载(泵送):4.0kn/m23、混凝土振捣产生的荷载:2.0kn/m2施工荷载吨/m2 桥梁面积(m2)荷载(吨)恒载 底模、侧模 0.034 90 3 顺桥向木枋 0.010 90 1 横桥向木枋 0.030 90 3 碗扣支架 0.117 90 10 平台满铺木枋 0.120 90 11 纵向工字钢 0.071 90 6 横向工字钢 0.068 90 6 活载 施工机具人员 0.250 90 23 倾倒混凝土 0.400 90 36振捣混凝土 0.200 90 18 梁体荷载 荷载(吨) 梁体荷载221 恒载合计 261 活载合计77恒载 1.0 活载1.0组合后荷载值F 总=1.0*261+1.0*77=338吨 此处为纵向1排,横向6列,故 单根钢管桩荷载值F=338/6=57吨 三、单根钢管桩抗力本次计算按试桩后对桩侧修正摩阻系数考虑 选取整个钢管桩范围内最不利钻孔ZK6计算,按桩入土20m ,顶标高0.808m ,底标高-19.192m 。
目录1 基坑支护总体概况 (2)1.1支护结构布置 (2)1.2支护参数选定 (3)2 基坑支护稳定性计算 (4)2.1ML19#墩承台基坑支护验算 (4)2.2MR21#墩承台基坑支护验算 (7)3 结论及建议 (10)1 基坑支护总体概况1.1 支护结构布置XXXX立交桥与铁路线路斜交角为80.1度。
上部采用左右分幅箱梁,每幅孔跨布置为2×56mT构,桥梁部分全长112m,其中2×44m为转体施工段。
平面上左右幅桥主墩采用错孔布置,右幅桥主墩承台距陇海铁路防护栏7.56m,左幅桥主墩承台距陇海铁路防护栏7.47m。
承台基坑开挖施工中,为防止边坡失稳,同时为减小对一旁铁路路基影响,故在开挖过程中需对基坑进行支护,如下图所示:图1.1 M R21#墩承台基坑支护平面图(单位:m)图1.2 M L19#墩承台基坑支护平面图(单位:m)图1.3 M R21#墩承台基坑支护立面图(单位:c m)图1.4 M L19#墩承台基坑支护立面图(单位:c m)1.2 支护参数选定1.2.1 支护材料工程量工程项目及材料名称数量长度(m) 重量(kg)ML19#墩12m长Ф600×10mm钢管桩43 12 75078 I32工字钢 2 4.9 565.46I32工字钢 2 27.9 3219.66I32工字钢 2 10.9 1257.86C20护壁砼18.67(m3)MR21#墩12m长Ф600×10mm钢管桩42 12 73332 I32工字钢 2 5 577I32工字钢 2 27 3115.5I32工字钢 2 11 1269.4C20护壁砼15.09(m3)合计12m长Ф600×10mm钢管桩148.4(T)I32工字钢10.005(T)C20护壁砼33.76(m3)ML19#墩基坑开挖:3358.68方,MR21#墩基坑开挖:2782.76方1.2.2 支护土层参数根据设计图纸中设计说明及现场实地勘查,该地区土质主要为失陷性黄土质,属于低液限粉质粘土,经查《公路桥涵地基与基础技术规范》(JTG D63-2007)、《土力学》、《建筑地基与基础设计规范》(GB50011-2010)等相关资料可取以下相关的参考特性值。
北延桥钢管桩验算验算部位:选取全桥最不利荷载处-中支点墩柱一侧5m范围进行验算。
5m范围内钢管桩数量:顺桥向,按施工单位提供的钢管桩顺桥向支点位置5m,跨中位置6.5m间距可知,此段5m 范围内共计考虑顺桥向1排钢管桩。
横桥向,按施工单位提供图示,横桥向6根钢管桩,入土20m。
按上所述,顺桥向5m、横桥向18m桥宽范围内(桥梁面积90m2),共计6根钢管桩,桩入土20m。
