2013年立体几何 高考题汇总
- 格式:doc
- 大小:571.00 KB
- 文档页数:4
专题七:立体几何一、选择题错误!未指定书签。
1.(2013年高考新课标1(理))如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( A )A .35003cm π B .38663cm π C .313723cm πD .320483cm π2错误!未指定书签。
.(2013年普通高等学校招生统一考试广东省数学(理)卷)设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( D )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥4错误!未指定书签。
.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案)已知正四棱柱1111ABCD A B C D -中12AA AB =,则CD 与平面1BDC 所成角的正弦值等于 ( A )A .23 B C D .135错误!未指定书签。
.(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( A )A .168π+B .88π+C .1616π+D .816π+错误!未指定书签。
6.(2013年高考湖北卷(理))一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有 ( C ) A .1243V V V V <<< B .1324V V V V <<<C .2134V V V V <<<D .2314V V V V <<<错误!未指定书签。
图 2俯视图侧视图正视图2013年全国各地高考数学试题及解答分类汇编大全(13立体几何 )一、选择题:1.(2013安徽理)在下列命题中,不是公理..的是( ) (A )平行于同一个平面的两个平面相互平行(B )过不在同一条直线上的三点,有且只有一个平面(C )如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内 (D )如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线【答案】A【解析】B,C,D 说法均不需证明,也无法证明,是公理;A 选项可以推导证明,故是定理。
所以选A2. (2013北京文)如图,在正方体ABCDA 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( ). A .3个 B .4个 C .5个 D .6个答案 B解析 设正方体边长为1,不同取值为P A =PC =PB 1=63,P A 1=PD =PC 1=1,PB =33,PD 1=233共有4个.3.(2013广东理) 某四棱台的三视图如图所示,则该四棱台的体积是 ( ) A . 4 B .143 C .163D .6 【解析】B ;由三视图可知,该四棱台的上下底面边长分别为1和2的正方形,高为2,故()2211412233V =+⨯=,故选B .4.(2013广东文) 某三棱锥的三视图如图2所示,则该三棱锥的体积是A .16B .13C .23D .1【解析】由三视图判断底面为等腰直角三角形, 三棱锥的高为2,则111=112=323V ⋅⋅⋅⋅,选B.5.(2013广东文) 设l 为直线,,αβ是两个不同的平面,下列命题中正确的是 A .若//l α,//l β,则//αβ B .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥ 【解析】基础题,在脑海里把线面可能性一想,就知道选B 了.6.(2013广东理) 设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( ) A . 若αβ⊥,m α⊂,n β⊂,则m n ⊥ B .若//αβ,m α⊂,n β⊂,则//m n C .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m α⊥,//m n ,//n β,则αβ⊥ 【解析】D ;ABC 是典型错误命题,选D .A1A正视图侧视图7、(2013湖北理) 一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( ) A. 1243V V V V <<< B. 1324V V V V <<<C. 2134V V V V <<<D. 2314V V V V <<<【解析与答案】C 由柱体和台体的体积公式可知选C 【相关知识点】三视图,简单几何体体积8. (2013湖南文) 已知正方体的棱长为1,其俯视图是一个面积为1的矩形,则该正方体的正视图的面积等于____ D ____ A .B.1【答案】 D【解析】 正方体的侧视图面积为.2..2212同,所以面积也为正视图和侧视图完全相为,所以侧视图的底边长⋅=9.(2013湖南理) 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 A .1 BCD 【答案】 C【解析】 由题知,正方体的棱长为1,121-2.]2,1[]2,1[1<而上也在区间上,所以正视图的面积,宽在区间正视图的高为。
2013年全国各地高考文科数学试题分类汇编7:立体几何一、选择题错误!未指定书签。
.(2013年高考重庆卷 )某几何体的三视图如题(8)所示,则该几何体的表面积为( )A .180B .200C .220D .240错误!未指定书签。
.(2013年高考大纲卷)已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于( )A .23BCD .13【答案】A错误!未指定书签。
.(2013年高考浙江卷 )已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是A .108cm 3B .100 cm 3C .92cm 3D .84cm 3错误!未指定书签。
.(2013年高考北京卷 )如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有 ( ) A .3个B .4个C .5个D .6个错误!未指定书签。
.(2013年高考湖南 )已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个的矩形,则该正方体的正视图的面积等于______ ( )A B .1 C D错误!未指定书签。
.(2013年高考浙江卷 )设m.n 是两条不同的直线,α.β是两个不同的平面, ( )A .若m ∥α,n ∥α,则m ∥nB .若m ∥α,m ∥β,则α∥βC .若m ∥n,m ⊥α,则n ⊥αD .若m ∥α,α⊥β,则m ⊥β错误!未指定书签。
.(2013年高考辽宁卷 )已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为( )A B .C .132D .错误!未指定书签。
.(2013年高考广东卷 )设l 为直线,,αβ是两个不同的平面,下列命题中正确的是 ( )1A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥错误!未指定书签。
1.(安徽理科第6题、文科第8题)(A ) 48 (B)32+817 (C) 48+8 (C) 48+817 (D) 80解析:由三视图可知几何体是底面是等腰梯形的直棱柱.底面等腰梯形的上底为2,下底为4,高为4,两底面积和为()12244242´+´=,四个侧面的面积为()44221724817++=+,所以几何体的表面积为48817+故选C. 2.(安徽理科第17题,文科第19题,本小题满分13分)分) 如图,A B E D F C 为多面体,平面ABED 与平面A C F D 垂直,点O 在线段A D 上,1O A =,OD =,ODE ODF OAC OAB D D D D ,,,都是正三角形。
