电磁场超导体的电磁性质
- 格式:ppt
- 大小:1.19 MB
- 文档页数:19
超导材料在电磁场中的物理性质及应用超导材料的发现和应用是当今科学技术领域中的一大突破,而电磁场作为应用领域中的重要领域,也在这一过程中得到广泛地应用。
超导材料在电磁场中的物理性质和应用则是继续探寻和发展超导材料应用领域的重要方向之一。
一、超导材料的基本物理性质超导材料是指在一定的温度范围内,在超导态下能够表现出完美的电阻为零、磁通量量子化等性质的一类材料。
其中,温度是影响超导材料性质的关键因素之一。
当温度低于超导材料的临界温度时,材料便进入了超导态。
除了电阻为零和磁通量量子化等性质之外,超导材料还有其它的基本物理性质。
以磁性为例,超导材料由于自身的物理结构,在外磁场的作用下会在其内部形成超导电流,排斥外磁场的渗透。
因此,超导材料可以在磁场中具有完美的磁屏蔽性能。
二、超导材料在电磁场中的应用1.超导磁体超导磁体是超导材料在磁共振成像、核磁共振、等离子体研究等领域应用最为广泛的一种形式。
超导磁体利用超导材料的磁屏蔽性能,可以产生无极大的磁场。
高强度的磁场可以被用于许多检测与治疗技术,如医学磁共振成像。
2.超导电缆超导电缆是一种利用超导材料来传输电能的电缆。
超导材料在传输电流时,不会产生电阻损耗,因此可以在长距离传输电能的同时,节省能源。
超导电缆可以在供电过程中减少电能的损耗,同时也可以增加电力系统的稳定性和安全运行。
3.超导磁浮超导磁浮技术是一种利用超导材料的电磁性质,将列车悬浮在磁场中,实现高速列车的运行。
超导磁浮技术是一种新型的交通工具,正在逐渐成为高速交通运输的一种重要方式。
目前,日本的铁路系统“新干线”利用超导磁浮技术已经开行了400公里/小时的高速列车。
4.超导电机超导电机是利用超导材料制成的线圈产生磁场,控制旋转电机的运行。
超导电机使用超导线圈降低了电阻和损耗,从而提高了电机的性能。
5.超导热电冷却器超导热电冷却器是利用超导材料的热电效应,实现低温制冷技术。
超导热电冷却器可以制冷到接近绝对零度的温度,使得许多实验和仪器能够在极低温度下运行。
超导体中的磁通动力学研究超导体是一种具有特殊电性质的材料,其在低温下能够表现出零电阻和完全抗磁性。
超导体内部的电流是通过电子对的形式流动的,这种电流也被称为超导电流。
而超导电流在超导体中的传播与磁通动力学息息相关。
本文将对超导体中的磁通动力学进行研究,并深入探讨其影响因素和应用前景。
一、超导体中的磁通动力学现象超导体内部的磁通是由超导电流所引起的。
当外磁场通过超导体时,部分磁通会穿透超导体,形成一种称为磁通子的结构。
而超导电流则将磁通限制在超导体内部,并阻止磁通子的运动。
这种超导电流与磁通之间的互作用形成了超导体中独特的磁通动力学现象。
在超导体中,当磁通密度较低时,磁通子会以规则的排列方式进入超导体,并形成一种称为阿贝尔态的有序磁通结构。
而当磁通密度增大时,磁通子之间会发生相互引力,导致磁通子的排列变得无序,这种无序排列的现象被称为磁通子涡流态。
与此同时,超导电流会受到磁通子排列的影响而发生改变,从而改变超导体的电性质。
二、超导体中磁通动力学的影响因素超导体中磁通动力学的研究不仅可以帮助我们理解超导电性的本质,还可以为超导材料的设计和应用提供指导。
以下是一些影响超导体磁通动力学的重要因素:1. 温度:超导体需要低温环境才能展现出超导电性。
随着温度的增加,超导电流的强度和磁通子的密度会发生变化,从而影响超导体的磁通动力学行为。
2. 磁场强度:外磁场的强度会直接影响磁通子的密度和排列方式。
在不同的磁场强度下,超导体中的磁通动力学行为也会有所不同。
3. 材料性质:超导体的材料性质对磁通动力学有着重要的影响。
