2014-2015学年人教A版选修2-1高中数学《2.3.2双曲线方程及性质的应用(2)》课件
- 格式:ppt
- 大小:1.62 MB
- 文档页数:52
双曲线及其标准方程(30分钟50分)一、选择题(每小题3分,共18分)1.(2014²长春高二检测)双曲线-=1的焦距为( )A. B.2 C.4 D.8【解析】选D.由方程-=1,得a2=9,b2=7,所以c2=a2+b2=16,即c=4,所以焦距2c=8.2.“mn<0”是“方程mx2+ny2=1表示焦点在x轴上的双曲线”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.方程mx2+ny2=1表示焦点在x轴上的双曲线,则有m>0,n<0,故mn<0,若m²n<0,则m>0,n<0或m<0,n>0.故选B.3.(2014²南昌高二检测)设双曲线-=1上的点P到点(4,0)的距离为10,则点P到点(-4,0)的距离为( )A.16B.16+2C.10+2或10-2D.16或4【解析】选C.由-=1,得a2=7,b2=9,所以c2=a2+b2=16,c=4,a=,所以F2(4,0)和F1(-4,0)为双曲线的焦点.由||PF1|-|PF2||=2a=2,故|PF1|=10+2或10-2.4.(2014²济宁高二检测)如图,△ABC外接圆半径R=,∠ABC=120°,BC=10,弦BC在x轴上且y轴垂直平分BC边,则过点A且以B,C为焦点的双曲线的方程为( )A.-=1B.-=1C.-=1D.-=1【解析】选B.由正弦定理得=2R,所以|AC|=2³³=14,由余弦定理得|AC|2=|AB|2+|BC|2-2|AB||BC|cos∠ABC,即|AB|2+10|AB|-96=0,解得|AB|=6,依题意设双曲线的方程为-=1,则|BC|=2c=10,|AC|-|AB|=2a=14-6=8,所以c=5,a=4,则b2=c2-a2=9,因此所求双曲线的方程为-=1.5.已知△ABP的顶点A,B分别为双曲线C:-=1的左、右焦点,顶点P在双曲线C上,则的值等于( )A. B. C. D.【解题指南】使用△ABP中的正弦定理.【解析】选D.在△A BP中,根据正弦定理得=.由条件可知,c2=16+9=25,所以|AB|=2c=10,且||PB|-|PA||=2a=8,所以===.6.(2014²宿州高二检测)过双曲线-=1(a,b>0)的左焦点F1,作圆x2+y2=a2的切线交双曲线右支于点P,切点为T,PF1的中点M在第一象限,则以下结论正确的是( )A.b-a=|MO|-|MT|B.b-a>|MO|-|MT|C.b-a<|MO|-|MT|D.b-a与|MO|-|MT|的大小不确定【解析】选A.设F2为双曲线的右焦点,连PF2,因M为PF1中点,故|MO|=|PF2|=(|PF1|-2a)=|PF1|-a=|MF1|-a,|MO|-|MT|=|MF1|-|MT|-a=|F1T|-a.连OT,则△F1OT为直角三角形,且|OT|=a,|OF1|=c,所以|F1T|==b,故|MO|-|MT|=b-a.二、填空题(每小题4分,共12分)7.已知点F1,F2分别是双曲线-=1(a>0)的左、右焦点,P是该双曲线上的一点,且|PF1|=2|PF2|=16,则△PF1F2的周长是.【解析】因为|PF1|=2|PF2|=16,所以|PF1|-|PF2|=16-8=8=2a,所以a=4.又因为b2=9,所以c2=25,所以2c=10.所以△PF1F2的周长为|PF1|+|PF2|+|F1F2|=16+8+10=34.答案:34【举一反三】本题条件不变,则△PF1F2的面积是.【解析】因为|PF1|=2|PF2|=16,所以|PF1|-|PF2|=16-8=8=2a.所以a=4,又因为b2=9,所以c2=25,所以2c=10,在△F1PF2中,由余弦定理得cos∠F1PF2===.所以sin∠F1PF2==,所以=|PF1||PF2|²sin∠F1PF2=³16³8³=.答案:8.