都是正三角形。
(Ⅰ)证明直线BC EF ∥;(Ⅱ)求棱锥F OBED -的体积. (1)证明:分别去OA ,OD 的中点M ,N ,连接CM ,BM,BMEN,FN,设EB和DA相交于G,由于OA=1,EN,FN,设EB和DA相交于G,由于OA=1,OD=2,则EN BM //,且EN BM 21=,则M 为GN 的中点,所以GA=1 同理可得:G 为FC 和DA 的交点。
则有C 为FG 的中点,B 为EG 的中点。
所以的中点。
所以BC 是EFG D 的中位线。
故BC EF ∥。
(2)四边形OBED 是梯形,其中OB=1,DE=2,底边上的高为323260sin =×=°OE2333)21(2131331=××+×=×=\-O B E D O B E DF S V3.(北京理科第7题)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是某四面体的三视图如图所示,该四面体四个面的面积中,最大的是某四面体的三视图如图所示,该四面体四个面的面积中,最大的是(A) 8 (B) 62 (C)10 (D) 82解:根据三视图可知,该四面体满足:^SA 平面ABC ,ABC D 中 °=Ð90ABC ,3,4===BC AB SA ,四个三角形都是直角三角形,四个三角形都是直角三角形 6,26,8,10,5,24======D D D D ABC SBC SAB SAC S S S S AC SB4.(北京理科第16题)如图,在四棱锥P ABCD -中,P A ^平面ABCD ,底面ABCD 是菱形,2,60A B B A D =Ð=.(Ⅰ)求证:BD ^平面;P A C(Ⅱ)若,P A A B =求P B 与A C 所成角的余弦值;所成角的余弦值; (Ⅲ)当平面P B C 与平面P D C 垂直时,求P A 的长的长. .解:(1)因为ABCD 是菱形,则对角线互相垂直,BD AC ^\,又^PA 平面ABC所以BD ^平面PAC ,(2)设O BD AC = ,3,1,2,60=====°=ÐCO AO BO AB PA BAD以以O 为坐标原点以OC OB ,所在的直线分别为y x ,轴建立空间直角坐标系xyz O -则)0,3,0(),0,1,1(,0,3,0(),2,3,0(C B A P )--,)2,3,1(-=\PB ,)0,32,0(=AC 设AC PB ,的夹角为q ,则4632226||||cos=´=×=AC PB AC PB q(3)由()由(22)知),0,3,1(-=BC 设)0)(,3,0(>t t P 设平面PBC 的法向量为),,(z y x m =,则0,0=×=×m BP m BC所以ïîïíì=+--=+-0303tz y x y x ,令3=y ,则t z x 6,3==,)6,3,3(t m =\同理,平面PDC 的法向量为)6,3,3(tn -=,因为平面PBC ^平面PDC 所以0=×n m ,即03662=+-t,解得6=t ,6=\PA5.(北京文科第5题)某四棱锥的三视图如图所示,该四棱锥的表面积是锥的表面积是(A)32 (B)16+162 (C)48 (D)16322+6.(北京文科17)如图,在四面体PABC 中,,,P C A B P A B C ^^点,,,D E F G 分别是棱,,,A PA CB C P B的中点。
2013年高考数学〔理〕真题分类解析汇编7:立体几何一、选择题1 .〔2013年高考新课标1〔理〕〕如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为〔〕 A .35003cm π B .38663cm π C .313723cm πD .320483cm π【答案】A【天利解析】设正方体上底面所在平面截球得小圆M , 则圆心M 为正方体上底面正方形的中心.如图.设球的半径为R ,根据题意得球心到上底面的距离等于〔R ﹣2〕cm ,而圆M 的半径为4,由球的截面圆性质,得R 2=〔R ﹣2〕2+42, 解出R=5,所以根据球的体积公式,该球的体积V===.故选A .2 .〔2013年普通高等学校招生统一考试广东省数学〔理〕卷〔纯WORD 版〕〕设,m n 是两条不同的直线,,αβ是两个不同的平面,以下命题中正确的选项是 〔 〕A .假设αβ⊥,m α⊂,n β⊂,则m n ⊥B .假设//αβ,m α⊂,n β⊂,则//m nC .假设m n ⊥,m α⊂,n β⊂,则αβ⊥D .假设m α⊥,//m n ,//n β,则αβ⊥ 【答案】D【天利解析】ABC 是典型错误命题,选D .3 .〔2013年普通高等学校招生统一考试大纲版数学〔理〕WORD 版含答案〔已校对〕〕已知正四棱柱1111ABCD A B C D -中12AA AB =,则CD 与平面1BDC 所成角的正弦值等于〔〕 A .23B .33C .23D .13【答案】A【天利解析】设AB=1,则AA 1=2,分别以的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系, 如以下图所示:则D 〔0,0,2〕,C 1〔0,1,0〕,B 〔1,1,2〕,C 〔0,1,2〕, =〔1,1,0〕,=〔0,1,﹣2〕,=〔0,1,0〕,设=〔x ,y ,z 〕为平面BDC 1的一个法向量,则,即,取=〔﹣2,2,1〕,设CD 与平面BDC 1所成角为θ,则sin θ=||=,故选A .4 .〔2013年高考新课标1〔理〕〕某几何体的三视图如下图,则该几何体的体积为〔〕A .168π+B .88π+C .1616π+D .816π+ 【答案】A【天利解析】三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4. 所以长方体的体积=4×2×2=16, 半个圆柱的体积=×22×π×4=8π 所以这个几何体的体积是16+8π; 故选A .5 .〔2013年高考湖北卷〔理〕〕一个几何体的三视图如下图,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有〔 〕 A .1243V V V V <<< B .1324V V V V <<<C .2134V V V V <<<D .2314V V V V <<<【答案】C【天利解析】此题考查三视图以及空间几何体的体积。
2013高考试题解析分类汇编(理数)7:立体几何一、选择题1 .(2013年高考新课标1(理))如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A .35003cm πB .38663cm πC .313723cm πD .320483cm πA设正方体上底面所在平面截球得小圆M ,则圆心M 为正方体上底面正方形的中心.如图.设球的半径为R ,根据题意得球心到上底面的距离等于(R ﹣2)cm ,而圆M 的半径为4,由球的截面圆性质,得R 2=(R ﹣2)2+42, 解出R=5,所以根据球的体积公式,该球的体积V===.故选A .2 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥ DD ;ABC 是典型错误命题,选D .3 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱1111ABCD A BC D -中12AA AB =,则CD 与平面1BDC 所成角的正弦值等于 ( )A .23B .3C .3D .13A设AB=1,则AA 1=2,分别以的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系, 如下图所示:则D (0,0,2),C 1(0,1,0),B (1,1,2),C (0,1,2),=(1,1,0),=(0,1,﹣2),=(0,1,0),设=(x ,y ,z )为平面BDC 1的一个法向量,则,即,取=(﹣2,2,1),设CD 与平面BDC 1所成角为θ,则sin θ=||=,故选A .4 .(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+ A三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4. 所以长方体的体积=4×2×2=16, 半个圆柱的体积=×22×π×4=8π 所以这个几何体的体积是16+8π; 故选A .5 .(2013年高考湖北卷(理))一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( ) A .1243V V V V <<< B .1324V V V V <<<C .2134V V V V <<<D .2314V V V V <<<C本题考查三视图以及空间几何体的体积。