一、施工单位提供的各项荷载值如下:恒载:1、底模、侧模采用竹胶板覆膜竹胶板自重:0.34kn/m22、顺桥向木枋(5×10)间距30cm自重:0.10kn/m23、横桥向木枋(12×12)间距60cm自重:0.30kn/m24、支架体系(碗扣式)自重:1.74kn/m2(腹板处)自重:1.06kn/m2(底板、翼缘板处)5、平台满铺木枋(15×15)自重:1.20kn/m26、纵联I36C工字钢(间距1.0m)自重:0.712kn/m27、横梁I36C工字钢(双拼)43m宽平台每排钢管桩受横联工字钢自重61.23kn活载:1、施工机具及人员荷载:2.5kn/m22、倾倒混凝土产生的荷载(泵送):4.0kn/m23、混凝土振捣产生的荷载:2.0kn/m2二、钢管桩受载计算施工荷载吨/m2 桥梁面积(m2)荷载(吨)恒载 底模、侧模 0.034 90 3 顺桥向木枋 0.010 90 1 横桥向木枋 0.030 90 3 碗扣支架 0.117 90 10 平台满铺木枋 0.120 90 11 纵向工字钢 0.071 90 6 横向工字钢 0.068 90 6 活载 施工机具人员 0.250 90 23 倾倒混凝土 0.400 90 36振捣混凝土 0.200 90 18 梁体荷载 荷载(吨) 梁体荷载221 恒载合计 261 活载合计77考虑荷载分项系数 恒载 1.0 活载1.0组合后荷载值F 总=1.0*261+1.0*77=338吨 此处为纵向1排,横向6列,故 单根钢管桩荷载值F=338/6=57吨 三、单根钢管桩抗力本次计算按试桩后对桩侧修正摩阻系数考虑 选取整个钢管桩范围内最不利钻孔ZK6计算,按桩入土20m ,顶标高0.808m ,底标高-19.192m 。
目录1 基坑支护总体概况 (2)1.1支护结构布置 (2)1.2支护参数选定 (3)2 基坑支护稳定性计算 (4)2.1ML19#墩承台基坑支护验算 (4)2.2MR21#墩承台基坑支护验算 (7)3 结论及建议 (10)1 基坑支护总体概况1.1 支护结构布置XXXX立交桥与铁路线路斜交角为80.1度。
上部采用左右分幅箱梁,每幅孔跨布置为2×56mT构,桥梁部分全长112m,其中2×44m为转体施工段。
平面上左右幅桥主墩采用错孔布置,右幅桥主墩承台距陇海铁路防护栏7.56m,左幅桥主墩承台距陇海铁路防护栏7.47m。
承台基坑开挖施工中,为防止边坡失稳,同时为减小对一旁铁路路基影响,故在开挖过程中需对基坑进行支护,如下图所示:图1.1 M R21#墩承台基坑支护平面图(单位:m)图1.2 M L19#墩承台基坑支护平面图(单位:m)图1.3 M R21#墩承台基坑支护立面图(单位:c m)图1.4 M L19#墩承台基坑支护立面图(单位:c m)1.2 支护参数选定1.2.1 支护材料工程量工程项目及材料名称数量长度(m) 重量(kg)ML19#墩12m长Ф600×10mm钢管桩43 12 75078 I32工字钢 2 4.9 565.46I32工字钢 2 27.9 3219.66I32工字钢 2 10.9 1257.86C20护壁砼18.67(m3)MR21#墩12m长Ф600×10mm钢管桩42 12 73332 I32工字钢 2 5 577I32工字钢 2 27 3115.5I32工字钢 2 11 1269.4C20护壁砼15.09(m3)合计12m长Ф600×10mm钢管桩148.4(T)I32工字钢10.005(T)C20护壁砼33.76(m3)ML19#墩基坑开挖:3358.68方,MR21#墩基坑开挖:2782.76方1.2.2 支护土层参数根据设计图纸中设计说明及现场实地勘查,该地区土质主要为失陷性黄土质,属于低液限粉质粘土,经查《公路桥涵地基与基础技术规范》(JTG D63-2007)、《土力学》、《建筑地基与基础设计规范》(GB50011-2010)等相关资料可取以下相关的参考特性值。
钢管桩平台设计计算书1、钢管桩平台初步设计平台总体设计以平稳、牢固,用材节约,方便顺利施工,同时保证工程施工质量为原则。
平台所处位置为水中,河床底10m 深度范围内都是淤泥层,根据施工要求,施工平台设计为60m (横桥向根据桥梁桩基位置确定)*5m (顺桥向宽度)。
采用300mm 钢管做支撑水上施工平台采用2排Φ300 mm 钢管(间距4m )排架,上部形成一个5m 平台,以承受桩机在施工过程中产生的荷载。
打入的单排桩钢管间距为2.5m ,钢管长6-8m ,打入河底以下5m 深,顶部露水面0.2m 以上(适当参考河流最高水位),钢管桩之间适当增加Φ50 mm 钢管的剪刀撑以保证整体支架的稳定,钢管桩顶部用20#工字钢连接,顶面工作区域铺设5mm 钢板。
