充要条件与反证法(整理好的很详细)
- 格式:doc
- 大小:210.50 KB
- 文档页数:5
数学证明与推理的基本方法与技巧数学是一门严谨而抽象的学科,其中的证明和推理是数学思维的核心部分。
通过证明和推理,数学家能够发现、验证和推广数学定理,推动数学科学的进步。
本文将介绍数学证明与推理的基本方法与技巧,帮助读者更好地理解和应用数学知识。
一、数学证明的基本方法1. 直接证明法直接证明法是数学证明中最常见的方法,即通过逻辑推理从已知条件推出结论。
首先,列出已知条件,然后基于这些已知条件使用逻辑推理得出结论。
例如,证明一个等式,可以从等式的两边进行运算,逐步推导出相等关系。
2. 反证法反证法是通过假设命题的否定结果,然后推导出矛盾,从而证明原命题是正确的方法。
这种方法常用于证明存在性质的命题,其证明思路是假设命题不成立,然后通过推理得出矛盾的结论。
3. 数学归纳法数学归纳法用于证明具有递推性质的命题,即通过证明命题在某些特殊情况下成立,并假设对于某个自然数n成立,然后证明在n+1的情况下也成立。
这样,通过归纳可以得出命题在所有自然数上成立的结论。
4. 构造法构造法是通过构造一个满足条件的示例来证明命题。
证明思路是首先根据已知条件构造出一个符合题目要求的对象,然后验证该对象满足题目给出的条件。
例如,证明存在一个正整数满足某种性质,可以通过构造一个具体的正整数来完成证明。
二、推理的基本技巧1. 充分性与必要性在数学证明中,需要区分充分条件和必要条件。
充分条件指的是当条件成立时,结论一定成立;必要条件指的是当结论成立时,条件一定成立。
在进行推理时,需要确保充分条件和必要条件的正确性,不可混淆。
2. 逻辑演绎逻辑演绎是通过逻辑关系进行推理的重要方法。
主要包括假言推理、拒取式推理、假设推理等。
在推理过程中,需要根据已知条件和逻辑规则推导出新的结论,确保逻辑推理的准确性和完整性。
3. 利用等价关系等价关系在数学证明中起着重要的作用。
当遇到复杂的命题或不等式时,可以利用等价关系将其转化为更简单的形式,从而更便于证明。
不等式证明的常用方法不等式是高中数学的重要内容,它几乎涉及整个高中数学的各个部分,因此,通过不等式这条纽带,可把中学数学的各部分内容有机地联系起来.而不等式的证明是高中数学的一个难点,加之题型广泛、方法灵活、涉及面广,常受各类考试命题者的青睐,亦成为历届高考中的热点问题.本节通过一些实例,归纳一下不等式证明的常用方法和技巧. 一、比较法证明不等式的比较法分为作差比较与作商比较两类,基本思想是把难于比较的式子变成其差再与0比较,或其商再与 l 比较.当欲证的不等式两端是乘积形式或幂指数形式时,常采用作商比较法.【例1】若,0,0>>b a 证明:2121212212)()(b a ab b a +≥+证法一 (作差比较) 左边-右边)()()(33b a abb a +-+=abb a ab b ab a b a )())((+-+-+=abb ab a b a )2)((+-+=0))((2≥-+=abb a b a∴原不等式成立证法二 (作商比较)右边左边ba ab b a ++=33)()()())((b a ab b ab a b a ++-+=abb ab a )(+-=12=-≥ababab∴原不等式成立.点评 用比较法证明不等式,一般要经历作差(或作商)、变形、判断三个步骤.变形的主要手段是通分、因式分解或配方;此外,在变形过程中,也可利用基本不等式放缩,如证法二.用作差比较法变形的结果都应是因式之积或完全平方式,这样有利于判断符号. 【例2】已知函数)(1)(2R x x x f ∈+=,证明:|||)()(|b a b f a f -≤- 证法一(作商比较)若||||b a =时,|||)()(|0b a b f a f -≤-=,当且仅当b a =时取等号. 若||||b a ≠时,∵0|)()(|>-b f a f ,0||>-b a∴=-+-+=--|||11||||)()(|22b a b a b a b f a f =-+-+b a b a 2211<+++--)11)((2222b a b a b a ≤++22b a ba 1即|||)()(|b a b f a f -≤-综上两种情况,得|||)()(|b a b f a f -≤-当且仅当b a =时取等号.证法二(作差比较))2(])1)(1(22[|||11|2222222222b ab a b a b a b a b a +--++-++=--+-+0])()1()1[(2])1)(1()1[(22222≤-++-+=++-+=b a ab ab b a ab 当且仅当b a =时取等号.点评 作商比较通常在两正数之间进行.本题若直接作差,则表达式复杂很难变形.由于不等式两边均非负,所以先平方去掉绝对值符号后再作差.不论是作差比较还是作商比较,“变形整理”都是关键. 二、基本不等式法 常用的基本不等式① 若R b a ∈,,则ab b a 222≥+(当且仅当b a =时取等号);② 若+∈R b a ,,则ab ba 22≥+(当且仅当b a =时取等号); ③ 若b a ,同号,则2≥+baa b (当且仅当b a =时取等号);④ 若R b a ∈,,则≥+222b a 2)2(b a +(当且仅当b a =时取等号); ⑤ 若+∈R c b a ,,,则abc c b a 3333≥++(当且仅当c b a ==时取等号);⑥ 若+∈R c b a ,,,则33abc cb a ≥++(当且仅当c b a ==时取等号);⑦ 均值不等式nn n a a a na a a ⋅⋅≥+++ 2121(其中++∈∈N n R a a a n ,,,,21 )及它的变式n nn n n a a na a a a ⋅⋅≥+++ 2121,na a a a a a nn n n n +++≤⋅⋅ 2121,nn n na a a a a a )(2121+++≤⋅⋅【 例 3 】 ( 2004 年湖南省高考题)设0,0>>b a ,则以下不等式中不恒成立的是( )A.4)11)((≥++b a b a B 2332ab b a ≥+ C.b a b a 22222+≥++ D.b a b a -≥-||解:∵4122)11)((=⋅≥++abab b a b a ∴A 恒成立∵b a b a b a 221122222+≥+++=++ ∴C 恒成立 当b a ≤时,b a b a -≥-||,显然D 成立;当b a >时,b a b a -≥-||⇔a b b a ≥+-||⇔⇔≥+-+-a b b b a b a )(2)(0)(2≥-b b a 也恒成立∴D 恒成立。
充要条件与反证法●知识梳理1.充分条件:如果p ⇒q ,则p 叫q 的充分条件,原命题(或逆否命题)成立,命题中的条件是充分的,也可称q 是p 的必要条件.2.必要条件:如果q ⇒p ,则p 叫q 的必要条件,逆命题(或否命题)成立,命题中的条件为必要的,也可称q 是p 的充分条件.3.充要条件:如果既有p ⇒q ,又有q ⇒p ,记作p ⇔q ,则p 叫做q 的充分必要条件,简称充要条件,原命题和逆命题(或逆否命题和否命题)都成立,命题中的条件是充要的.4.反证法:当直接证明有困难时,常用反证法. ●点击双基1.ac 2>bc 2是a >b 成立的A.充分而不必要条件B.充要条件C.必要而不充分条件D.既不充分也不必要条件解析:a >b ac 2>bc 2,如c =0. 答案:A2.(2004年湖北,理4)已知a 、b 、c 为非零的平面向量.甲:a ·b =a ·c ,乙:b =c ,则A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件 解析:命题甲:a ·b =a ·c ⇒a ·(b -c )=0⇒a =0或b =c . 命题乙:b =c ,因而乙⇒甲,但甲乙. 故甲是乙的必要条件但不是充分条件. 答案:B3.(2004年浙江,8)在△ABC 中,“A >30°”是“sin A >21”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件解析:在△ABC 中,A >30°⇒0<sin A <1sin A >21,sin A >21⇒30°<A <150°⇒A >30°.∴“A >30°”是“sin A >21”的必要不充分条件.答案:B4.若条件p :a >4,q :5<a <6,则p 是q 的______________.解析:a >45<a <6,如a =7虽然满足a >4,但显然a 不满足5<a <6. 答案:必要不充分条件5.