2013年全国各地高考文科数学试题分类汇编7:立体几何一、选择题1 .(2013年高考重庆卷(文))某几何体的三视图如题(8)所示,则该几何体的表面积为()A.180B.200C.220D.240【答案】D中的坐标分别是2.(2013年高考课标Ⅱ卷(文))一个四面体的顶点在空间直角坐标系O xyz (1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.【答案】A3 .(2013年高考课标Ⅰ卷(文))某几何函数的三视图如图所示,则该几何的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A4 .(2013年高考大纲卷(文))已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 ( )A .23 B C .3D .13【答案】A5 .(2013年高考四川卷(文))一个几何体的三视图如图所示,则该几何体可以是( )A .棱柱B .棱台C .圆柱D .圆台【答案】D6 .(2013年高考浙江卷(文))已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A .108cm 3B .100 cm 3C .92cm 3D .84cm 3【答案】B7 .(2013年高考北京卷(文))如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个第二部分(非选择题 共110分) 【答案】B8 .(2013年高考广东卷(文))某三棱锥的三视图如图2所示,则该三棱锥的体积是图 2俯视图侧视图正视图 ( )A .16 B .13C .23D .1【答案】B9 .(2013年高考湖南(文))已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积的矩形,则该正方体的正视图的面积等于______( )A B .1 C D【答案】D10.(2013年高考浙江卷(文))设m.n 是两条不同的直线,α.β是两个不同的平面,( )A .若m∥α,n∥α,则m∥nB .若m∥α,m∥β,则α∥βC .若m∥n,m⊥α,则n⊥αD .若m∥α,α⊥β,则m⊥β【答案】C11.(2013年高考辽宁卷(文))已知三棱柱111A B C A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为( )A B .C .132D .【答案】C12.(2013年高考广东卷(文))设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥【答案】B13.(2013年高考山东卷(文))一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示该四棱锥侧面积和体积分别是( )A .B .83C .81),3D .8,8【答案】B14.(2013年高考江西卷(文))一几何体的三视图如右所示,则该几何体的体积为( )A .200+9πB .200+18πC .140+9πD .140+18π【答案】A二、填空题15.(2013年高考课标Ⅱ卷(文))已知正四棱锥O-ABCD 的体积为,底面边长为,则以O 为球心,OA 为半径的球的表面积为________.【答案】24π16.(2013年高考湖北卷(文))我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是__________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 【答案】317.(2013年高考课标Ⅰ卷(文))已知H 是球O 的直径AB 上一点,:1:2AHHB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为_______.【答案】92π; 18.(2013年高考北京卷(文))某四棱锥的三视图如图所示,该四棱锥的体积为__________.【答案】319.(2013年高考陕西卷(文))某几何体的三视图如图所示, 则其表面积为________.【答案】π320.(2013年高考大纲卷(文))已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K =,且圆与圆所在的平面所成角为,则球O 的表面积等于______. 【答案】16π21.(2013年上海高考数学试题(文科))已知圆柱Ω的母线长为l ,底面半径为r ,O 是上地面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为π6,则1r=________.22.(2013年高考天津卷(文))已知一个正方体的所有顶点在一个球面上. 若球的体积为92π, 则正方体的棱长为 ______.【答案】23.(2013年高考辽宁卷(文))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π-24.(2013年高考江西卷(文))如图,正方体的底面与正四面体的底面在同一平面α上,且AB//CD,则直线EF与正方体的六个面所在的平面相交的平面个数为_____________.【答案】425.(2013年高考安徽(文))如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点,,A P Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是__________(写出所有正确命题的编号).①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形;③当34CQ =时,S 与11C D 的交点R满足113C R =;④当314CQ <<时,S 为六边形;⑤当1CQ =时,S【答案】①②③⑤ 三、解答题26.(2013年高考辽宁卷(文))如图,.AB O PA O C O 是圆的直径,垂直圆所在的平面,是圆上的点(I)求证:BC PAC ⊥平面;(II)设//.Q PA G AOC QG PBC ∆为的中点,为的重心,求证:平面【答案】27.(2013年高考浙江卷(文))如图,在在四棱锥P-ABCD 中,PA⊥面ABCD,AB=BC=2,AD=CD=7,PA=3,∠ABC=120°,G 为线段PC 上的点. (Ⅰ)证明:BD⊥面PAC ;(Ⅱ)若G 是PC 的中点,求DG 与APC 所成的角的正切值; (Ⅲ)若G 满足PC⊥面BGD,求PGGC的值.