平台搭设位置为:南山河桥1#墩 、南山河桥2#墩 、北山河桥1#墩、双岙河桥1#墩、 丰台横河桥1#墩,具体布置见下图:4000250020#工字钢300钢管平台平面布置示意图护栏5000平台(5mm钢板)剪刀撑300mm钢管桩6桩基4000平台立面布置示意图2、钢管桩平台安全验算冲击钻整机尺寸2.5*5.5,地梁长度为5m(一般为30cm钢管),我们假定在最不利条件:所有荷载集中在平台工作区域4*7.5m范围内,底部由8根300mm钢管桩支撑。
这7.5m范围内平台材料自重取5t,根据施工经验,增加剪刀撑后,平台稳定性满足要求这里不做单独验算。
我们就此极限状态下进行平台基础承载力验算和工字钢抗弯强度验算2.1施工最大荷载1、钻机自重10t,,1.2m冲锤约4t2、材料自重5t3、首灌混凝1.5m³约4t4、70m导管+料斗自重约5t最大荷载=(10+5+4+5)*10KN=240KN(浇筑混凝土时)2.2、钢管桩基础承载力验算钻机工作范围内共有8根钢管桩,根据勘探资料河床底下5m 范围内为淤泥层。
所以钢管桩采用摩擦桩相关参数进行计算单根钢管柱在极限状态下的轴向力:KN N 308/240== 根据《建筑桩基技术规范》公式ppk p j sjk A q l λ+=∑q u Q p uk计算单根钢管桩的极限承载力。
钢管桩设计与验算钢管桩选用Ф800,δ=10mm 的钢管,材质为A 3,E=2.1×108 Kpa,I=64π80.04-78.04=1.936×10-3M 4;依据386或389墩身高度和周边地形,钢管桩最大桩长按30m 考虑;1、桩的稳定性验算桩的失稳临界力Pcr 计算 Pcr=22l EI π=32823010936.1101.2-⨯⨯⨯⨯π=4458kN >R=658.3 kN2、桩的强度计算桩身面积 A=4πD 2-a 2 =4π802-782=248.18cm 2钢桩自身重量P ×30×102×7.85=5844kg=58.44kN桩身荷载 p=658.3+58.44=716.7 kNб=p /A=716.7×102/248.18=288.7kg /cm 2=35.3Mpa3、桩的入土深度设计通过上述计算可知,每根钢管桩的支承力近658.3kN,按规范取用安全系数k=2.0,设计钢管桩入土深度,则每根钢管桩的承载力为658.3×2=1316.6kN,管桩周长 U=πD=3.1416×0.8=2.5133m;依地质勘察报告,河床自上而下各层土的桩侧极限摩擦力标准值为:第一层粉质黏土厚度为3m, τ=120 Kpa第二层淤泥粉质黏土厚度为4m,τ=60 Kpa第三层粉砂厚度为1.8m,τ=90KpaN=∑τi u hiN =120×2.5133×3+60×2.5133×4+90×2.5133×h3=1316.6 kN=904.7+603.1+226.1 h2=1316.6kN解得 h3=-0.84m证明钢管桩不需要进入第三层土,即满足设计承载力;钢管桩实际入土深度:∑h=3+4=7 m4、打桩机选型拟选用DZ90,查表得知激振动570 kN,空载振幅≮0.8mm,桩锤全高 4.2 m,电机功率90kw;5、振动沉桩承载力计算根据所耗机械能量计算桩的容许承载力[]P =m 1{()[]v a A f m x 1223111βμα+-+Q} m —安全系数,临时结构取1.5m 1—振动体系的质量 m 1=Q/g=57000/981=58.1Q 1—振动体系重力 Ng —重力加速度=981 cm /s 2A X —振动沉桩机空转时振幅 A X = 10.3 mmM —振动沉桩机偏心锤的静力矩 N. cm μ—振动沉桩机振幅增大系数 μ= A n / A xA n -振动体系开始下沉时振幅 取1.2 cmf —振动频率 17.5 转/Sa —振动沉桩机最后一击的实际振幅 取1.0 cm ν—沉桩最后速度 取5 cm/minα1—土性质系数,查表得α1=20β1—影响桩入土速度系数, 查表得β1=0.17 p=5.11{517.0110.10.12.15.171.58202231⨯+⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛⨯⨯⨯+9×104}=5.11{85.1107401.26 +9×104} =5.11×1.571610=1047438N=1047KN > N=716.7KN 通过上述计算及所选各项参数说明:1DZ90型振动打桩机,是完全能够满足本设计单桩承载力的;。