(2005年春季上海,16)若a 、b 、c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,有ax 2+bx +c >0”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若a >0且b 2-4ac <0,则对任意x ∈R ,有ax 2+bx +c >0,反之,则不一定成立.如a =0,b =0且c >0时,也有对任意x ∈R ,有ax 2+bx +c >0.因此应选A.答案:A ●典例剖析【例1】 使不等式2x 2-5x -3≥0成立的一个充分而不必要条件是 A.x <0 B.x ≥0C.x ∈{-1,3,5}D.x ≤-21或x ≥3 剖析:∵2x 2-5x -3≥0成立的充要条件是x ≤-21或x ≥3,∴对于A 当x =-31时2x 2-5x -3≥0.同理其他也可用特殊值验证.答案:C【例2】 求证:关于x 的方程ax 2+bx +c =0有一根为1的充分必要条件是a +b +c =0.证明:(1)必要性,即“若x =1是方程ax 2+bx +c =0的根,则a +b +c =0”.∵x =1是方程的根,将x =1代入方程,得a ·12+b ·1+c =0,即a +b +c =0.(2)充分性,即“若a +b +c =0,则x =1是方程ax 2+bx +c =0的根”.把x =1代入方程的左边,得a ·12+b ·1+c =a +b +c .∵a +b +c =0,∴x =1是方程的根. 综合(1)(2)知命题成立. 深化拓展求ax 2+2x +1=0(a ≠0)至少有一负根的充要条件. 证明:必要性:(1)方程有一正根和一负根,等价于⇒⎪⎩⎪⎨⎧<=>-=0104421a x x a Δa <0. (2)方程有两负根,等价于⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧><-≥-=0102044aa a Δ0<a ≤1.综上可知,原方程至少有一负根的必要条件是a <0或0<a ≤1.充分性:由以上推理的可逆性,知当a <0时方程有异号两根;当0<a ≤1时,方程有两负根.故a <0或0<a ≤1是方程ax 2+2x +1=0至少有一负根的充分条件.答案:a <0或0<a ≤1.【例3】 下列说法对不对?如果不对,分析错误的原因. (1)x 2=x +2是x 2+x =x 2的充分条件; (2)x 2=x +2是x 2+x =x 2的必要条件.解:(1)x 2=x +2是x 2+x =x 2的充分条件是指x 2=x +2⇒x 2+x =x 2.但这里“⇒”不成立,因为x =-1时,“⇒”左边为真,但右边为假.得出错误结论的原因可能是应用了错误的推理:x 2=x +2⇒x =2+x ⇒x 2=x 2+x .这里推理的第一步是错误的(请同学补充说明具体错在哪里).(2)x 2=x +2是x 2+x =x 2的必要条件是指x 2+x =x 2⇒x 2=x +2.但这里“⇒”不成立,因为x =0时,“⇒”左边为真,但右边为假.得出错误结论的原因可能是用了错误的推理:x 2+x =x 2⇒2+x =x ⇒x +2=x 2.这里推理的第一步是错误的(请同学补充说明具体错在哪里). 评述:此题的解答比较注重逻辑推理.事实上,也可以从真值集合方面来分析:x 2=x +2的真值集合是{-1,2},x 2+x =x 2的真值集合是{0,2},{-1,2}{0,2},而{0,2} {-1,2},所以(1)(2)两个结论都不对. ●闯关训练 夯实基础1.(2004年重庆,7)已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:依题意有p ⇒r ,r ⇒s ,s ⇒q ,∴p ⇒r ⇒s ⇒q .但由于r p ,∴q p . 答案:A2.(2003年北京高考题)“cos2α=-23”是“α=k π+12π5,k ∈Z ”的 A.必要不充分条件 B.充分不必要条件 C.充分必要条件D.既不充分又不必要条件解析:cos2α=-23⇔2α=2k π±6π5⇔α=k π±12π5. 答案:A3.(2005年海淀区第一学期期末练习)在△ABC 中,“A >B ”是“cos A <cos B ”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:在△ABC 中,A >B ⇔cos A <cos B (余弦函数单调性). 答案:C4.命题A :两曲线F (x ,y )=0和G (x ,y )=0相交于点P (x 0,y 0),命题B :曲线F (x ,y )+λG (x ,y )=0(λ为常数)过点P (x 0,y 0),则A 是B 的__________条件.答案:充分不必要5.(2004年北京,5)函数f (x )=x 2-2ax -3在区间[1,2]上存在反函数的充分必要条件是A.a ∈(-∞,1]B.a ∈[2,+∞)C.α∈[1,2]D.a ∈(-∞,1]∪[2,+∞)解析:∵f (x )=x 2-2ax -3的对称轴为x =a ,∴y =f (x )在[1,2]上存在反函数的充要条件为[1,2]⊆(-∞,a ]或[1,2]⊆[a ,+∞),即a ≥2或a ≤1.答案:D6.已知数列{a n }的前n 项和S n =p n+q (p ≠0且p ≠1),求数列{a n }成等比数列的充要条件. 分析:先根据前n 项和公式,导出使{a n }为等比数列的必要条件,再证明其充分条件. 解:当n =1时,a 1=S 1=p +q ;当n ≥2时,a n =S n -S n -1=(p -1)·p n -1. 由于p ≠0,p ≠1,∴当n ≥2时,{a n }是等比数列.要使{a n }(n ∈N *)是等比数列,则12a a =p ,即(p -1)·p =p (p +q ),∴q =-1,即{a n }是等比数列的必要条件是p ≠0且p ≠1且q =-1.再证充分性:当p ≠0且p ≠1且q =-1时,S n =p n-1,a n =(p -1)·p n -1,1-n na a =p (n ≥2), ∴{a n }是等比数列. 培养能力7.(2004年湖南,9)设集合U ={(x ,y )|x ∈R ,y ∈R },A ={(x ,y )|2x -y +m >0},B ={(x ,y )|x +y -n ≤0},那么点P (2,3)∈A ∩(UB )的充要条件是A.m >-1,n <5B.m <-1,n <5C.m >-1,n >5D.m <-1,n >5解析:∵UB ={(x ,y )|n <x +y },将P (2,3)分别代入集合A 、B 取交集即可.∴选A.答案:A8.已知关于x 的一元二次方程mx 2-4x +4=0,①x 2-4mx +4m 2-4m -5=0.②求使方程①②都有实根的充要条件.解:方程①有实数根的充要条件是Δ1=(-4)2-16m ≥0,即m ≤1; 方程②有实数根的充要条件是Δ2=(4m )2-4(4m 2-4m -5)≥0,即m ≥-45. ∴方程①②都有实数根的充要条件是-45≤m ≤1. 9.已知a 、b 、c 是互不相等的非零实数.求证:三个方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0至少有一个方程有两个相异实根.证明:反证法:假设三个方程中都没有两个相异实根,则Δ1=4b 2-4ac ≤0,Δ2=4c 2-4ab ≤0,Δ3=4a 2-4bc ≤0.相加有a 2-2ab +b 2+b 2-2bc +c 2+c 2-2ac +a 2≤0,(a -b )2+(b -c )2+(c -a )2≤0. ①由题意a 、b 、c 互不相等,∴①式不能成立.∴假设不成立,即三个方程中至少有一个方程有两个相异实根. 探究创新10.若x 、y 、z 均为实数,且a =x 2-2y +2π,b =y 2-2z +3π,c =z 2-2x +6π,则a 、b 、c 中是否至少有一个大于零?请说明理由.解:假设a 、b 、c 都不大于0,即a ≤0,b ≤0,c ≤0,则a +b +c ≤0.而a +b +c =x 2-2y +2π+y 2-2z +3π+z 2-2x +6π=(x -1)2+(y -1)2+(z -1)2+π-3, ∵π-3>0,且无论x 、y 、z 为何实数,(x -1)2+(y -1)2+(z -1)2≥0,∴a +b +c >0.这与a +b +c ≤0矛盾.因此,a 、b 、c 中至少有一个大于0. ●思悟小结1.要注意一些常用的“结论否定形式”,如“至少有一个”“至多有一个”“都是”的否定形式是“一个也没有”“至少有两个”“不都是”.2.证明充要性要从充分性、必要性两个方面来证明. ●教师下载中心 教学点睛1.掌握常用反证法证题的题型,如含有“至少有一个”“至多有一个”等字眼多用反证法.2.强调反证法的第一步,要与否命题分清.3.要证明充要性应从充分性、必要性两个方面来证. 拓展题例【例题】 指出下列命题中,p 是q 的什么条件. (1)p :0<x <3,q :|x -1|<2; (2)p :(x -2)(x -3)=0,q :x =2;(3)p :c =0,q :抛物线y =ax 2+bx +c 过原点. 解:(1)p :0<x <3,q :-1<x <3. p 是q 的充分但不必要条件.(2)p q ,q ⇒p .p 是q 的必要但不充分条件. (3)p 是q 的充要条件.评述:依集合的观点看,若A ⊆B ,则A 是B 的充分条件,B 是A 的必要条件;若A =B ,则A 是B 的充要条件.。