不同的超导材料拥有不同的超导电性质和磁通排列方式,这也决定了超导体中磁通动力学的特性。
三、超导体中磁通动力学的应用前景超导体中的磁通动力学研究在能源、传输和储存等领域具有广阔的应用前景。
以下是一些潜在的应用方向:1. 超导电磁体:超导电磁体是利用超导体中的磁通动力学现象制造的一种强磁场装置。
其在核磁共振成像、磁悬浮列车等领域有着重要的应用。
超导体的电磁学性质及热力学解释超导电是在低温下具有广泛性的现象,现在已知道,有二十多种元素,大量的化合物,都在一定的临界温度下,转入所谓超导电状态。
超导体与温度、磁场、电流密度的大小密切相关,这些条件的上限分别称为临界温度(critical temperature, Tc)、临界磁场(critical magnetic field, Hc)和临界电流密度(critical electric current density, Jc)。
超导电性有两个最基本的特性:完全导电性和完全抗磁性。
常压下,元素中超导临界温度最高的是Nb(9.26K),最低的是Rh(0.0002K)。
近年来人们始终在努力寻求临界温度更高的所谓高 Tc 超导材料,到目前为止,已经发现了三代高温超导材料,第一代为镧系高温超导材料,第二代为钇系高温超导材料,第三代为铋系、铊系及汞系高温超导材料。
1.超导体的电磁学性质1.1 零电阻1911年荷兰物理学家昂内斯(H.R.Onnes)在研究水银在低温下的电阻时,发现当温度降低至4.2K以下后,水银的电阻突然消失,呈现零电阻状态。
昂内斯便把这种低温下物质具有零电阻的性能称为超导电性。
电阻是用灵敏电位计测量通过一定电流样品上的电压降而确定的,样品本身被浸在液氦中。
当时发现 Hg 的电阻在 4.2K 左右陡然下降。
实验证明,测量电流愈小,电阻变化愈尖锐,用足够小的测量电流能使电阻的下降集中发生在 0.01K 的狭窄范围内。
在这个转变温度以下,电阻完全消失。
汞在液氦温度左右的电阻变化如下图所示。
上述检测方法由于仪器的灵敏度问题而受到质疑。
Onnes利用“持久电流”实验解决了这个问题。
在外磁场作用下,使环状的样品发生上述转变,然后撤去磁场,这时在环内产生感生电流。
他发现当温度降到临界温度以下,用磁针在低温容器之外检验感生电流,结果在很长时间内,完全不能发现任何变化。
而温度提高到临界温度以上时,电流立即消失。
超导体的性质及应用超导体是一种在极低温下(通常小于零下196度)能够完全无阻力地导电的材料。
超导体具有一系列特殊的性质,而这些性质也为其在现代科技中的应用带来了极大的潜力。
本文将介绍超导体的基本性质以及其在各个领域中的应用。
一、超导体的基本性质1. 零电阻在极低温下,超导体能够完全无阻力地导电。
此时,电流会在超导体内部的电子对上流动,而这些电子对能够有效地避免了电阻的产生。
同时,由于存在零电阻状态,超导体的能量损失也非常小,因此能够有效地减少能量的浪费。
2. 恒定磁通量超导体内部的磁通量是恒定的,不受外界磁场的影响。
这是由于超导体内部的电流会产生磁场,而这个磁场会抵消外部的磁场,从而使得超导体内部的磁通量保持不变。
3. 超导态和正常态超导体存在两种状态,分别为超导态和正常态。
在超导态下,电流能够无阻力地流动,而在正常态下,电流受到阻力的影响,会产生能量损耗。
超导体的这种双重状态使其在不同领域中的应用具有极大的灵活性。
二、超导体的应用1. 磁共振成像技术超导体能够恒定磁通量,因此被广泛应用于MRI(磁共振成像)技术中。
MRI技术利用磁场和无线电波来创建图像,而超导体是产生这种强磁场的关键材料。
目前,MRI技术已经成为医学诊断的重要手段,为人们提供了高清晰度的内部图像。