【答案】解:证明:(Ⅰ)由已知得三角形ABC是等腰三角形,且底角等于30°,且6030AB CB AD CD ABD CBD ABD CBD BAC BD DB =⎫⎪=⇒∆≅∆⇒∠=∠=∠=⎬⎪=⎭且,所以;、BD AC ⊥,又因为PA ABCD BD PA BD PAC BD AC ⊥⇒⊥⎫⇒⊥⎬⊥⎭;(Ⅱ)设AC BD O =,由(1)知DO PAC ⊥,连接GO ,所以DG 与面APC所成的角是DGO ∠,由已知及(1)知:1,2BO AO CO DO =====, [来源:学&科&网Z&X&X&K]12tan 12OD GO PA DGO GO ==⇒∠===,所以DG 与面APC 所成的角的(Ⅲ)由已知得到:PC===,因为PC BGD PC GD ⊥∴⊥,在PDC ∆中,PD CD PC ====,设223107)2PG PG x CG x x x PG x GC GC =∴=-∴-=--∴====28.(2013年高考陕西卷(文))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD, 1AB AA ==1A(Ⅰ) 证明: A 1BD // 平面CD 1B 1;(Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积.【答案】解: (Ⅰ) 设111O D B 线段的中点为.11111111//D B BD D C B A ABCD D B BD ∴-的对应棱是和 .的对应线段是棱柱和同理,111111D C B A ABCD O A AO -为平行四边形四边形且且11111111//////OCO A OC O A OC O A OC AO O A AO ⇒=⇒∴ 1111111111//,.//B CD BD A O D B C O O BD O A C O O A 面面且⇒==⇒ .(证毕)(Ⅱ) 的高是三棱柱面ABD D B A O A ABCD O A -∴⊥11111 . 在正方形AB CD 中,AO = 1 . .111=∆O A OA A RT 中,在11)2(2121111111=⋅⋅=⋅=-∆-O A S V ABD D B A ABD ABD D B A 的体积三棱柱. 所以,1111111=--ABD D B A V ABD D B A 的体积三棱柱.29.(2013年高考福建卷(文))如图,在四棱锥P ABCD-中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =,60PAD ∠=.(1)当正视图方向与向量AD 的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程);(2)若M 为PA 的中点,求证://DM PBC 面; (3)求三棱锥D PBC -的体积.【答案】解法一:(Ⅰ)在梯形ABCD 中,过点C 作CE AB ⊥,垂足为E ,由已知得,四边形ADCE 为矩形,3AE CD == 在Rt BEC ∆中,由5BC =,4CE =,依勾股定理得: 3BE =,从而6AB =又由PD ⊥平面ABCD 得,PD AD ⊥从而在Rt PDA ∆中,由4AD =,60PAD ∠=︒,得PD = 正视图如右图所示:(Ⅱ)取PB 中点N ,连结MN ,CN在PAB ∆中,M 是PA 中点, [来源:学&科&网Z&X&X&K]∴MN AB ,132MN AB ==,又CD AB ,3CD =∴MN CD ,MN CD =∴四边形MNCD 为平行四边形,∴DM CN 又DM ⊄平面PBC ,CN ⊂平面PBC ∴DM 平面PBC(Ⅲ)13D PBC P DBC DBC V V S PD --∆==⋅又6PBC s ∆=,PD =,所以D PBC V -=解法二:(Ⅰ)同解法一(Ⅱ)取AB 的中点E ,连结ME ,DE 在梯形ABCD 中,BE CD ,且BE CD =∴四边形BCDE 为平行四边形∴DE BC ,又DE ⊄平面PBC ,BC ⊂平面PBC ∴DE 平面PBC ,又在PAB ∆中,ME PBME ⊄平面PBC ,PB ⊂平面PBC ∴ME 平面PBC .又DE ME E =,∴平面DME 平面PBC ,又DM ⊂平面DME ∴DM 平面PBC(Ⅲ)同解法一30.(2013年高考广东卷(文))如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ∆沿AF 折起,得到如图5所示的三棱锥A BCF -,其中2BC =. (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ; (3) 当23AD =时,求三棱锥F DEG -的体积F DEG V -. 图 4【答案】(1)在等边三角形ABC 中,AD AE =AD AEDB EC ∴=,在折叠后的三棱锥A BCF -中也成立,//DE BC ∴ ,DE ⊄平面BCF ,BC ⊂平面BCF ,//DE ∴平面BCF ;(2)在等边三角形ABC 中,F 是BC 的中点,所以AF BC ⊥①,12BF CF ==.在三棱锥A BCF -中,2BC =,222BC BF CF CF BF ∴=+∴⊥②BF CF F CF ABF ⋂=∴⊥平面;(3)由(1)可知//GE CF ,结合(2)可得GE DFG ⊥平面.111111132323323324F DEG E DFG V V DG FG GF --⎛∴==⋅⋅⋅⋅=⋅⋅⋅⋅⋅= ⎝⎭31.(2013年高考湖南(文))如图2.在直菱柱ABC-A 1B 1C 1中,∠BAC=90°,AB=AC=,AA 1=3,D 是BC 的中点,点E 在菱BB 1上运动. (I) 证明:AD⊥C 1E;(II) 当异面直线AC,C 1E 所成的角为60°时,求三菱子C 1-A 2B 1E 的体积.【答案】解: (Ⅰ) 11C CBB ADE 面为动点,所以需证因为⊥.AD BB ABC AD ABC BB C B A ABC ⊥⇒⊂⊥∴-11111,面且面是直棱柱AD BC BC D ABC RT ⊥∴∆的中点,为是等腰直角且又 ..1111111E C AD C CBB E C C CBB AD B BB BC ⊥⇒⊂⊥⇒=⋂面且面由上两点,且(证毕)(Ⅱ)660,//111111=∆⇒︒=∠∴AE E C A RT E C A A C CA 中,在 .的高是三棱锥是直棱柱中,在1111111111.2C B A E EB C B A ABC EB E B A RT -∴-=∆⇒ ..3232213131111111111111的体积为所以三棱锥E B A C EB S V V C B A C B A E E B A C -⋅=⋅⋅=⋅⋅==∆-- 32.(2013年高考北京卷(文))如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证:(1)PA ⊥底面ABCD ;(2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD【答案】(I)因为平面PAD⊥平面ABCD,且PA 垂直于这个平面的交线AD 所以PA 垂直底面ABCD.(II)因为AB∥CD,CD=2AB,E 为CD 的中点 所以AB∥DE,且AB=DE 所以ABED 为平行四边形,所以BE∥AD ,又因为BE ⊄平面PAD,AD ⊂平面PAD 所以BE∥平面PAD.(III)因为AB⊥AD,而且ABED 为平行四边形 所以BE⊥CD,AD⊥CD,由(I)知PA⊥底面ABCD, 所以PA⊥CD,所以CD⊥平面PAD所以CD⊥PD,因为E 和F 分别是CD 和PC 的中点所以PD∥EF,所以CD⊥EF,所以CD⊥平面BEF,所以平面BE F⊥平面PCD.33.(2013年高考课标Ⅰ卷(文))如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=.