钢管桩设计与验算钢管桩选用Ф800,δ=10mm 的钢管,材质为A 3,E=2.1×108 Kpa,I=64π(80.04-78.04)=1.936×10-3M 4。
依据设计桩高度,钢管桩最大桩长为46.2m 。
1、桩的稳定性验算桩的失稳临界力Pcr 计算 Pcr=22lEIπ=32822.4610936.1101.2-⨯⨯⨯⨯π=1878kN >R=658.3 kN 2、桩的强度计算桩身面积 A=4π(D 2-a 2)=4π(802-782)=248.18cm 2钢桩自身重量P=A.L.r=248.18×46.2×102×7.85*10-3 =90000kg=90kN桩身荷载 p=658.3+90=748.3 kNб=p /A=748.3×102/248.18=301.5kg /cm 2=30.15Mpa3、桩的入土深度设计通过上述计算可知,每根钢管桩的支承力近658.3kN ,按规范取用安全系数k=2.0,设计钢管桩入土深度,则每根钢管桩的承载力为658.3×2=1316.6kN ,管桩周长 U=πD=3.1416×0.8=2.5133m 。
依地质勘察报告,河床自上而下各层土的桩侧极限摩擦力标准值为:第一层 粉质黏土 厚度为3m , τ=120 Kpa第二层 淤泥粉质黏土 厚度为4m ,τ=60 Kpa 第三层 粉砂 厚度为1.8m ,τ=90Kpa N=∑τi u h iN =120×2.5133×3+60×2.5133×4+90×2.5133×h 3=1316.6 kN =904.7+603.1+226.1 h 2 =1316.6kN解得 h 3=-0.84m证明钢管桩不需要进入第三层土,即满足设计承载力。
钢管桩实际入土深度: ∑h=3+4=7 m 4、打桩机选型拟选用DZ90,查表得知激振动570 kN ,空载振幅≮0.8mm ,桩锤全高4.2 m ,电机功率90kw 。
钢管桩设计与验算 Prepared on 22 November 2020钢管桩设计与验算钢管桩选用Ф800,δ=10mm 的钢管,材质为A 3,E=×108Kpa,I=64π(80.04-78.04)=×10-3M 4。
依据386#或389#墩身高度和周边地形,钢管桩最大桩长按30m 考虑。
1、桩的稳定性验算 桩的失稳临界力Pcr 计算 Pcr=22lEIπ=32823010936.1101.2-⨯⨯⨯⨯π=4458kN >R= 2、桩的强度计算 桩身面积A=4π(D 2-a 2) =4π(802-782)=钢桩自身重量 P ×30×102× =5844kg=桩身荷载p=+=б=p /A=×102/=/cm 2=3、桩的入土深度设计通过上述计算可知,每根钢管桩的支承力近,按规范取用安全系数k=,设计钢管桩入土深度,则每根钢管桩的承载力为×2=,管桩周长U=πD=×=。
依地质勘察报告,河床自上而下各层土的桩侧极限摩擦力标准值为:第一层粉质黏土厚度为3m ,τ=120Kpa 第二层淤泥粉质黏土厚度为4m ,τ=60Kpa 第三层粉砂厚度为,τ=90Kpa N=∑τi uh iN=120××3+60××4+90××h 3= =++=解得h 3=证明钢管桩不需要进入第三层土,即满足设计承载力。
钢管桩实际入土深度:∑h=3+4=7m 4、打桩机选型拟选用DZ90,查表得知激振动570kN ,空载振幅≮,桩锤全高,电机功率90kw 。
5、振动沉桩承载力计算根据所耗机械能量计算桩的容许承载力[]P =m1{()[]va A f m x 1223111βμα+-+Q}m —安全系数,临时结构取m 1—振动体系的质量m 1=Q/g=57000/981= Q 1—振动体系重力N g —重力加速度=981cm/s 2 A X —振动沉桩机空转时振幅A X = M —振动沉桩机偏心锤的静力矩μ—振动沉桩机振幅增大系数μ=A n /A xA n -振动体系开始下沉时振幅取f —振动频率转/Sa —振动沉桩机最后一击的实际振幅取 ν—沉桩最后速度取5cm/m in α1—土性质系数,查表得α1=20 β1—影响桩入土速度系数,查表得β1=[p]=5.11{517.0110.10.12.15.171.58202231⨯+⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛⨯⨯⨯+9×104}=5.11{85.1107401.26⨯+9×104}=5.11×*610 =1047438N=1047KN >N= 通过上述计算及所选各项参数说明:1)DZ90型振动打桩机,是完全能够满足本设计单桩承载力的。