f可积的充要条件引言在实分析中,可积函数是一类非常重要的函数。
它们在各个领域都有广泛的应用,如物理学、工程学和经济学等。
f可积的充要条件是我们研究可积函数的基础,本文将详细介绍f可积的充要条件及其证明。
Riemann可积函数Riemann可积是最常见的一种可积函数。
一个函数f在闭区间[a, b]上Riemann可积的充要条件是:对于任意给定的ε>0,存在一个对应的分割P,使得当我们选择P中的任意一组子区间时,它们的长度之和小于δ时,对应的Riemann和S(f, P)与函数f的积分之差的绝对值小于ε。
Riemann可积的充分条件首先,我们来讨论Riemann可积的充分条件。
一个函数f在闭区间[a, b]上Riemann可积的充分条件是:f在[a, b]上有界且只有有限个间断点。
证明第一步:f在[a, b]上有界我们可以证明f在[a, b]上有界的充分条件是:f在[a, b]上有上界M和下界m。
假设f在[a, b]上有上界M和下界m。
任取[a, b]中的一点x,由于f在[a, b]上连续,根据最大值和最小值定理,f在[a, b]上必然存在最大值M’和最小值m’。
由于M’是f在[a, b]上的最大值,所以对于任意的x∈[a, b],f(x)≤M’。
同理,对于m’,有f(x)≥m’。
因此,我们可以得到f在[a, b]上有界。
第二步:f只有有限个间断点假设f在[a, b]上只有有限个间断点。
我们可以将[a, b]上的间断点记为c1,c2, …, cn。
我们可以证明f在[a, b]上的每个间断点都可以构造一个开区间,使得f在该区间上连续。
对于任意的间断点ci,我们可以找到一个开区间(ci-δi, ci+δi),使得f在该区间上连续。
由于f在[a, b]上只有有限个间断点,我们可以找到一组开区间,使得[a, b]可以被这些开区间所覆盖。
我们将这组开区间记为I1, I2, …, In。
由于f在每个开区间Ii上连续,根据连续函数的性质,我们可以得到在每个开区间Ii上,f都是有界的。
充要条件的证明范文充要条件是数学中一种重要的证明方法。
在证明中,我们需要证明其中一种陈述P与一些条件Q等价,即P成立当且仅当Q成立。
为了说明充要条件的证明方法,以下将详细阐述证明的步骤和技巧。
一、引入充要条件的概念在开始证明之前,首先明确一下充要条件的概念。
假设有两个命题P 和Q,我们希望证明P与Q等价,即P当且仅当Q成立。
这也可以表示为P⇔Q。
如果我们能够证明P成立时Q也成立,并且Q成立时P也成立,那么我们就可以得出结论P⇔Q,即P与Q等价。
二、充分性证明充分性证明是证明P成立时Q成立的部分。
为了证明充分性,通常我们需要推导出P成立时Q的其中一种性质或结果。
1.假设P成立,推导出Q的其中一种性质或结果根据题目或问题的不同,我们可以采用不同的方法来推导出Q的性质或结果。
下面是两种常见的方法:(a)直接证明法:假设P成立,然后根据条件和已知事实,逐步推导出Q的性质或结果。
例如,假设P成立,我们可以利用已知的结果和定义,通过一系列变换逐步得出Q成立。
(b)反证法:假设P成立但Q不成立,然后利用这一矛盾推出假设不成立,即P不成立。
例如,假设P成立但Q不成立,我们可以通过假设推出一些矛盾,用来推翻假设。
2.结合逻辑推理和数学方法在推导过程中,我们可以运用逻辑推理和数学方法,如数学归纳法、构造法、反证法等,来得到Q的性质或结果。
三、必要性证明必要性证明是证明Q成立时P成立的部分。
为了证明必要性,我们通常需要假设Q成立,然后推导出P的其中一种性质或结果。
1.假设Q成立,推导出P的其中一种性质或结果与充分性证明类似,我们可以使用直接证明法、反证法或其他逻辑推理方法来推导出P的性质或结果。
2.结合逻辑推理和数学方法在必要性证明中,同样可以运用逻辑推理和数学方法,如数学归纳法、构造法、反证法等,来得到P的性质或结果。
四、整合充分性和必要性,并举例说明在充分性和必要性的证明都完成后,我们需要整合这两部分的证明,并且给出一个具体的例子来说明。
“充要条件”的判断方法“充要条件”是高中数学课程中的重要内容,主要讨论命题的条件与结论之间的逻辑关系. 它不仅是解决数学问题时进行等价转换的逻辑基础,还是后面学习数学推理、数学证明等内容的基础,同时也是高考命题中实现知识交融交汇的重要载体. 因而,掌握“充要条件”的概念以及判断方法显得尤为重要. 本文对判断“充要条件”的几种常用方法加以盘点,仅供参考.定义判断法例1 设[an]是首项为正数的等比数列,公比为[q],则“[q0],[q2n-2>0],∴[a1q2n-2>0].但当[q0]和[a2x2+b2x+c2>0]的解集分别为集合[M]和[N],试判断“[a1a2=b1b2=c1c2]”是“[M=N]”的什么条件,并说明理由.分析判断一个较抽象、繁难的命题,往往可以尝试反例法(也称特殊值法),即列举一个(或多个)符合命题条件但又与该命题结论相矛盾的例子,从而说明该命题不成立.解由[x2-3x+2>0]与[-x2+3x-2>0]得,[M=(1,2)],[N=(-∞,1)?(2,+∞)].显然,[a1a2=b1b2=c1c2=-1],但[M≠N],故命题的条件不是充分条件.由[x2+2x+2>0]和[x2+2x+3>0]得,[M=N=R],但[11=22≠23],不满足[a1a2=b1b2=c1c2],故命题的条件不是必要条件.综上可知,“[a1a2=b1b2=c1c2]”是“[M=N]”的既不不充分又不必要条件.点拨“以例外证明规律”是一个简便而又实用的方法,通常一个例外足以反驳任何自封为规律或普遍性的命题.判断一个命题为真命题,必须严格证明,但要判断一个命题为假命题,只需举一个反例就行. 换言之,要说明[p]不是[q]的充分条件,只要找到[x0∈xp],但[x0?xq]即可. 特别的,对于[p]是[q]的不充分或不必要条件类的问题,列举反例是准确、快捷的方法.等价转换法例5 若命题[p:x≠3,或y≠4],命题[q:x+y≠7],则[p]是[q]的_______条件.分析题设与结论均为否定形式,加之有逻辑联结词“或”的出现,直接求解往往困难或容易出错,若利用“否定之否定是肯定”这个结论,则问题迎刃而解.解考虑逆否命题:[?q:x+y=7],[?p:x=3,且y=4].显然,[x+y=7]不能推出[x=3,且y=4],但[x=3],且[y=4]可以推出[x+y=7],即[?q]不能推出[?p],但[?p]可以推出[?q].所以[p]不能推出[q],但[q?p].即[p]是[q]的必要不充分条件.点拨当某一命题不易直接判断条件与结论的充要关系(特别是对于否定形式或“[≠]”形式的命题)时,可利用等价转换法来解决. 等价转换法是利用互为逆否的两个命题同真同假的特性,将已知命题转化为等价命题求解,即要判断[p]是[q]的什么条件,只需判断[?q]是[?p]的什么条件即可.充要条件是数学中的一个重要概念,也是高考考查的一个重点内容. 在学习过程中,准确理解定义是基础,正确判断充要关系是重点,熟练应用充要关系解决相关问题是关键. 深刻理解充要条件的意义,掌握充要条件的常用判别方法,不但能有效地进行充要关系的判断与证明,更有助于提升数学逻辑思维能力、推理及论证能力.。
充分条件和必要条件高中数学知识点整理1. 充分条件与必要条件的概念在高中数学中,我们经常会遇到充分条件和必要条件的概念。
它们是数学推理中非常重要的概念,用于描述事物之间的关系。
在这里,我们将详细介绍充分条件和必要条件以及它们在高中数学中的应用。
1.1 充分条件充分条件是指一个条件在成立时可以推出结论成立。
如果一个命题P能够推出另一个命题Q,那么P就是Q的充分条件。
充分条件的成立并不意味着结论一定成立,只能说明在满足充分条件的情况下,结论有可能成立。
例如,对于命题P:一个数是偶数。
命题Q:这个数可以被2整除。
那么命题P是命题Q的充分条件,因为一个数是偶数时,一定可以被2整除。
1.2 必要条件必要条件是指一个条件在成立时可以保证结论成立。
如果一个命题Q需要命题P的满足才能成立,那么P就是Q的必要条件。
必要条件的成立意味着结论一定成立,但不意味着充分条件成立。
继续上面的例子,命题Q:这个数可以被2整除,命题P:一个数是偶数。
那么命题P是命题Q的必要条件,因为一个数可以被2整除时,一定是偶数。