(2014²唐山高二检测)已知P是双曲线-=1上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为.【解析】由条件知a2=64,即a=8,c2=b2+a2=100,c=10,所以双曲线右支上的点到左焦点F1的最短距离a+c=18>17,故点P在双曲线左支上.所以|PF2|-|PF1|=2a=16,即|PF2|=16+|PF1|=33.答案:33【误区警示】本题易直接利用定义求解,忽视右支上的点到左焦点的最短距离为a+c,而出现错误结论|PF2|=1或|PF2|=33.9.(2014²双鸭山高二检测)已知双曲线-=1(a>0,b>0)的两个焦点分别为F1(-2,0),F2(2,0),点P(3,)在双曲线上,则双曲线方程为______________.【解析】|PF 1|==4,|PF2|==2,|PF1|-|PF2|=2=2a,所以a=,又c=2,故b2=c2-a2=2,所以双曲线的方程为-=1.答案:-=1【变式训练】已知双曲线上两点P1,P2的坐标分别为(3,-4),,求双曲线的方程.【解析】设所求双曲线的方程为Ax2+By2=1(AB<0),依题意有解得故所求双曲线方程为-=1.三、解答题(每小题10分,共20分)10.如图,已知双曲线中c=2a,F1,F2为左、右焦点,P是双曲线上的点,∠F1PF2=60°,=12.求双曲线的标准方程.【解析】由题意可知双曲线的标准方程为-=1.由于||PF1|-|PF2||=2a,在△F1PF2中,由余弦定理得cos60°==,所以|PF1|²|PF2|=4(c2-a2)=4b2,所以=|PF1|²|PF2|²sin60°=2b2²=b2,从而有b2=12,所以b2=12,c=2a,结合c2=a2+b2,得a2=4.所以双曲线的标准方程为-=1.11.双曲线-=1的两个焦点为F1,F2,点P在双曲线上.若PF1⊥PF2,求点P到x轴的距离.【解题指南】这是一道典型的与焦点三角形有关的问题.可设点P(x0,y0),则|y0|就是点P到x轴的距离,故只需求出点P的纵坐标即可.【解析】设P点为(x0,y0),而F1(-5,0),F2(5,0),则=(-5-x0,-y0),=(5-x0,-y0).因为PF1⊥PF2,所以²=0,即(-5-x0)(5-x0)+(-y0)²(-y0)=0,整理,得+=25①.又因为P(x0,y0)在双曲线上,所以-=1②.联立①②,得=,即|y0|=.因此点P到x轴的距离为.(30分钟50分)一、选择题(每小题4分,共16分)1.若方程-=1表示双曲线,则实数m的取值范围是( )A.m≠1且m≠-3B.m>1C.m<-3或m>1D.-3<m<1【解析】选C.由(m-1)(m+3)>0,得m>1或m<-3.【举一反三】若方程-=1表示焦点在x轴上的双曲线,则实数m的取值范围是( )【解析】选B.由已知得得m>1.2.(2014²太原高二检测)设F1,F2分别是双曲线x2-=1的左、右焦点.若点P在双曲线上,有²=0,则|+|=( )A. B.2 C. D.2【解析】选B.因为²=0,所以PF1⊥PF2,即△PF1F2为直角三角形,所以|PF1|2+|PF2|2=|F1F2|2=(2)2=40,|+|====2.3.(2014²济宁高二检测)已知F1,F2为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则P到x轴的距离为( )A. B. C. D.【解析】选B.因为||PF1|-|PF2||=2,所以|PF1|2-2|PF1|²|PF2|+|PF2|2=4,所以|PF1|2+|PF2|2=4+2|PF1|²|PF2|,由余弦定理知|PF1|2+|PF2|2-|F1F2|2=2|PF1|²|PF2|cos 60°,得|PF1|2+|PF2|2=|F1F2|2+|PF1|²|PF2|,又a=1,b=1,所以c==,所以|F1F2|=2c=2,所以4+2|PF1||PF2|=|PF1|²|PF2|+8,所以|PF1|²|PF2|=4.