(Ⅰ)证明:1AB AC ⊥; (Ⅱ)若2AB CB ==,1AC =,求三棱柱111ABC A B C -的体积.C 1B 1AA 1B C【答案】【答案】(I)取AB 的中点O,连接OC O 、1OA O 、1A B ,因为CA=CB,所以OC AB ⊥,由于AB=AA 1,∠BA A 1=600,故,AA B ∆为等边三角形,所以OA 1⊥AB.因为OC ⨅OA 1=O,所以AB ⊥平面OA 1C.又A 1CC 平面OA 1C,故AB ⊥AC. (II)由题设知12ABC AA B ∆∆与都是边长为的等边三角形,12AA B 都是边长为的等边三角形,所以2211111.OC OA AC AC OA OA OC ==+⊥又,故 111111111,-3-= 3.ABCABCOCAB O OA ABC OA ABC A B C ABC SA B C V SOA =⊥∆=⨯=因为所以平面,为棱柱的高,又的面积,故三棱柱ABC 的体积34.(2013年高考山东卷(文))如图,四棱锥P ABCD-中,,AB AC AB PA ⊥⊥,,2AB CD AB CD =∥,,,,,E FG M N分别为,,,,PB AB BC PD PC 的中点(Ⅰ)求证:CE PAD ∥平面;(Ⅱ)求证:EFG EMN ⊥平面平面【答案】35.(2013年高考四川卷(文))如图,在三棱柱11ABC A B C-中,侧棱1AA ⊥底面ABC ,122AB AC AA ===,120BAC ∠=,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 上异于端点的点.(Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ; (Ⅱ)设(Ⅰ)中的直线l 交AC 于点Q ,求三棱锥11A QC D -的体积.(锥体体积公式:13V Sh =,其中S 为底面面积,h 为高)【答案】解:(Ⅰ)如图,在平面ABC 内,过点P 作直线BC l //,因为l 在平面BC A 1外,BC 在平面BC A 1内,由直线与平面平行的判定定理可知,//l 平面1A BC .由已知,AC AB =,D 是BC 中点,所以BC ⊥AD ,则直线AD l ⊥, 又因为1AA ⊥底面ABC ,所以l AA ⊥1,又因为AD ,1AA 在平面11A ADD 内,且AD 与1AA 相交, 所以直线⊥l 平面11A ADD(Ⅱ)过D 作AC DE ⊥于E ,因为1AA ⊥平面ABC ,所以DE AA ⊥1,又因为AC ,1AA 在平面C C AA 11内,且AC 与1AA 相交,所以⊥DE 平面C C AA 11,由2==AC AB ,∠BAC ︒=120,有1=AD ,∠DAC ︒=60, 所以在△ACD 中,2323==AD DE , 又1211111=⋅=∆AA C A S AQC ,所以631233*********=⋅⋅=⋅==--QC A QC A D D QC A S DE V V 因此三棱锥11A QC D -的体积为6336.(2013年高考湖北卷(文))如图,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为121A A d =.同样可得在B ,C 处正下方的矿层厚度分别为122B B d =,123C C d =,且123d d d <<. 过AB ,AC 的中点M ,N 且与直线2AA 平行的平面截多面体111222ABC A B C -所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中. (Ⅰ)证明:中截面DEFG 是梯形;(Ⅱ)在△ABC 中,记BC a =,BC 边上的高为h ,面积为S . 在估测三角形ABC 区域内正下方的矿藏储量C 11BCB 1(即多面体111222A B C A B C -的体积V )时,可用近似公式V S h =⋅估中来估算. 已知1231()3V d d d S =++,试判断V 估与V 的大小关系,并加以证明.【答案】(Ⅰ)依题意12A A ⊥平面ABC ,12B B ⊥平面ABC ,12C C ⊥平面ABC ,所以A 1A 2∥B 1B 2∥C 1C 2. 又121A A d =,122B B d =,123C C d =,且123d d d << . 因此四边形1221A A B B 、1221A A C C 均是梯形.由2AA ∥平面MEFN ,2AA ⊂平面22AA B B ,且平面22AA BB平面MEFN ME =,可得AA 2∥ME ,即A 1A 2∥DE . 同理可证A 1A 2∥FG ,所以DE ∥FG . 又M 、N 分别为AB 、AC 的中点,则D 、E 、F 、G 分别为11A B 、22A B 、22A C 、11A C 的中点, 即DE 、FG 分别为梯形1221A A B B 、1221A A C C 的中位线.因此 12121211()()22DE A A B B d d =+=+,12121311()()22FG A A C C d d =+=+,而123d d d <<,故DE FG <,所以中截面DEFG 是梯形. (Ⅱ)V V <估. 证明如下: [来源:学.科.网Z.X.X.K] 由12A A ⊥平面ABC ,MN ⊂平面ABC ,可得12A A MN ⊥. 而EM ∥A 1A 2,所以EM MN ⊥,同理可得FN MN ⊥. 由MN 是△ABC 的中位线,可得1122MN BC a ==即为梯形DEFG 的高, 因此13121231()(2)22228DEFG d d d d a aS S d d d ++==+⋅=++中梯形,即123(2)8ahV S h d d d =⋅=++估中. 又12S ah =,所以1231231()()36ahV d d d S d d d =++=++.于是1231232131()(2)[()()]6824ah ah ahV V d d d d d d d d d d -=++-++=-+-估. 第20题图由123d d d <<,得210d d ->,310d d ->,故V V <估.37.(2013年高考课标Ⅱ卷(文))如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB,BB 1的中点.(1) 证明: BC 1//平面A 1CD; (2) 设AA 1= AC=CB=2,AB=2,求三棱锥C 一A 1DE 的体积.【答案】38.(2013年高考大纲卷(文))如图,四棱锥902,P A B C D A B C B A D B C A D P A-∠=∠==∆∆中,,与都是边长为2的等边三角形. (I)证明:;PB CD ⊥ (II)求点.A PCD 到平面的距离【答案】(Ⅰ)证明:取BC 的中点E,连结DE,则ABED 为正方形.过P 作PO⊥平面ABCD,垂足为O. 连结OA,OB,OD,OE.由PAB ∆和PAD ∆都是等边三角形知PA=PB=PD,所以OA=OB=OD,即点O 为正方形ABED 对角线的交点, 故OE BD ⊥,从而PB OE ⊥. 因为O 是BD 的中点,E 是BC 的中点, 所以OE//CD.因此,PB CD ⊥.(Ⅱ)解:取PD 的中点F,连结OF,则OF//PB. 由(Ⅰ)知,PB CD ⊥,故OF CD ⊥.又12OD BD ==OP ==故POD ∆为等腰三角形,因此,OF PD ⊥. 又PD CD D =,所以OF ⊥平面PCD.因为AE//CD,CD ⊂平面PCD,AE ⊄平面PCD,所以AE//平面PCD.因此,O 到平面PCD 的距离OF 就是A 到平面PCD 的距离,而112OF PB ==,所以A 至平面PCD 的距离为1.39.(2013年高考安徽(文))如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BAD ∠=.已知2,PB PD PA === .(Ⅰ)证明:PC BD ⊥(Ⅱ)若E 为PA 的中点,求三菱锥P BCE -的体积.