2.直观理解为了更好地理解充分条件和必要条件的概念,我们可以通过一个简单的实例来说明。
假设我们有一个条件P:如果下雨,那么地面湿润。
那么反过来说,地面湿润是否意味着下雨呢?在这个例子中,条件P是地面湿润的充分条件,而地面湿润是下雨的必要条件。
也就是说,如果地面湿润意味着下雨,但不一定下雨地面就湿润。
这个例子很好地诠释了充分条件和必要条件的概念。
充分条件可以看作是一个“充足条件”,如果满足了这个条件,则可以得出结论。
而必要条件则可以看作是一个“必须条件”,只有满足了这个条件,才能确保结论的成立。
3. 充分条件的证明方法在数学推理中,证明一个充分条件是成立的方法通常有以下几种:3.1 直接证明法直接证明法是最常见和直接的证明方法。
如果要证明一个充分条件P可以推出命题Q,我们可以从假设P开始,连续推导出Q。
而证明每一步的推导是正确的,最终得到Q。
高中数学反证法解题技巧高中数学中,反证法是一种重要的解题方法,通过假设所要证明的命题不成立,然后推导出矛盾的结论,从而证明原命题的正确性。
在解题过程中,灵活运用反证法可以帮助我们更好地理解和解决问题。
本文将从几个具体的题目入手,介绍高中数学中常见的反证法解题技巧,并给出详细的解题思路和步骤。
一、证明两直线平行的反证法题目:已知直线l1和直线l2,证明若l1与l2的斜率相等,则l1与l2平行。
解题思路:我们可以采用反证法来证明这个命题。
假设l1与l2不平行,即l1与l2有交点A。
由于l1与l2的斜率相等,所以l1与l2的斜率分别为k。
设直线l1的方程为y = kx + b1,直线l2的方程为y = kx + b2。
由于直线l1与l2有交点A,所以A点的坐标(x0, y0)同时满足l1和l2的方程。
代入l1的方程可得y0 = kx0 + b1,代入l2的方程可得y0 = kx0 + b2。
由此可得b1= b2,即l1与l2的截距相等。
然而,根据直线的性质,不平行的两条直线的截距必不相等。
因此,假设不成立,即l1与l2平行。
二、证明存在无理数题目:证明存在一个无理数x,使得x的平方是有理数。
解题思路:我们可以采用反证法来证明这个命题。
假设所有平方根都是有理数,即对于任意实数x,若x的平方是有理数,则x是有理数。
设x是一个无理数,即x不是有理数。
根据假设,x的平方是有理数。
那么根据平方根的性质,x的平方根也应该是有理数。
然而,这与x是无理数的前提相矛盾。
因此,假设不成立,存在一个无理数x,使得x的平方是有理数。
三、证明存在无穷多个素数题目:证明存在无穷多个素数。
解题思路:我们可以采用反证法来证明这个命题。
假设存在有限个素数p1,p2, ..., pn,它们是所有素数的完全列表。
考虑数M = p1 * p2 * ... * pn + 1,显然M大于p1, p2, ..., pn。
根据素数的定义,M要么是素数,要么可以分解为素数的乘积。
椭圆上四点共圆充要条件的一种简易证明方法
椭圆是一种几何形状,为了让椭圆上四点共圆,具体要求如下:椭圆的主轴方
向和对称轴方向上,相距最远的两点之间的距离相等,平分线两端点距离椭圆圆心的距离相等,这就是椭圆上四点共圆的充要条件。
关于椭圆上四点共圆的证明方法,其一是旋转的方法,即假设椭圆上两点A和
B的距离相等。
通过入射点C、D使得CB=CD,绕A旋转直线CD得出CA=DA,那么这
四点就在一个共圆上。
其二是反证法,即充分条件不满足时,就不能使四点共圆。
设T代表椭圆圆心,若点M、N相距最远,MN≠2a(a为椭圆的半短轴),那么当点PQ中间点O,TP=TQ,TO≠PQ/2时,就不能使四点在一个圆上。
就完整的椭圆四点共圆来说,通过旋转和反证法搭配使用是非常有用的,以证
明椭圆的两点相距最远的距离等于椭圆的半长轴,平分线两端点距离椭圆圆心的距离相等,即椭圆四点共圆的充要条件。
此外,要辩论成功,最重要的是深入研究,仔细梳理思路,做出充分的分析和论证,加之积极的态度,就可以顺利通过证明。
充分条件判断的口诀在数学中,充分条件判断是一种常用的逻辑推理方法,用于确定某个命题的真假。
通过充分条件判断,我们可以根据一些已知条件来推导出结论,从而解决问题。
下面,我们来探讨一下充分条件判断的口诀和应用。
我们要明确什么是充分条件。
充分条件是指当某个条件成立时,结论一定成立。
在逻辑表达中,充分条件通常以“如果…则…”的形式呈现。
例如,如果一个数是偶数,则它一定可以被2整除。
这里,“是偶数”就是充分条件。
那么,如何进行充分条件判断呢?我们可以按照以下口诀进行推理:口诀一:若要判断A是否是B的充分条件,可以反证法。
反证法是一种常用的数学证明方法,它通过假设反面,推导出矛盾,从而证明原命题的真实性。
在充分条件判断中,若要判断A是否是B的充分条件,可以假设A成立,然后推导出B成立。
如果推导过程中出现矛盾,则说明A是B的充分条件。
口诀二:若要判断A是否是B的充分条件,可以使用充分必要条件。
充分必要条件是指当且仅当A成立时,B一定成立。
因此,我们可以通过判断A和B是否相互包含来确定A是否是B的充分条件。
如果A和B相互包含,则A是B的充分条件;如果A和B不相互包含,则A不是B的充分条件。
口诀三:若要判断A是否是B的充分条件,可以使用等价命题。
等价命题是指两个命题具有相同的真值,即当且仅当A成立时,B 一定成立。
因此,我们可以通过判断A和B是否等价来确定A是否是B的充分条件。
如果A和B等价,则A是B的充分条件;如果A和B不等价,则A不是B的充分条件。
通过以上口诀,我们可以灵活运用充分条件判断来解决问题。
下面,我们以一些具体的例子来说明:例一:判断一个数是否为正数的充分条件是它大于零。
根据口诀一,我们可以假设这个数大于零,然后推导出它是正数。
由于推导过程中没有出现矛盾,所以这个数大于零是它是正数的充分条件。
例二:判断一个三角形是否为等边三角形的充分条件是它的三条边相等。
根据口诀二,我们可以判断三角形的三条边是否相等来确定是否为等边三角形。
充要条件的几种判断方法作者:任宇来源:《新课程学习·中》2013年第11期日常生活中,我们经常涉及一些逻辑上的问题。
无论是进行思考交流,还是从事各项工作,都需要正确地运用语言来表达自己的思维,需要对一些命题进行判断和推理.“充分条件”和“必要条件”是数学推理中重要的概念之一,它讨论的是“若p则q”这类命题中的条件和结论的逻辑关系,因此,必须真正弄懂它并善于应用它去分析和解决有关问题.处理充分、必要条件问题时,首先要分清命题的条件与结论,写成“若p则q”的形式,然后才能进行推理和判断.判断命题的充要关系通常有下面的四种方法:1.定义法:直接判断“若p则q”与“若q则p”的真假.则p是q的既不充分又不必要条件.2.等价法:利用互为逆否命题的两个命题是等价命题,即原命题“若p则q”与它的逆否命题“若┓q则┓p”是等价命题,具有相同的真假性,特别对于条件和结论是否定式的命题一般运用等价法.3.利用集合间的包含关系判断:令A={x|x满足条件p},B={x|x满足条件q},则p?圯q 相当于A?哿B;q?圯p相当于A?勐B;p?圳q相当于A=B.4.运用“?圯”进行推理.另外,若确定条件为不充分或不必要的条件时,常用构造反例的方法证明.例1.“a=b”是“直线y=x+2与圆(x-a)2+(y-b)2=2相切”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解:直接判断“若p则q”与“若q则p”的真假.若a=b,因为圆心(a,b)到直线y=x+2的距离,则相切.若相切,则圆心(a,b)到直线y=x+2的距离,所以a-b=0或a-b=-4.因此“a=b”是“直线y=x+2与圆(x-a)2+(y-b)2=2相切”的充分不必要条件,故选A.例2.试判断“x2≠y2”是“x≠y”的充要关系.分析:直接判断比较难下手,考虑其与原命题等价的逆否命题的真假性.解:因为x=y?圯x2=y2且x2=y2x=y根据原命题与其逆否命题的等价性得到:x2≠y2?圯x≠y且x≠y x2≠y2所以“x2≠y2”是“x≠y”的充分不必要条件.由于互为逆否的两个命题是等价命题,它们同真同假,所以当一个命题不易判断时,可以通过判断其逆否命题的真假而判断原命题的真假.这在直接证明某一命题有困难时,可以通过证明它的逆否命题为真命题来间接地证明原命题为真命题.这种方法称为反证法.例3.已知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,那么(1)s是q的什么条件?(2)r是q的什么条件?(3)p是q的什么条件?分析:本题考查充要条件、充分条件、必要条件.对于这类问题,将语言叙述符号化,画出它们的综合结构图,再给予判定.解:p,q,r,s的关系如图所示,由图可知(1)s是q的充要条件;(2)r是q的充要条件;(3)p是q的必要条件.由于充分条件与必要条件是四种命题关系的深化,它们之间存在着密切的联系.一个结论成立的充分条件可以不止一个,必要条件也可以不止一个.(作者单位江苏省滨海县八滩中学)编辑温雪莲。