设P到x轴的距离为|y0|,=|PF1||PF2|sin 60°=|F1F2|²|y0|,所以³4³=³2|y0|,所以y0==.4.(2014²长沙高二检测)已知P为双曲线-=1(a>0,b>0)右支上一点,F1,F2分别为双曲线的左、右焦点,I是△PF1F2的内心,若=+λ成立,则λ的值为( )A. B.C. D.【解析】选B.△IPF1,△IPF2,△IF1F2的高均为△PF1F2内切圆的半径,故|PF1|²r=|PF2|²r+λ³|F1F2|r,所以|PF1|=|PF2|+λ|F1F2|,即|PF1|-|PF2|=λ|F1F2|,所以2a=λ³2c,λ==.二、填空题(每小题5分,共10分)5.(2014²黄石高二检测)已知F是双曲线-=1的左焦点,A(1,4),点P是双曲线右支上的动点,则|PF|+|PA|的最小值是.【解析】由双曲线-=1,得c=4,所以左焦点F(-4,0),右焦点F′(4,0),由双曲线的定义得:|PF|-|PF′|=2a=4,所以|PF|+|PA|=4+|PF′|+|PA|≥4+|AF′|=4+=9,此时P为AF′与双曲线的交点,即|PF|+|PA|的最小值为9.答案:96.(2014²杭州高二检测)已知双曲线的两个焦点为F1(-,0),F2(,0),M是此双曲线上一点,若²=0,||²||=2,则该双曲线的方程是.【解析】设双曲线的方程为-=1,由题意得||MF1|-|MF2||=2a,|MF1|2+|MF2|2=(2)2=20,又因为||²||=2,所以|MF1|2+|MF2|2-2|MF1||MF2|=4a2,即20-2³2=4a2,所以a2=4,b2=c2-a2=5-4=1,所以双曲线的方程为-y2=1.答案:-y2=1三、解答题(每小题12分,共24分)7.当0°≤α≤180°时,方程x2cosα+y2sinα=1表示的曲线怎样变化?【解题指南】根据cosα的取值,对角α分五类进行讨论,由直线、椭圆和双曲线的标准方程判断对应曲线的具体形状.【解析】(1)当α=0°时,方程为x2=1,它表示两条平行直线x=±1.(2)当0°<α<90°时,方程为+=1.①当0°<α<45°时,0<<,它表示焦点在y轴上的椭圆.②当α=45°时,它表示圆x2+y2=.③当45°<α<90°时,>>0,它表示焦点在x轴上的椭圆.(3)当α=90°时,方程为y2=1,它表示两条平行直线y=±1.(4)当90°<α<180°时,方程为-=1,它表示焦点在y轴上的双曲线.(5)当α=180°时,方程为x2=-1,它不表示任何曲线.8.某部队进行军事演习,一方指挥中心接到其正西、正东、正北方向三个观测点A,B,C的报告:正西、正北两个观测点同时听到了炮弹的爆炸声,正东观测点听到爆炸声的时间比其他两个观测点晚4s,已知各观测点到该中心的距离都是1020m,试确定该枚炮弹的袭击位置.(声音的传播速度为340m/s,相关各点均在同一平面内)【解析】如图,以指挥中心为原点,正东、正北方向分别为x轴、y轴的正方向建立平面直角坐标系,则A(-1020,0),B(1020,0),C(0,1020).设P(x,y)为炮弹的袭击位置,则|PB|-|PA|=340³4<|AB|,由双曲线定义,知点P在以A,B为焦点的双曲线的左支上,且a=680,c=1020,所以b2=10202-6802=5³3402.所以双曲线方程为-=1(x≤-680).①又|PA|=|PC|,因此P在直线y=-x上,把y=-x代入①式,得x≈-1521.所以P(-1521,1521),|OP|=1521(m).故该枚炮弹的袭击位置在北偏西45°,距指挥中心1521m处.。
双曲线的简单几何性质一、要点精讲1.双曲线的标准方程和几何性质2.等轴双曲线实轴和虚轴等长的双曲线叫做等轴双曲线,其标准方程为()022≠=-λλy x ,离心率2=e ,渐近线方程x y ±=。
3、共渐近线的双曲线系方程:与-22a x 22b y =1有相同渐近线的双曲线系方程可设为-22ax ()022≠=λλb y ,若0>λ,则双曲线的焦点在轴上;若0<λ,则双曲线的焦点在轴上。