2. 超导电缆超导电缆利用超导体的零电阻特性,将电流无损耗地传输。
由于超导电缆不仅能够减少能量的损失,而且还能够极大地提高能量传输的效率,因此被广泛应用于输电和通信领域。
例如,一些国际能源大项目中需要长距离、高电流密度输电,而超导电缆正是实现这一目标的重要手段。
3. 量子计算量子计算是一种基于量子力学原理的计算方式,其中的基本单位是量子比特(qubit)。
超导体能够很好地充当qubit,因为其双重状态使其有较好的干净度、长寿命和易于量子操控等特点。
目前,量子计算被看作是未来计算技术的发展方向之一,而超导体则是量子计算中不可或缺的重要材料。
超导体以及超导体的应用简单介绍超导体是一种在低温下表现出无电阻的材料,具有很高的导电性能。
在超导状态下,电流可以无损耗地在材料中流动,使其具有重要的科学和工程应用。
本文将对超导体的基本概念和一些常见的应用进行简要介绍。
一、超导体的基本概念超导体是指在一定的温度下,通过冷却或外界条件的改变,电阻为零并且磁场也会完全排斥的材料。
超导体常见的特性包括零电阻、零磁滞、等等。
根据材料的类型和性质,超导体被分为多种不同的类型,如I型超导体、II型超导体等。
二、超导体的应用1. 磁共振成像(MRI)超导体在医学成像领域有着广泛的应用。
目前常见的核磁共振成像(NMR)和磁共振成像(MRI)技术都使用了超导体。
超导体材料可以通过冷却至低温状态来维持超导态,使得医疗设备的磁场强度得以提升,从而提高成像的分辨率和准确度。
2. 高速磁悬浮列车超导体的磁性能使其在交通运输领域有着广泛的应用前景。
高速磁悬浮列车利用超导磁体产生巨大的磁场,通过磁悬浮和线圈之间的相互作用,实现列车的悬浮和运行。
超导体的应用使得列车可以高速运行,并且具备较低的摩擦和噪音。
3. 环境保护超导体的应用还可以帮助解决环境保护领域的一些难题。
例如,超导磁体可以用于磁场污染治理,通过控制磁场来降低电磁辐射对环境和人体健康的影响。
此外,超导体还可以用于高能粒子探测器、核聚变装置等领域,为科学研究提供有力的工具。
4. 能源传输和储存超导体在能源领域也有着广泛的应用前景。
超导电缆可以有效降低电能传输过程中的能量损耗,提高能源利用效率。
此外,超导体还可以用于储能设备的研发,例如超导磁体储能和超导磁体储能蓄电池等技术,这些技术可以在储能方面提供更高效、更可靠的解决方案。
5. 其他应用除了以上提到的应用领域外,超导体还有很多其他的应用。
例如,超导器件可以用于极低温实验、量子计算和量子通信等前沿领域。
此外,超导体还在磁共振能谱学、磁测量、精密测量等领域中发挥着重要作用。
§5 超导体的电磁性质1本节主要内容: 1. 超导体特性之一:零电阻 2. 超导体特性之二:完全抗磁性(Meissner 迈斯纳效应) 3. 超导体的电动力学性质 4. 超导环的磁通俘获和磁通量子化现象2气体液化与低温环境的获得 1892年,发明了杜瓦瓶(中间抽真空,内胆涂有银 的双层玻璃瓶) 1899年,杜瓦(James Dewar)在伦敦皇家研究所成 立100周年庆典上,展示氢气(H2)的液化实验3水银超导体的发现Heike Kamerlingh Onnes (1853-1926) Dutch Physicist、 1882年,进入Leiden大学,研 究低温气体; 1908年,将液体的温度降低到 大约1K,成功将氦气液化; 1911年,开始研究金属在极 低温下的性质; 1912年,发现了水银的超导 电性, 1913年,获Nobel奖4The discovery of superconductivityNotebook 56, 8 April, 1911 Notebook 57, 26 October, 1911“Mercury[‘s