“充要条件”的判断方法“充要条件”是高中数学课程中的重要内容,主要讨论命题的条件与结论之间的逻辑关系. 它不仅是解决数学问题时进行等价转换的逻辑基础,还是后面学习数学推理、数学证明等内容的基础,同时也是高考命题中实现知识交融交汇的重要载体. 因而,掌握“充要条件”的概念以及判断方法显得尤为重要. 本文对判断“充要条件”的几种常用方法加以盘点,仅供参考.定义判断法例1 设[an]是首项为正数的等比数列,公比为[q],则“[q0],[q2n-2>0],∴[a1q2n-2>0].但当[q0]和[a2x2+b2x+c2>0]的解集分别为集合[M]和[N],试判断“[a1a2=b1b2=c1c2]”是“[M=N]”的什么条件,并说明理由.分析判断一个较抽象、繁难的命题,往往可以尝试反例法(也称特殊值法),即列举一个(或多个)符合命题条件但又与该命题结论相矛盾的例子,从而说明该命题不成立.解由[x2-3x+2>0]与[-x2+3x-2>0]得,[M=(1,2)],[N=(-∞,1)?(2,+∞)].显然,[a1a2=b1b2=c1c2=-1],但[M≠N],故命题的条件不是充分条件.由[x2+2x+2>0]和[x2+2x+3>0]得,[M=N=R],但[11=22≠23],不满足[a1a2=b1b2=c1c2],故命题的条件不是必要条件.综上可知,“[a1a2=b1b2=c1c2]”是“[M=N]”的既不不充分又不必要条件.点拨“以例外证明规律”是一个简便而又实用的方法,通常一个例外足以反驳任何自封为规律或普遍性的命题.判断一个命题为真命题,必须严格证明,但要判断一个命题为假命题,只需举一个反例就行. 换言之,要说明[p]不是[q]的充分条件,只要找到[x0∈xp],但[x0?xq]即可. 特别的,对于[p]是[q]的不充分或不必要条件类的问题,列举反例是准确、快捷的方法.等价转换法例5 若命题[p:x≠3,或y≠4],命题[q:x+y≠7],则[p]是[q]的_______条件.分析题设与结论均为否定形式,加之有逻辑联结词“或”的出现,直接求解往往困难或容易出错,若利用“否定之否定是肯定”这个结论,则问题迎刃而解.解考虑逆否命题:[?q:x+y=7],[?p:x=3,且y=4].显然,[x+y=7]不能推出[x=3,且y=4],但[x=3],且[y=4]可以推出[x+y=7],即[?q]不能推出[?p],但[?p]可以推出[?q].所以[p]不能推出[q],但[q?p].即[p]是[q]的必要不充分条件.点拨当某一命题不易直接判断条件与结论的充要关系(特别是对于否定形式或“[≠]”形式的命题)时,可利用等价转换法来解决. 等价转换法是利用互为逆否的两个命题同真同假的特性,将已知命题转化为等价命题求解,即要判断[p]是[q]的什么条件,只需判断[?q]是[?p]的什么条件即可.充要条件是数学中的一个重要概念,也是高考考查的一个重点内容. 在学习过程中,准确理解定义是基础,正确判断充要关系是重点,熟练应用充要关系解决相关问题是关键. 深刻理解充要条件的意义,掌握充要条件的常用判别方法,不但能有效地进行充要关系的判断与证明,更有助于提升数学逻辑思维能力、推理及论证能力.。
充分条件与必要条件的判断方法充分条件与必要条件是数学逻辑中用来描述事物之间关系的两个概念。
充分条件表示一些条件是导致另外一个条件(结论)成立的条件,必要条件则表示一些条件是另外一个条件(结论)成立的必需条件。
在判断充分条件与必要条件时,有以下几种常见方法:1.逆否命题法:逆否命题是充分条件与必要条件的等价形式。
对于一个命题P→Q,其逆否命题为非Q→非P。
所以判断一个命题是否是充分条件与必要条件可以通过判断其逆否命题是否成立来确定。
如果逆否命题成立,则原命题是充分条件与必要条件;如果逆否命题不成立,则原命题不是充分条件与必要条件。
2.反证法:反证法是一种常用的证明方法,用来证明一个命题的否定不成立,从而得到原命题的成立。
使用反证法可以判断一些条件是否是必要条件。
假设原命题的否定成立,然后推导出一个矛盾的结论,说明原命题不是必要条件。
反证法只能确定必要条件,不能确定充分条件。
3.实例法:实例法是通过构造特定的实例来判断一个条件是否是充分条件与必要条件。
如果找到了一个实例,使得条件成立而结论不成立,则说明这个条件不是充分条件。
反之,如果找到了一个实例,使得条件不成立而结论仍然成立,则说明这个条件不是必要条件。
实例法只是判断一个条件是否是充分条件或必要条件的一种方法,不是绝对可靠的。
4.定义法:有时候,一个条件的充分性或必要性可以通过已知的定义来判断。
如果一个结论是由一些条件的定义直接得出的,则可以判定这个条件是充分条件。
反之,如果一个条件是由一些结论的定义直接得出的,则可以判定这个条件是必要条件。
5.推理法:推理法是通过逻辑推理来判断一个条件是否是充分条件或必要条件。
根据已知的条件,运用一定的数学推理规则进行推导,从而得出结论。
如果推理过程中可以从条件推导出结论,则可以判断这个条件是充分条件。
反之,如果推理过程中可以从结论推导出条件,则可以判断这个条件是必要条件。
总结起来,充分条件与必要条件的判断方法包括逆否命题法、反证法、实例法、定义法和推理法。
1.3 充要条件与反证法●知识梳理1.充分条件:如果p ⇒q ,则p 叫q 的充分条件,原2.必要条件:如果q ⇒p ,则p 叫q 的必要条件,逆3.充要条件:如果既有p ⇒q ,又有q ⇒p ,记作p ⇔q ,则p 叫做q 的充分必要条件,简称充要条件,原4.反证法:当直接证明有困难时,常用反证法.●点击双基1.ac 2>bc 2是a >b 成立的A.充分而不必要条件B.充要条件C.必要而不充分条件D.既不充分也不必要条件解析:a >b ac 2>bc 2,如c=0. 答案:A2.(2004年湖北,理4)已知a 、b 、c 为非零的平面向量.甲:a ·b=a ·c ,乙:b=c ,则A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件 解析:命题甲:a ·b=a ·c ⇒a ·(b -c )=0⇒a=0或b=c. 命题乙:b=c ,因而乙⇒甲,但甲乙. 故甲是乙的必要条件但不是充分条件. 答案:B3.(2004年浙江,8)在△ABC 中,“A >30°”是“sinA >21”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件 解析:在△ABC 中,A >30°⇒0<sinA <1sinA >21,sinA >21⇒30°<A <150°⇒ A >30°.∴“A >30°”是“sinA >21”的必要不充分条件. 答案:B4.若条件p:a >4,q:5<a <6,则p 是q 的______________.解析:a >45<a <6,如a=7虽然满足a >4,但显然a 不满足5<a <6. 答案:必要不充分条件5.(2005年春季上海,16)若a 、b 、c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,有ax 2+bx+c >0”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若a >0且b 2-4ac <0,则对任意x ∈R ,有ax 2+bx+c >0,反之,则不一定成立.如a=0,b=0且c >0时,也有对任意x ∈R ,有ax 2+bx+c >0.因此应选A.答案:A ●典例剖析【例1】 使不等式2x 2-5x -3≥0成立的一个充分而不必要条件是 A.x <0 B.x ≥0C.x ∈{-1,3,5}D.x ≤-21或x ≥3剖析:∵2x 2-5x -3≥0成立的充要条件是x ≤-21或x ≥3,∴对于A 当x=-31时2x 2-5x -3≥0.同理其他也可用特殊值验证.答案:C【例2】 求证:关于x 的方程ax 2+bx+c=0有一根为1的充分必要条件是a+b+c=0.证明:(1)必要性,即“若x=1是方程ax 2+bx+c=0的根,则a+b+c=0”.∵x=1是方程的根,将x=1代入方程,得a ·12+b ·1+c=0,即a+b+c=0.(2)充分性,即“若a+b+c=0,则x=1是方程ax 2+bx+c=0的根”.把x=1代入方程的左边,得a ·12+b ·1+c=a+b+c.∵a+b+c=0,∴x=1是方程的根. 综合(1)(2)知 深化拓展求ax 2+2x+1=0(a ≠0)至少有一负根的充要条件. 证明:必要性:(1)方程有一正根和一负根,等价于 ⇒⎪⎩⎪⎨⎧<=>-=0104421a x x a Δa <0. (2)方程有两负根,等价于 ⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧><-≥-=0102044aa a Δ0<a ≤1. 