4、共焦点的双曲线系方程:与-22ax 22b y =1焦点相同的双曲线系方程可设为()2222221,+x y k b k a a k b k -=<<-二、基础自测1.(15安徽)下列双曲线中,渐近线方程为2y x =±的是( )(A )2214y x -= (B )2214x y -=(C )2212y x -= (D )2212x y -= 2.(2013湖北)已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的 ( ) A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等3.(2013课标)已知双曲线2222:1x y C a b -=(0,0)a b >>,则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =± D .y x =± 4.(15广东)已知双曲线C :12222=-b y a x 的离心率54e =,且其右焦点()25,0F ,则双曲线C 的方程为A .13422=-y x B.191622=-y x C.116922=-y x D. 14322=-y x 5.(2013湖南)设F 1、F 2是双曲线C,22221x y a b-=(a >0,b>0)的两个焦点。
双曲线的方程及其性质知识集结知识元双曲线的定义知识讲解1.双曲线的定义【定义】双曲线(Hyperbola)是指与平面上到两个定点的距离之差的绝对值为定值的点的轨迹,也可以定义为到定点与定直线的距离之比是一个大于1的常数的点之轨迹.双曲线是圆锥曲线的一种,即圆锥面与平面的交截线.双曲线在一定的仿射变换下,也可以看成反比例函数.两个定点F1,F2叫做双曲线的焦点(focus),定直线是双曲线的准线,常数e是双曲线的离心率.【标准方程】①(a,b>0),表示焦点在x轴上的双曲线;②(a,b>0),表示焦点在y轴上的双曲线.【性质】这里的性质以(a,b>0)为例讲解:①焦点为(±c,0),其中c2=a2+b2;②准线方程为:x=±;③离心率e=>1;④渐近线:y=±x;⑤焦半径公式:左焦半径:r=|ex+a|,右焦半径:r=|ex﹣a|.【实例解析】例1:双曲线﹣=1的渐近线方程为解:由﹣=0可得y=±2x,即双曲线﹣=1的渐近线方程是y=±2x.故答案为:y=±2x.这个小题主要考察了对渐近线的理解,如果实在记不住,可以把那个等号后面的1看成是0,然后因式分解得到的两个式子就是它的渐近线.例2:已知双曲线的一条渐近线方程是x﹣2y=0,且过点P(4,3),求双曲线的标准方程解:根据题意,双曲线的一条渐近线方程为x﹣2y=0,设双曲线方程为﹣y2=λ(λ≠0),∵双曲线过点P(4,3),∴﹣32=λ,即λ=﹣5.∴所求双曲线方程为﹣y2=﹣5,即:﹣=1.一般来说,这是解答题的第一问,常常是根据一些性质求出函数的表达式来,关键是找到a、b、c三者中的两者,最后还要判断它的焦点在x轴还是y轴,知道这些参数后用待定系数法就可以直接写出函数的表达式了.【考点点评】这里面的两个例题是最基本的,必须要掌握,由于双曲线一般是在倒数第二个解答题出现,难度一般也是相当大的,在这里可以有所取舍,对于基础一般的同学来说,尽量的把这些基础的分拿到才是最重要的,对于还剩下的部分,尽量多写.例题精讲双曲线的定义例1.'已知点A(-,0),B(,0),动点C到A、B两点的距离之差的绝对值为2,点C的轨迹与直线y=x-2交于D、E两点,求线段DE的中点坐标及其弦长DE.'例2.'若动点P到两个定点F1(-1,0)、F2(1,0)的距离之差的绝对值为定值a(0≤a≤2),试求动点P的轨迹.'例3.'已知两圆C1:(x+4)2+y2=2,C2:(x-4)2+y2=2.动圆M与两圆都相切,求动圆圆心M的轨迹方程.'双曲线的标准方程知识讲解1.双曲线的标准方程【知识点的认识】双曲线标准方程的两种形式:(1)(a>0,b>0),焦点在x轴上,焦点坐标为F(±c,0),焦距|F1F2|=2c;(2)(a >0,b >0),焦点在y 轴上,焦点坐标为F (0,±c ),焦距|F 1F 2|=2c .