【答案】解:(1)证明:连接,BD AC 交于O 点PB PD = PO BD ∴⊥又 ABCD 是菱形 BD AC ∴⊥而AC PO O ⋂= BD ∴⊥面PAC ∴BD ⊥PC (2) 由(1)BD ⊥面PAC︒⨯⨯⨯==45sin 3262121PAC PEC S S △△=32236=⨯⨯ 111132322P BEC B PEC PEC V V S BO --∆==⋅⋅=⨯⨯= 40.(2013年上海高考数学试题(文科))如图,正三棱锥O ABC -底面边长为2,高为1,求该三棱锥的体积及表面积.第19题图B【答案】41.(2013年高考天津卷(文))如图, 三棱柱ABC-A1B1C1中, 侧棱A1A⊥底面ABC,且各棱长均相等. D, E, F分别为棱AB, BC, A1C1的中点.(Ⅰ) 证明EF//平面A1CD;(Ⅱ) 证明平面A1CD⊥平面A1ABB1;(Ⅲ) 求直线BC与平面A1CD所成角的正弦值.【答案】42.(2013年高考重庆卷(文))(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如题(19)图,四棱锥P A B C D -中,PA ⊥底面A B C D ,PA =,2BC CD ==,3ACB ACD π∠=∠=. (Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若侧棱PC 上的点F 满足7PF FC =,求三棱锥P BDF -的体积.【答案】43.(2013年高考江西卷(文))如图,直四棱柱ABCD – A 1B 1C 1D 1中,AB//CD,AD ⊥AB,AB=2,AD=,AA 1=3,E 为CD 上一点,DE=1,EC=3(1) 证明:BE ⊥平面BB 1C 1C;(2) 求点B1 到平面EA 1C 1 的距离【答案】解.(1)证明:过B 作CD 的垂线交CD 于F,则1,2BF AD EF AB DE FC ===-==在Rt BFE BE Rt BFC BC ∆∆中,,中, 在2229BCE BE BC EC ∆+中,因为==,故BE BC ⊥ 由1111BB ABCD BE BB BE BB C C ⊥⊥⊥平面,得,所以平面(2)111111113A B C E A B C V AA S ∆-∙三棱锥的体积=11111Rt A D C AC ∆在中,,同理,1EC ,1EA因此11A C E S ∆=.设点B1到平面11EA C 的距离为d,则111B EAC -三棱锥的体积1113A EC V d S ∆∙∙=,d ==。
专题09 立体几何一、选择题:1.(山东省济南市2013年1月高三上学期期末文10)若某几何体的三视图 (单位:cm) 如图所示,则此几何体的体积是A. 36 cm 3B. 48 cm 3C. 60 cm 3D. 72 cm 32.(山东省德州市2013届高三上学期期末校际联考文10)某几何体的三视图如图所示(单位:cm ),则该几何体的体积为 ( )A .3(16)cm p +B .3(163)cm p +C .3(204)cm p +D .3(18)cm p + 【答案】B【解析】由三视图可知,该几何体上面是个长宽都是4,高为1的长方体,下面是直径为2,高为3的圆柱。
所以长方体的体积为314416()cm ⨯⨯=,圆柱的体积为333()cm ππ⨯=,所以该几何体的体积为3(163)cm p +,选B.3. (山东省济宁市2013届高三1月份期末测试文7)下列命题中错误..的是 A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,l αβ⋂=,那么直线l ⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β4. (山东省烟台市2013届高三上学期期末文6)右图是底面半径为1,母线长均为2的圆锥和圆柱的组合体,则该组合体的侧视图的面积为A.8πB.6πC.4+D.2+5. (山东省烟台市2013届高三上学期期末文10)已知直线a 和平面,,l a a αβαβαβ=⊄⊄I 、,,且a 在αβ、内的射影分别为直线b 和c ,则b 和c 的位置关系是A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面6.(山东省潍坊市2013年1月高三上学期期末考试A 卷文7)设m ,n 是两条不同直线,βα,是两个不同的平面,下列命题正确的是(A )βα//,//n m 且,//βα则n m //(B ) βα⊥⊥n m ,且 βα⊥,则 n m ⊥(C ),,,n m n m ⊥⊂⊥βα 则βα⊥(D ),//,//,,ββααn m n m ⊂⊂则βα//7. (山东省潍坊市2013年1月高三上学期期末考试A 卷文10)一个几何体的三视图如图所示,其中主视图和左视图是腰长为4的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则该球的表面积是(A )π12(B )π24 (C )π32 (D )π48【答案】D 【解析】该几何体的直观图如图1所示,它是有一条侧棱垂直于底面的四棱锥.其中底面ABCD 是边长为4的正方形,高为CC 1=4,该几何体的所有顶点在同一球面上,则球的直径为D.8.(山东省泰安市2013届高三上学期期末文2)如图,若一个空间几何体的三视图中,正视图和侧视图都是直角三角形,其直角边均为1,则该几何体的体积为A.13B.12C.16D.19.(山东省泰安市2013届高三上学期期末文8)下列命题正确的是A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行10. (山东省青岛即墨市2013届高三上学期期末考试文7)设a,b 是不同的直线,βα、是不同的平面,则下列命题:①若βα//,//,b a b a 则⊥ ②若ββαα⊥⊥a a 则,,//③若αβαβ//,,a a 则⊥⊥ ④若βαβα⊥⊥⊥⊥则,,,b a b a 其中正确命题的个数是 A.0 B.1 C.2 D.311.(山东省潍坊一中2013届高三12月月考测试文)已知直线a 和平面,,,,l a a a b a ba b ?怂,且a 在,a b 内的射影分别为直线b 和c ,则b 和c 的位置关系是 A.相交或平行 B.相交或异面 C.平行或异面 D.相交、平行或异面12.(山东省潍坊一中2013届高三12月月考测试文)四棱锥P ABCD -的三视图如右图所示,四棱锥P ABCD -的五个顶点都在一个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF 被球面所截得的线段长为 A.12pB.24pC.36pD.48p【答案】A13.(山东省师大附中2013届高三第四次模拟测试1月文)已知两条直线 a ,b 与两个平面α、αβ⊥b ,,则下列命题中正确的是①若α//a ,则b a ⊥;②若b a ⊥,则α//a ; ③若β⊥b ,则βα//;④若βα⊥,则β//b .A .①③B .②④C .①④D .②③14.(山东省师大附中2013届高三第四次模拟测试1月文)若一个底面为正三角形的几何体的三视图如右图所示,则这个几何体的体积为A .. C . . 615.(山东省青岛一中2013届高三1月调研考试文)已知某几何体的侧视图与其正视图相同,相关的尺寸如下图所示,则这个几何体的体积是( )A. 8πB. 7πC. 2π `D. 74π16.(山东省聊城市东阿一中2013届高三上学期期初考试)设直线m 、n 和平面βα、,下列四个命题中,正确的是 ( )A. 若n m n m //,//,//则ααB. 若βαββαα//,//,//,,则n m n m ⊂⊂C. 若βαβα⊥⊂⊥m m 则,,D. 若ααββα//,,,m m m 则⊄⊥⊥【答案】D【解析】因为选项A 中,两条直线同时平行与同一个平面,则两直线的位置关系有三种,选项B 中,只有Mm,n 相交时成立,选项C 中,只有m 垂直于交线时成立,故选D17.