综上可知,原方程至少有一负根的必要条件是a <0或0<a ≤1.充分性:由以上推理的可逆性,知当a <0时方程有异号两根;当0<a ≤1时,方程有两负根.故a <0或0<a ≤1是方程ax 2+2x+1=0至少有一负根的充分条件.答案:a <0或0<a ≤1.【例3】 下列说法对不对?如果不对,分析错误的原因.(1)x 2=x +2是x 2+x =x 2的充分条件; (2)x 2=x +2是x 2+x =x 2的必要条件.解:(1)x 2=x+2是x 2+x =x 2的充分条件是指x 2=x+2⇒x 2+x =x 2. 但这里“⇒”不成立,因为x=-1时,“⇒”左边为真,但右边为假.得出错误结论的原因可能是应用了错误的推理:x 2=x+2⇒x=2+x ⇒x 2=x 2+x .这里推理的第一步是错误的(请同学补充说明具体错在哪里).(2)x 2=x+2是x 2+x =x 2的必要条件是指x 2+x =x 2⇒x 2=x+2. 但这里“⇒”不成立,因为x=0时,“⇒”左边为真,但右边为假.得出错误结论的原因可能是用了错误的推理:x 2+x =x 2⇒2+x =x ⇒x+2=x 2.这里推理的第一步是错误的(请同学补充说明具体错在哪里).评述:此题的解答比较注重逻辑推理.事实上,也可以从真值集合方面来分析:x 2=x+2的真值集合是{-1,2},x 2+x =x 2的真值集合是{0,2},{-1,2}{0,2},而{0,2} {-1,2},所以(1)(2)两个结论都不对.●闯关训练 夯实基础1.(2004年重庆,7)已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 解析:依题意有p ⇒r ,r ⇒s ,s ⇒q ,∴p ⇒r ⇒s ⇒q.但由于r p ,∴q p.答案:A2.(2003年北京高考题)“cos2α=-23”是“α=k π+12π5,k ∈Z ”的 A.必要不充分条件 B.充分不必要条件 C.充分必要条件 D.既不充分又不必要条件解析:cos2α=-23⇔2α=2k π±6π5⇔α=k π±12π5.答案:A3.(2005年海淀区第一学期期末练习)在△ABC 中,“A >B ”是“cosA <cosB ”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:在△ABC 中,A >B ⇔cosA <cosB (余弦函数单调性). 答案:C4.答案:充分不必要5.(2004年北京,5)函数f (x )=x 2-2ax -3在区间[1,2]上存在反函数的充分必要条件是A.a ∈(-∞,1]B.a ∈[2,+∞)C.α∈[1,2]D.a ∈(-∞,1]∪[2,+∞)解析:∵f (x )=x 2-2ax -3的对称轴为x=a ,∴y=f (x )在[1,2]上存在反函数的充要条件为[1,2]⊆(-∞,a ]或[1,2]⊆[a ,+∞),即a ≥2或a ≤1.答案:D6.已知数列{a n }的前n 项和S n =p n+q (p ≠0且p ≠1),求数列{a n }成等比数列的充要条件. 分析:先根据前n 项和公式,导出使{a n }为等比数列的必要条件,再证明其充分条件. 解:当n=1时,a 1=S 1=p+q ;当n ≥2时,a n =S n -S n -1=(p -1)·p n -1.由于p ≠0,p ≠1,∴当n ≥2时,{a n }是等比数列.要使{a n }(n ∈N *)是等比数列,则12a a =p ,即(p -1)·p=p (p+q ),∴q=-1,即{a n }是等比数列的必要条件是p ≠0且p ≠1且q=-1.再证充分性:当p ≠0且p ≠1且q=-1时,S n =p n-1,a n =(p -1)·p n -1,1-n n a a =p (n ≥2),∴{a n }是等比数列. 培养能力7.(2004年湖南,9)设集合U={(x ,y )|x ∈R ,y ∈R },A={(x ,y )|2x -y+m >0},B={(x ,y )|x+y -n ≤0},那么点P (2,3)∈A ∩(U B )的充要条件是 A.m >-1,n <5 B.m <-1,n <5 C.m >-1,n >5 D.m <-1,n >5解析:∵U B={(x ,y )|n <x+y },将P (2,3)分别代入集合A 、B 取交集即可.∴选A. 答案:A8.已知关于x 的一元二次方程mx 2-4x+4=0, ①x 2-4mx+4m 2-4m -5=0.②求使方程①②都有实根的充要条件.解:方程①有实数根的充要条件是Δ1=(-4)2-16m ≥0,即m ≤1; 方程②有实数根的充要条件是Δ2=(4m )2-4(4m 2-4m -5)≥0,即m ≥-45. ∴方程①②都有实数根的充要条件是-45≤m ≤1. 9.已知a 、b 、c 是互不相等的非零实数.求证:三个方程ax 2+2bx+c=0,bx 2+2cx+a=0,cx 2+2ax+b=0至少有一个方程有两个相异实根.证明:反证法:假设三个方程中都没有两个相异实根,则Δ1=4b 2-4ac ≤0,Δ2=4c 2-4ab ≤0,Δ3=4a 2-4bc ≤0.相加有a 2-2ab+b 2+b 2-2bc+c 2+c 2-2ac+a 2≤0,(a -b )2+(b -c )2+(c -a )2≤0. ①由题意a 、b 、c 互不相等,∴①式不能成立.∴假设不成立,即三个方程中至少有一个方程有两个相异实根. 探究创新10.若x 、y 、z 均为实数,且a=x 2-2y+2π,b=y 2-2z+3π,c=z 2-2x+6π,则a 、b 、c 中是否至少有一个大于零?请说明理由.解:假设a 、b 、c 都不大于0,即a ≤0,b ≤0,c ≤0,则a+b+c ≤0.而a+b+c=x 2-2y+2π+y 2-2z+3π+z 2-2x+6π=(x -1)2+(y -1)2+(z -1)2+π-3, ∵π-3>0,且无论x 、y 、z 为何实数,(x -1)2+(y -1)2+(z -1)2≥0,∴a+b+c >0.这与a+b+c ≤0矛盾.因此,a 、b 、c 中至少有一个大于0. ●思悟小结1.要注意一些常用的“结论否定形式”,如“至少有一个”“至多有一个”“都是”的否定形式是“一个也没有”“至少有两个”“不都是”.2.证明充要性要从充分性、必要性两个方面来证明. ●教师下载中心 教学点睛1.掌握常用反证法证题的题型,如含有“至少有一个”“至多有一个”等字眼多用反证法.2.强调反证法的第一步,要与否3.要证明充要性应从充分性、必要性两个方面来证.拓展题例【例题】 指出下列(1)p:0<x <3,q:|x -1|<2;(2)p:(x -2)(x -3)=0,q:x=2;(3)p:c=0,q:抛物线y=ax 2+bx+c 过原点. 解:(1)p:0<x <3,q:-1<x <3. p 是q 的充分但不必要条件.(2)p q ,q ⇒p.p 是q 的必要但不充分条件. (3)p 是q 的充要条件.评述:依集合的观点看,若A ⊆B ,则A 是B 的充分条件,B 是A 的必要条件;若A=B ,则A 是B 的充要条件.。
判定充要条件的四法充要条件是数学中的一个重要概念,是正确进行逻辑理必不可少的基础知识.高考对充要条件的考查主要以其他知识为载体进行两类问题的考查:一类是充要条件的判别;一类是有关充要性命题的证明,尤以考查充要条件的判别为主.要正确判断“充分且不必要条件”、“必要且不充分条件”、“充要条件”、“非充分非不必要条件”应该明确:①确定条件是什么,结论是什么;②尝试从条件推导结论,从结论推导条件;③确定条件是结论的什么条件.下面就介绍几种充要条件的判定方法.方法一、定义法能够保证一个事件一定发生的条件,叫做这个事件发生的充分条件;一个事件要发生必须具备的条件叫做这个事件发生的必要条件;一个条件既能保证某个事件发生,同时又是这个事件发生必须具备的条件,就叫做这个事件发生的充要条件.在实际应用中,体现充要条件的文字还有“当且仅当”、“有且仅有”、“必需且只需”等语句.用逻辑符号表示为:(1)若P Q,且Q/P,则P是Q的充分且不必要条件,Q是P的必要且不充分条件;(2)若Q P,且P/Q,则P是Q的必要且不充分条件,Q是P的充分且不必要条件;(3)若P Q,且Q P(或P Q),则P是Q的充要条件(此时Q也是P的充要条件);(4)若P/Q,且Q/P,则P是Q的非充分非不必要条件.例1一元二次方程Ax2+2x+1=0(A≠0)有一个正根和一个负根的充分不必要条件是()A.A<0B.A>0C.A<﹣1D.A>1解析:如果一元二次方程Ax2+2x+1=0(A≠0)有一个正根和一个负根,则两个根的积为负数,即﹣1a<0,所以A<0,由此可知“一元二次方程Ax2+2x+1=0有一个正根和一个负根”/“A<﹣1”,但“A<﹣1”一元二次方程Ax2+2x+1=0(A≠0)有一个正根和一个负根”.