两种形式相同点:形状、大小相同;都有a >0,b >0;c 2=b 2+a 2两种形式不同点:位置不同;焦点坐标不同.标准方程(a >0,b >0)中心在原点,焦点在x 轴上(a >0,b >0)中心在原点,焦点在y 轴上图形顶点(a ,0)和(﹣a ,0)(0,a )和(0,﹣a )对称轴x 轴、y 轴,实轴长2a ,虚轴长2b焦点在实轴上x 轴、y 轴,实轴长2a ,虚轴长2b焦点在实轴上焦点F 1(﹣c ,0),F 2(c ,0)F 1(0,﹣c ),F 2(0,c )焦距|F 1F 2|=2c (c >0)c 2=a 2+b 2|F 1F 2|=2c (c >0)c 2=a 2+b 2离心率e =(e >1)e =(e >1)渐近线即y =±x即y =±x准线x =±y =±例题精讲双曲线的标准方程例1.'求下列双曲线的实轴、虚轴的长,顶点、焦点的坐标和离心率:(1)x 2-8y 2=32;(2)9x 2-y 2=81;(3)x 2-y 2=-4;(4)-=-1.'例2.'已知双曲线=1的离心率e =3,直线y =x +2与双曲线交于A ,B 两点,若OA ⊥OB ,求双曲线的方程.'例3.'双曲线=1(a >0,b >0)过点P (-3,2),过双曲线的右焦点且斜率为的直线与直线x =和x=-(c 2=a 2+b 2)分别相交与点M ,N ,若以|MN |为直径的圆过原点,求此双曲线的方程.'双曲线的性质知识讲解1.双曲线的性质【知识点的知识】双曲线的标准方程及几何性质标准方程(a >0,b >0)(a >0,b >0)图形性焦点F 1(﹣c ,0),F 2(c ,0)F 1(0,﹣c ),F 2(0,c )焦距|F 1F 2|=2c |F 1F 2|=2c 范围|x |≥a ,y ∈R|y |≥a ,x ∈R对称关于x 轴,y 轴和原点对称顶点(﹣a ,0).(a ,0)(0,﹣a )(0,a )轴实轴长2a ,虚轴长2b质离心率e =(e>1)准线x =±y =±渐近线±=0±=例题精讲双曲线的性质例1.下列曲线中实轴长为的是()A .B .C .D .例2.双曲线C 的对称轴与坐标轴重合,两个焦点分别为F 1,F 2,虚轴的一个端点为A ,若△AF 1F 2是顶角为120°的等腰三角形.则双曲线C的离心率为()A .B .C .D .2例3.已知中心在原点,对称轴为坐标轴的双曲线的一条渐近线方程为,则该双曲线的离心率是()A .B .C .或D .或当堂练习单选题练习1.已知F1,F2分别是双曲线C:的左、右焦点,AB是右支上过F2的一条弦,且|AF1|:|AB|=3:4,则C的离心率是()A.B.5C.D.练习2.已知F1为双曲线C:=1(b>a>0)的左焦点,过F1作一条渐近线的垂线,垂足为A,与另一条渐近线交于点B.若AB的中点为M(1,8),则此双曲线C的离心率为()A.B.2C.D.练习3.双曲线C:=1(a>0,b>0)的左右焦点分别为F1,F2,C的右支上一点P满足∠F1PF2=60°,若坐标原点O到直线PF1距离是,则C的离心率为()A.B.C.2D.3练习4.设双曲线的左、右焦点分别为F1,F2,过F2的直线与双曲线的右支交于两点A,B,若|AF1|:|AB|=3:4,|BF2|=3|AF2|,则双曲线C的离心率是()D.5 A.B.C.练习5.已知双曲线的两条渐近线分别为直线l1,l2,经过右焦点F且垂直于l1的直线l分别交l1,l2于A,B两点,且,则该双曲线的离心率为()A.B.C.D.练习6.F1,F2是双曲线-=1(a>0,b>0)的左右焦点,若双曲线上存在点P满足=-a2,则双曲线离心率的取值范围为()A.[,+∞)B.[,+∞)C.(1,]D.(1,]填空题练习1.已知P为双曲线C:-=1(a>0,b>0)右支上的任意一点,经过点P的直线与双曲线C 的两条渐近线分别相交于A,B两点.若点A,B分别位于第一、四象限,O为坐标原点,当=时,△AOB的面积为2b,则双曲线C的实轴长为__。