resistance] practically zero [at 3 K] ……repeated with gold…”2014/11/5The historic plot. Superconducting transition at 4.2k in mercury5Meissner effectFritz Walther Meissner (1882-1974) 1933 Robert Ochsenfeld (1901-1993)German physicists2014/11/5Perfect diamagnetism below Tc6Londons’ theoryHeinz Fritz Wolfgang London London (1907-1970) (1900-1954) Londons’ Equation: (1935)Ampère's law:German Physicists2014/11/5 7Ginzburg-Landu theoryLev Landau (1908-1968) Vitaly Ginzburg (1916-2009) 1950 The free energy density:Complex order parameterU(1) gauge symmetry broken Soviet physicists2014/11/5其它几种超导体 元素 Al(铝) In(铟) Sn(锡) Pb(铅) Nb(铌) 1911 超导转变温度 1.2 K 3.4 K 3.7 K 7.2 K 9.2 K 198691986年,Muller和Bednorz发现:陶瓷氧化物 LaBaCuO的转变温度可达到35K。
超导体的磁性与电性质超导体是一类具有特殊电性质的材料,它们在超低温下表现出完全零电阻和完全磁通排斥的特点。
这一特性使得超导体在电力输送、磁共振成像以及粒子加速器等领域有着广泛的应用。
本文将介绍超导体的磁性和电性质,并探讨其中的相关机理。
一、超导体的磁性质超导体的磁性质主要表现为磁通排斥现象。
在超导体中,当外加磁场超过一定临界值时,超导体会自发地排斥磁通的进入,使得磁场在超导体内部几乎为零。
这一现象称为Meissner效应。
Meissner效应的机理是由超导体中的电子配对所导致的。
在超导体中,低温下电子可以通过库伯对的形式相互配对,形成一种称为Cooper对的准粒子。
这些Cooper对能够在超导体中自由移动,而不会受到散射的影响,从而导致超导体的零电阻特性。
当外加磁场作用于超导体时,磁场会影响Cooper对的运动,从而破坏超导态。
然而,Cooper对又会通过一种相互协作的方式排斥磁场的进入。
具体来说,当磁场增加时,Cooper对会调整运动方向,使得它们的运动路径围绕磁场线圈,从而形成一个抗磁性的电流环。
这个电流环产生的磁场与外加磁场方向相反,从而实现了磁通的排斥。
这种排斥作用使得超导体在外加磁场下形成一个磁场屏蔽区域,以及一个磁场漂移区域。
二、超导体的电性质超导体的电性质主要表现为完全零电阻和迈斯纳效应。
超导体在超低温下具有完全零电阻的特性,即电流可以在超导体中无阻碍地流动。
这一特性使得超导体在电力输送、电磁感应和粒子加速器等领域得到广泛应用。
完全零电阻的机理同样与Cooper对的形成有关。
当电流流过超导体时,Cooper对会影响电子的运动,并减小电子散射的可能性。
这导致了电子在超导体中的无阻碍传导,即完全零电阻的特性。
此外,超导体的零电阻还与超导能隙和库伯对的形成有关,但由于篇幅有限,本文不做详细介绍。
此外,超导体还表现出一种称为迈斯纳效应的特性。
当超导体中存在磁场时,电流会沿磁感线圈流动,形成一种称为迈斯纳电流的现象。