(山东省烟台市莱州一中20l3届高三第二次质量检测文)一个简单几何体的主视图,左视图如图所示,则其俯视图不可能为①长方形;②直角三角形;③圆;④椭圆.其中正确的是A.①B.②C.③D.④18.(山东省烟台市莱州一中20l3届高三第二次质量检测文)对于直线m ,n 和平面,,αβγ,有如下四个命题:(1)若//,,m m n n αα⊥⊥则(2)若,,//m m n n αα⊥⊥则 (3)若,,//αβγβαγ⊥⊥则(4)若,//,,m m n n αβαβ⊥⊂⊥则其中真命题的个数是A.1B.2C.3D.419.(山东省临沂市2013届高三上学期期中考试文)某几何体的正视图和侧视图均如右图,则该几何体的俯视图不可能有是二、填空题:20. (山东省济宁市2013届高三1月份期末测试文14)已知一个空间几何体的三视图如图所示,其中正视图、侧视图都是由半圆和矩形组成,根据图中标出的尺寸,可得这个几何体的体积是.21.(山东省潍坊一中2013届高三12月月考测试文)已知正四棱柱ABCD-A1B1C1D1的高为323p,则A、B两点的球面距离为____________.22.(山东省烟台市莱州一中20l3届高三第二次质量检测文)在正三棱锥S-ABC中,侧面-外接球的表SAB、侧面SAC、侧面SBC两两垂直,且侧棱SA=,则正三棱锥S ABC面积为____________.23.(山东省临沂市2013届高三上学期期中考试文)如图,正方体ABCD—A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=1,则四面体A—EFB的体积V等于。
2013、14年立体几何高考大题汇编1.(2013江西(文))如图,直四棱柱ABCD – A 1B 1C 1D 1中,AB//CD,AD ⊥AB,AB=2,AD=,AA 1=3,E为CD 上一点,DE=1,EC=3(1) 证明:BE ⊥平面BB 1C 1C;(2) 求点B1 到平面EA 1C 1 的距离【答案】解.(1)证明:过B 作CD 的垂线交CD 于F,则2,1,2BF AD EF AB DE FC ===-==在36Rt BFE BE Rt BFC BC ∆∆中,= ,中,= .在2229BCE BE BC EC ∆+中,因为==,故BE BC ⊥由1111BB ABCD BE BB BE BB C C ⊥⊥⊥平面,得,所以平面 (2)1111111123A B C E A B C V AA S ∆-∙三棱锥的体积==221111111112Rt A D C AC A D D C ∆+在中,==3 ,同理,22112EC EC CC +==3 ,222113EA AD ED AA ++==2 因此115A C E S ∆=3.设点B1到平面11EAC 的距离为d,则111B EAC -三棱锥的体积 11153A EC V d S d ∆∙∙==,从而1052,5d d ==2.(2013重庆(理))如图,四棱锥P ABCD-中,PA ABCD ⊥底面,2,4,3BC CD AC ACB ACD π===∠=∠=,F 为PC 的中点,AF PB ⊥.(1)求PA 的长; (2)求二面角B AF D --的正弦值.【答案】3.(2013浙江(理))如图,在四面体BCD A -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.(1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为060,求BDC ∠的大小.【答案】解:证明(Ⅰ)方法一:如图6,取MD 的中点F ,且M 是AD 中点,所以3AF FD =.因为P 是BM 中点,所以//PF BD ;又因为(Ⅰ)3AQ QC =且ABCDPQM(第20题图)3AF FD =,所以//QF BD ,所以面//PQF 面BDC ,且PQ ⊂面BDC ,所以//PQ 面BDC ;方法二:如图7所示,取BD 中点O ,且P 是BM 中点,所以1//2PO MD ;取CD 的三等分点H ,使3DH CH =,且3AQ QC =,所以11////42QH AD MD ,所以////P O Q H P Q OH ∴,且OH BCD ⊂,所以//PQ 面BDC ; (Ⅱ)如图8所示,由已知得到面ADB ⊥面BDC ,过C 作CG BD ⊥于G ,所以CG BMD ⊥,过G 作GH BM ⊥于H ,连接CH ,所以CHG ∠就是C BM D --的二面角;由已知得到813BM =+=,设BDC α∠=,所以cos ,sin 22cos ,22cos sin ,22sin ,CD CG CBCD CG BC BD CD BDαααααα===⇒===,在RT BCG ∆中,2sin 22sin BGBCG BG BCααα∠=∴=∴=,所以在RT BHG ∆中, 22122sin 3322sin HGHG αα=∴=,所以在RT CHG ∆中222cos sin tan tan 60322sin 3CG CHG HG ααα∠==== tan 3(0,90)6060BDC ααα∴=∴∈∴=∴∠=;4.(2013上海春季高考)如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积.【答案】[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 与1AA .所成的角,即1BC C ∠=6π. 在Rt 1BC C ∆中,113tan 6233BC CC BC C =⋅∠=⨯=, 从而23334ABC S BC ∆==, 因此该三棱柱的体积为1336183ABC V S AA ∆=⋅=⋅=.5.(2013上海(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离.D 1C 1B 1A 1D C BA【答案】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C;直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为hB 1A 1C 1ACB考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯= 而1ADC ∆中,115,2AC DC AD ===,故132AD C S ∆= 所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.6.(2013广东(理))如图1,在等腰直角三角形ABC 中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,2CD BE ==,O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中3A O '=.(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B '--的平面角的余弦值.【答案】(Ⅰ) 在图1中,易得3,32,22OC AC AD ===连结,OD OE ,在OCD ∆中,由余弦定理可得222cos455OD OC CD OC CD =+-⋅︒=由翻折不变性可知22A D '=,所以222A O OD A D ''+=,所以A O OD '⊥, 理可证A O OE '⊥, 又ODOE O =,所以A O '⊥平面BCDE .(Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角.C D OBE'AH.CO BDEA CDOBE'A图1图2C DOx E'A向量法图yzB 结合图1可知,H 为AC 中点,故322OH =,从而22302A H OH OA ''=+=所以15cos 5OH A HO A H '∠==',所以二面角A CD B '--的平面角的余弦值为155. 