故选C.二、命题法(1)如果原命题成立,逆命题不成立,则原命题的条件是充分非必要的;(2)如果原命题不成立,逆命题成立,则原命题的条件是必要非充分的;(3)如果原命题和它的逆命题都成立,则原命题的条件充要的;(4)如果原命题和它的逆命题都不成立,则原命题的条件是非充分非必要的.例2若非空集合M≠N,则“A∈M或A∈N”是“A∈M∩N”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件解析:因为命题“若A∈M或A∈N,则A∈M∩N”为假,它的逆命题:“若A∈M∩N,则A∈M或A∈N”为真,故“A∈M或A∈N”是“A∈M∩N”的必要非充分条件,故选B.三、双箭头表示法由于逻辑联结符号“”、“”、“”具有传递性,因此可根据几个条件的关系,经过若干次的传递,判断所要判断的两个条件之间的依存关系.例3已知P是R的充分不必要条件,S是R的必要条件,Q是S的必要条件.那么P是Q成立的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件解析:画出用双箭头符号表示表示P、Q、R、S的关系:P R,S R,Q S,即P R,S R,Q S,∴P R S Q,即P Q,又R/P,则Q/P,故P是Q的充分非必要条件.故选A.四、集合法(1)若A__B,就是x∈A则x∈B,则A是B的充分条件,B是A的必要条件;(2)若A≠B,就是x∈A则x∈B,且A中至少有一个元素不在B中,则A是B的充分非必要条件,B是A的必要非充分条件.(3)若A=B,就是A__B且A__B,则A是B的充分条件,同时A是B的必要条件,即A是B的充要条件.(4)若A B,A/B,则A是B的既不充分也不必要条件.例2也可这样解:由于M≠N,所以M∪N=N,M∩N=M,又由并集的定义知:A∈M或A∈N A∈M∪N A∈N,A∈M∩N=N A∈M,而M≠N,所以“A∈M或A∈N”“A∈M∩N”,所以“A∈M或A∈N”是“A∈M∩N”的必要非充分条件,故选B.例3也可这样解:设条件P、Q、R、S相对应的集合为A、B、C、D,则根据题设条件知:A≠C,C D,D B,又由子集的传递性知A≠B,所以P是Q成立充分不必要条件,故选A.。
三个平面交于一点的充要条件三个平面交于一点的充要条件是当三个平面两两相交,且交线不共线,即三条直线相交于一点时,这三个平面才能相交于同一个点。
在本文中,我们将介绍几个需要注意的步骤,以让读者更好地理解这个概念。
第一步:理解平面和交点首先,我们需要知道什么是平面和交点。
平面是一个二维的图形,例如我们通常用的白板和黑板就是平面。
而两个平面相交时,它们交叉的部分是一个直线,这条直线叫做交线。
当我们有三个平面时,它们两两相交会形成三条交线,这些交线会有一个共同的交点,这个点就叫做三个平面的交点。
第二步:证明充要条件接着,我们需要证明当三个平面相交于同一点时,它们两两相交交线不共线。
假设有三个平面,它们分别是P1、P2和P3。
设交点为O,交线分别为l1、l2和l3。
首先,我们需要证明的是当P1和P2相交时,它们的交线与P3的交线不共线。
这可以通过反证法来证明。
设P1和P2的交线与P3的交线共线,那么这三条直线交于同一个点,即P1、P2和P3共面,与题意不符。
接着,我们需要证明的是当P1和P3相交时,它们的交线与P2的交线不共线。
同样,我们也可以采用反证法。
设P1和P3的交线与P2的交线共线,那么这三条直线交于同一个点,即P1、P2和P3共面,与题意不符。
最后,我们需要证明的是当P2和P3相交时,它们的交线与P1的交线不共线。
同样,我们也可以采用反证法。
设P2和P3的交线与P1的交线共线,那么这三条直线交于同一个点,即P1、P2和P3共面,与题意不符。
综上所述,当三个平面相交于同一点时,它们两两相交的交线不共线,互相垂直于对边。
总结了解和掌握三个平面交于一点的充要条件,对于数学学习和生活中的空间问题都有很大的帮助。
在实际运用中,我们可以通过画图来使问题更加直观和容易理解。
最后,需要注意的是当我们用三个平面进行使用时,交点和交线的角度关系是相当重要的,需要我们认真对待。
一、反证法的步骤四、反证法的一般步骤步骤假设命题反面成立;从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾;得出假设命题不成立是错误的,即所求证命题成立。
反证法的论证过程首先提出论题:然后设定反论题,并依据推理规则进行推演,证明反论题的虚假;最后根据排中律,既然反论题为假,原论题便是真的。
在进行反证中,只有与论题相矛盾的判断才能作为反论题,论题的反对判断是不能作为反论题的,因为具有反对关系的两个判断可以同时为假。
反证法中的重要环节是确定反论题的虚假,常常要使用归谬法。
五、只能用反证法证明的命题1.有关纯数字划分的问题很多命题都只能借助反证法得证。
这类问题通常都是直接作为定理或常用推论来使用的,比如根号2是无理数。
2.很多已知当中只有两个元的问题。
由于条件有限,基本上也只能采用反证法。
这类问题通常是一个公理体系里只有A、B两项,由已知命题推未知命题的真假。
3.对许多直接建立在定义和公理之上的一级定理:由于这些定理可使用的证明条件太少,只能用反证法才能证明。
而建立在定义、公理与一级定理之上的二级定理,以及在逻辑链中更靠后的三级定理、四级定理等等,由于已被证明的定理数目越来越多,因此对于逻辑链中更靠后的定理,有更多的证明条件可以使用,常常不必使用反证法就可以得证。
而公理本身是不证自明的,它们是数学逻辑体系的起点(基石),这已经是数学知识的底线了。
如果你不接受它们,你认同的所有数学命题都不成立。
4.证明一个集合有无穷多个元素:①用反证法。
即证明如果它是有限的,则会存在矛盾;②与另外一个无穷集合建立映射,这时加进来的已知无穷集合作为引理出现。
证明质数有无穷多个,欧几里得的证明就是反证法。
充要条件与反证法●知识梳理1.充分条件:如果p ⇒q ,则p 叫q 的充分条件,原命题(或逆否命题)成立,命题中的条件是充分的,也可称q 是p 的必要条件.2.必要条件:如果q ⇒p ,则p 叫q 的必要条件,逆命题(或否命题)成立,命题中的条件为必要的,也可称q 是p 的充分条件.3.充要条件:如果既有p ⇒q ,又有q ⇒p ,记作p ⇔q ,则p 叫做q 的充分必要条件,简称充要条件,原命题和逆命题(或逆否命题和否命题)都成立,命题中的条件是充要的.4.反证法:当直接证明有困难时,常用反证法. ●点击双基1.ac 2>bc 2是a >b 成立的 A.充分而不必要条件B.充要条件C.必要而不充分条件D.既不充分也不必要条件解析:a >b ac 2>bc 2,如c =0.答案:A2.(2004年湖北,理4)已知a 、b 、c 为非零的平面向量.甲:a ²b =a ²c ,乙:b =c ,则 A.甲是乙的充分条件但不是必要条件 B.甲是乙的必要条件但不是充分条件 C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件解析:命题甲:a ²b =a ²c ⇒a ²(b -c )=0⇒a =0或b =c . 命题乙:b =c ,因而乙⇒甲,但甲乙. 故甲是乙的必要条件但不是充分条件. 答案:B3.(2004年浙江,8)在△ABC 中,“A >30°”是“sin A >21”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 解析:在△ABC 中,A >30°⇒0<sin A <1sin A >21,sin A >21⇒30°<A <150°⇒A >30°.∴“A >30°”是“sin A >21”的必要不充分条件.答案:B4.若条件p :a >4,q :5<a <6,则p 是q 的______________.解析:a >45<a <6,如a =7虽然满足a >4,但显然a 不满足5<a <6. 答案:必要不充分条件5.(2005年春季上海,16)若a 、b 、c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,有ax 2+bx +c >0”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若a >0且b 2-4ac <0,则对任意x ∈R ,有ax 2+bx +c >0,反之,则不一定成立.如a =0,b =0且c >0时,也有对任意x ∈R ,有ax 2+bx +c >0.因此应选A.答案:A ●典例剖析【例1】 使不等式2x 2-5x -3≥0成立的一个充分而不必要条件是 A.x <0 B.x ≥0C.x ∈{-1,3,5}D.x≤-21或x ≥3剖析:∵2x 2-5x -3≥0成立的充要条件是x ≤-21或x ≥3,∴对于A 当x =-31时2x 2-5x -3≥0.