柘皋河特大桥40+56+40m支架钢管桩检算一、支架钢管桩承载力检算基础采用υ600×8mm钢管桩,入土深度≧14m。
单根钢管桩承载力为534.9KN,钢管桩支架桩长根据所提供的《施工现场总平面布置图》及《柘皋河特大桥224--226地质图》选取两个特殊地质进行简算,确定采用1、224-225#跨的5-1至5-5#;224-225#跨的5-1至5-5#桩的地质各层土深度分别为人工填土7.59m,σ=120kpa;粉质粘土9.95m,σ=180kpa;淤泥质粘土0.78m,σ=110kpa;细圆砾土5.19m,σ=250kpa;砂岩全风化6.67m,σ=220kpa;砂岩强风化5.87m,σ=350kpa;以下为弱风化砂岩,σ=500kpa。
单桩最大荷载:P=53.49t,取安全系数 1.5,则桩顶设计荷载为:P6=1.5×534.9=802.35KN。
由于桩位下部粘土层较厚,钢管桩以摩擦桩进行设计,按照桩长A——验算截面处桩的截面面积,为0.015m2;λS ——侧阻挤土效应系数,取λS=0.77;τi——各土层对桩侧的极限摩阻力(Kpa);L i ——桩在最大冲刷线以下第i 层土中的长度;λP ——桩底端闭塞效应系数,对于敞口钢管桩,λP =0.8λS ;σR ——桩底端支承土的承载力(Kpa )。
由上式得:P k =0.77*1.884*(7.59*40+6.41*65)+0.8*0.77*0.015*180=104.6t ≥80.2t 2、226-227#跨的4-1至4-5#;226-227#跨的4-1至4-5#的地质各层土深度分别为人工填土4.12m ,σ=120kpa ;淤泥质粘土5.78m ,σ=110kpa ;粉质粘土4.34m ,σ=180kpa ;细圆砾土3.71m ,σ=250kpa ;砂岩全风化2.53m ,σ=220kpa ;砂岩强风化8.82m ,σ=350kpa ;以下为弱风化砂岩,σ=500kpa 。
钢管桩检算
⑴桩基承载力计算:
根据计算,中间钢管桩承载荷载最大,该最大荷载值为:Pmax=170.6KN。
⑵钢管桩最大容许承载力计算
由于钢管桩打入过程中,桩周淤泥层受到破坏,无法提供桩身与淤泥层之间的摩阻力,本计算暂不考虑淤泥层摩阻力。
桩打入桩最大容许承载力:
〔ρ〕=1/k(U∑f
1L
1
+AR)
式中〔ρ〕--桩的容许承载力KN
U-----桩身横截面周长m
f
1
----桩身穿过各地层与桩身之间的极限摩阻力KPa ;查《路桥
施工计算手册》和设计院地质勘探成果,取f
1
=25
L
1----各土层厚度m L
1
=12
A-----桩底支撑面积m2
R-----桩尖极限磨阻力Kpa, R=0
K----安全系数,本设计采用2。
桩基采用φ426mm钢管桩,壁厚δ=8mm,管内填砂密实,采用打桩振动锤击下沉。
桩的周长U=1.34m。
不计桩尖承载力,仅计算钢管桩侧摩阻。
根据地质情况,按照打入局部冲刷线以下12m 计算:
单桩承载力为〔ρ〕=201KN,大于钢管桩承受荷载Pmax=170.6KN。
满足要求。
⑶桩身强度计算
桩基采用φ426mm*8mm钢管桩。
对钢管桩的容许承载力,按下式计算:
P=∮FR/K
P-桩的容许承载力,kN;
∮-纵向挠曲折减系数,根据lp/d查表得出;
F-钢管截面的计算面积;
R-钢的屈服应力,kPa;本设计中R=235000KPa
K-安全系数,摩擦桩取2.5;
lp-桩的计算长度,取ht;
ht-从土壤表面到桩顶的距离;
d-钢管桩外径。
取lp=ht
lp/d=1600/63=25.4
查“轴心受压钢构件的纵向弯曲系数表”,纵向挠曲折减系数∮≈0.9
F=πdδ=0.0158m2
P=∮FR/K=1337KN>单桩设计承载力170.6KN。
满足受力要求。
(4) 结论
经检算知,便桥设计满足受力要求。