向量法:以O 点为原点,建立空间直角坐标系O xyz -如图所示, 则()0,0,3A ',()0,3,0C -,()1,2,0D - 所以()0,3,3CA '=,()1,2,3DA '=- 设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即330230y z x y z ⎧+=⎪⎨-++=⎪⎩,解得3y x z x =-⎧⎪⎨=⎪⎩,令1x =,得()1,1,3n =- 由(Ⅰ) 知,()0,0,3OA '=为平面CDB 的一个法向量, 所以315cos ,535n OA n OA n OA '⋅'===⋅',即二面角A CD B '--的平面角的余弦值为155. 第III 部分26.【2014年陕西卷(理17)】(本小题满分12分)四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四面体的棱CA DC BD ,,于点H G F ,,.(I )证明:四边形EFGH 是矩形;(II )求直线AB 与平面EFGH 夹角θ的正弦值.解 (I )由该四面体的三视图可知, BD ⊥DC, BD ⊥AD , AD ⊥DC, BD=DC=2,AD = 1.由题设,BC //平面EFGH, 平面EFGH ⋂平面BDC=FG, 平面EFGH ⋂平面ABC=EH,∴ BC// FG, BC//EH, ∴FG//EH. 同理EF//AD,HG//AD, ∴EF//HG, ∴四边形EFGH 是平行四边形。
立体几何
一、选择题
1.(2013年高考重庆卷(文))某几何体的三视图如题(8)所示,则该几何体的表面积为 ( )
A .180
B .200
C .220
D .240
2 .(2013年高考湖南(文))已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积
的矩形,则该正方体的正视图的面积等于______
( )
A B .1 C D
3.(2013年高考浙江卷(文))设m.n 是两条不同的直线,α.β是两个不同的平面,
( )
A .若m∥α,n∥α,则m∥n
B .若m∥α,m∥β,则α∥β
C .若m∥n,m⊥α,则n⊥α
D .若m∥α,α⊥β,则m⊥β
4.(2013年高考广东卷(文))设l 为直线,,αβ是两个不同的平面,下列命题中正确的是
( )
A .若//l α,//l β,则//αβ
B .若l α⊥,l β⊥,则//αβ
C .若l α⊥,//l β,则//αβ
D .若αβ⊥,//l α,则l β⊥
5.(2013年高考山东卷(文))一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示该四棱锥
侧面积和体积分别是( )
A .
B .8
3
C .81),
3
D .8,8
6.(2013年高考江西卷(文))一几何体的三视图如右所示,则该几何体的体积为 ( )
A .200+9π
B .200+18
C .140+9π
D .140+18π
二、填空题
7.(2013年高考课标Ⅱ卷(文))已知正四棱锥O-ABCD 的体积为
,
O 1
A
底面边长为,则以O 为球心,OA 为半径的球的表面积为________.
8.(2013年高考湖北卷(文))我国古代数学名著《数书九章》中有“天
池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径 为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则 平地降雨量是__________寸.
(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 9.(2013年高考北京卷(文))某四棱锥的三视图如图所示,该四棱锥的体积
为__________.
10.(2013年高考天津卷(文))已知一个正方体的所有顶点在一个球面上.
若球的体积为92
π, 则正方体的棱长为 ______.
三、解答题
11.
(2013年高考辽宁卷(文))如图,AB O PA O 是圆的直径,垂直圆(I)求证:BC PAC ⊥平面;
(II)设//.Q PA G AOC QG PBC ∆为的中点,为的重心,求证:平面
12.(2013年高考陕西卷(文))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面
ABCD , 1AB AA ==
(Ⅰ) 证明: A 1BD // 平面CD 1B 1; (Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积.
13
.(
2013
年
高
考
福
建
卷
(
文
))
如图,
中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =,60.
(1)当正视图方向与向量AD 的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程);
(2)若M 为PA 的中点,求证://DM PBC 面; (3)求三棱锥D PBC -的体积
C 1
B 1
A
A 1
B C
14.(2013年高考湖南(文))如图2.在直菱柱ABC-A 1B 1C 1中,∠BAC=90°,AB=AC=
,AA 1=3,D 是BC 的中点,点
E 在菱BB 1上运动.
(I) 证明:AD⊥C 1E;
(II)当异面直线AC,C 1E 所成的角为60°时,求三棱柱C 1-A 2B 1E 的体积.
15.(2013年高考北京卷(文))如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面
PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证:
(1)PA ⊥底面ABCD ;(2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD
16.(2013年高考课标Ⅰ卷(文))如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =
,160BAA ∠=.
(Ⅰ)证明:1
AB AC ⊥;
(Ⅱ)若2AB CB ==,1
AC =,求三棱柱111ABC A B C -的体积.
17.(2013年高考山东卷(文))如图,
四棱锥P ABCD -中,,AB AC AB PA ⊥⊥,,2AB CD AB CD =∥,
,,,,E F G M N 分别为,,,,PB AB BC PD PC 的中点
(Ⅰ)求证:CE PAD ∥平面; (Ⅱ)求证:EFG EMN ⊥平面平面
18.(2013年高考课标Ⅱ卷(文))如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB,BB 1的中点.
第19题图
(1) 证明: BC 1//平面A 1CD;(2) 设AA 1= AC=CB=2,AB=2
,求三棱锥C 一A 1DE 的体积.
19.(2013年上海高考数学试题(文科))如图,正三棱锥O ABC -底面边长为2,高为1,求该三棱锥的体积及
表面积.
20.(2013年高考大纲卷(文))如图,
四棱锥902,P ABCD ABC BAD BC AD PAB PAD -∠=∠==∆∆中,,与 都是边长为2的等边三角形.
(I)证明:;PB CD ⊥ (II)求点.A PCD 到平面的距离
21.(2013年高考安徽(文))如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形
,60BAD ∠=.已知
2,PB PD PA === .
(Ⅰ)证明:PC BD ⊥
(Ⅱ)若E 为PA 的中点,求三棱锥P BCE -的体积.。