同理其他也可用特殊值验证. 答案:C【例2】 求证:关于x 的方程ax 2+bx +c =0有一根为1的充分必要条件是a +b +c =0. 证明:(1)必要性,即“若x =1是方程ax 2+bx +c =0的根,则a +b +c =0”. ∵x =1是方程的根,将x =1代入方程,得a ²12+b ²1+c =0,即a +b +c =0.(2)充分性,即“若a +b +c =0,则x =1是方程ax 2+bx +c =0的根”.把x =1代入方程的左边,得a ²12+b ²1+c =a +b +c .∵a +b +c =0,∴x =1是方程的根. 综合(1)(2)知命题成立. 深化拓展求ax 2+2x +1=0(a ≠0)至少有一负根的充要条件. 证明:必要性:(1)方程有一正根和一负根,等价于⇒⎪⎩⎪⎨⎧<=>-=0104421a x x a Δa <0. (2)方程有两负根,等价于⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧><-≥-=0102044aa a Δ0<a ≤1.综上可知,原方程至少有一负根的必要条件是a <0或0<a ≤1.充分性:由以上推理的可逆性,知当a <0时方程有异号两根;当0<a ≤1时,方程有两负根.故a <0或0<a ≤1是方程ax 2+2x +1=0至少有一负根的充分条件.答案:a <0或0<a ≤1.【例3】 下列说法对不对?如果不对,分析错误的原因. (1)x 2=x +2是x 2+x =x 2的充分条件;(2)x 2=x +2是x 2+x =x 2的必要条件.解:(1)x 2=x +2是x 2+x =x 2的充分条件是指x 2=x +2⇒x 2+x =x 2.但这里“⇒”不成立,因为x =-1时,“⇒”左边为真,但右边为假.得出错误结论的原因可能是应用了错误的推理:x 2=x +2⇒x =2+x ⇒x 2=x 2+x .这里推理的第一步是错误的(请同学补充说明具体错在哪里).(2)x 2=x +2是x 2+x =x 2的必要条件是指x 2+x =x 2⇒x 2=x +2.但这里“⇒”不成立,因为x =0时,“⇒”左边为真,但右边为假.得出错误结论的原因可能是用了错误的推理:x 2+x =x 2⇒2+x =x ⇒x +2=x 2.这里推理的第一步是错误的(请同学补充说明具体错在哪里).评述:此题的解答比较注重逻辑推理.事实上,也可以从真值集合方面来分析:x 2=x +2的真值集合是{-1,2},x 2+x =x 2的真值集合是{0,2},{-1,2}{0,2},而{0,2}{-1,2},所以(1)(2)两个结论都不对. ●闯关训练夯实基础1.(2004年重庆,7)已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:依题意有p ⇒r ,r ⇒s ,s ⇒q ,∴p ⇒r ⇒s ⇒q .但由于r p ,∴qp .答案:A2.(2003年北京高考题)“cos2α=-23”是“α=k π+12π5,k ∈Z ”的A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分又不必要条件解析:cos2α=-23⇔2α=2k π±6π5⇔α=k π±12π5.答案:A3.(2005年海淀区第一学期期末练习)在△ABC 中,“A >B ”是“cos A <cos B ”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:在△ABC 中,A >B ⇔cos A <cos B (余弦函数单调性).答案:C4.命题A :两曲线F (x ,y )=0和G (x ,y )=0相交于点P (x 0,y 0),命题B :曲线F (x ,y )+λG (x ,y )=0(λ为常数)过点P (x 0,y 0),则A 是B 的__________条件.答案:充分不必要5.(2004年北京,5)函数f (x )=x 2-2ax -3在区间[1,2]上存在反函数的充分必要条件是A.a ∈(-∞,1]B.a ∈[2,+∞)C.α∈[1,2]D.a ∈(-∞,1]∪[2,+∞)解析:∵f (x )=x 2-2ax -3的对称轴为x =a ,∴y =f (x )在[1,2]上存在反函数的充要条件为[1,2]⊆(-∞,a ]或[1,2]⊆[a ,+∞),即a ≥2或a ≤1.答案:D6.已知数列{a n }的前n 项和S n =p n+q (p ≠0且p ≠1),求数列{a n }成等比数列的充要条件. 分析:先根据前n 项和公式,导出使{a n }为等比数列的必要条件,再证明其充分条件. 解:当n =1时,a 1=S 1=p +q ;当n ≥2时,a n =S n -S n -1=(p -1)²p n -1. 由于p ≠0,p ≠1,∴当n ≥2时,{a n }是等比数列.要使{a n }(n ∈N *)是等比数列,则12a a =p ,即(p -1)²p =p (p +q ),∴q =-1,即{a n }是等比数列的必要条件是p ≠0且p ≠1且q =-1.再证充分性:当p ≠0且p ≠1且q =-1时,S n =p n-1, a n =(p -1)²pn -1,1n n a a =p (n ≥2),∴{a n }是等比数列. 培养能力7.(2004年湖南,9)设集合U ={(x ,y )|x ∈R ,y ∈R },A ={(x ,y )|2x -y +m >0},B ={(x ,y )|x +y -n ≤0},那么点P (2,3)∈A ∩(U B )的充要条件是A.m >-1,n <5B.m <-1,n <5C.m >-1,n >5D.m <-1,n >5解析:∵U B ={(x ,y )|n <x +y },将P (2,3)分别代入集合A 、B 取交集即可.∴选A.答案:A8.已知关于x 的一元二次方程mx 2-4x +4=0,①x 2-4mx +4m 2-4m -5=0.②求使方程①②都有实根的充要条件.解:方程①有实数根的充要条件是Δ1=(-4)2-16m ≥0,即m ≤1; 方程②有实数根的充要条件是Δ2=(4m )2-4(4m 2-4m -5)≥0,即m ≥-45.∴方程①②都有实数根的充要条件是-45≤m ≤1.9.已知a 、b 、c 是互不相等的非零实数.求证:三个方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0至少有一个方程有两个相异实根.证明:反证法:假设三个方程中都没有两个相异实根,则Δ1=4b 2-4ac ≤0,Δ2=4c 2-4ab ≤0,Δ3=4a 2-4bc ≤0. 相加有a 2-2ab +b 2+b 2-2bc +c 2+c 2-2ac +a 2≤0, (a -b )2+(b -c )2+(c -a )2≤0.①由题意a 、b 、c 互不相等,∴①式不能成立.∴假设不成立,即三个方程中至少有一个方程有两个相异实根. 探究创新10.若x 、y 、z 均为实数,且a =x 2-2y +2π,b =y 2-2z +3π,c =z 2-2x +6π,则a 、b 、c 中是否至少有一个大于零?请说明理由.解:假设a 、b 、c 都不大于0,即a ≤0,b ≤0,c ≤0,则a +b +c ≤0.而a +b +c =x 2-2y +2π+y 2-2z +3π+z 2-2x +6π=(x -1)2+(y -1)2+(z -1)2+π-3,∵π-3>0,且无论x 、y 、z 为何实数, (x -1)2+(y -1)2+(z -1)2≥0,∴a +b +c >0.这与a +b +c ≤0矛盾.因此,a 、b 、c 中至少有一个大于0.●思悟小结1.要注意一些常用的“结论否定形式”,如“至少有一个”“至多有一个”“都是”的否定形式是“一个也没有”“至少有两个”“不都是”.2.证明充要性要从充分性、必要性两个方面来证明.●教师下载中心 教学点睛1.掌握常用反证法证题的题型,如含有“至少有一个”“至多有一个”等字眼多用反证法.2.强调反证法的第一步,要与否命题分清.3.要证明充要性应从充分性、必要性两个方面来证. 拓展题例【例题】 指出下列命题中,p 是q 的什么条件. (1)p :0<x <3,q :|x -1|<2;(2)p :(x -2)(x -3)=0,q :x =2;(3)p :c =0,q :抛物线y =ax 2+bx +c 过原点. 解:(1)p :0<x <3,q :-1<x <3. p 是q 的充分但不必要条件.(2)p q ,q ⇒p .p 是q 的必要但不充分条件.(3)p 是q 的充要条件.评述:依集合的观点看,若A ⊆B ,则A 是B 的充分条件,B 是A 的必要条件;若A =B ,则A 是B 的充要条件.。