第一节第一性原理计算方法.
- 格式:doc
- 大小:152.50 KB
- 文档页数:14
材料科学中第一性原理计算方法研究近年来,材料科学领域的研究取得了许多重大突破,其中第一性原理计算方法成为材料设计和研究的重要工具之一。
这种方法通过基本的物理原理和数学方程来研究材料的性质和行为,为材料设计和性能优化提供了新的途径。
第一性原理计算方法是基于量子力学的一种计算方法,从第一性原理出发,通过求解薛定谔方程以及其他相关方程来研究材料的性质。
它不依赖于任何经验参数或假设,能够提供对材料的精确描述和准确预测。
第一性原理计算方法的核心是密度泛函理论(Density Functional Theory,简称DFT),它将体系的物理性质与体系中电子的密度联系起来。
根据Kohn-Sham方程,DFT通过对电子的运动方程进行求解,得到体系的基态电子密度。
通过计算得到的电子密度,可以进一步计算出材料的能带结构、电子态密度、态密度、声子谱、磁性及其它性质。
与传统的实验方法相比,第一性原理计算方法具有独特的优势。
首先,它能够提供物理性质的原子尺度描述,可以捕捉到材料内部微观原子结构的信息。
其次,该方法能够计算和预测材料的多种性质,如电子能带结构、晶格常数、弹性性能、热力学性质等,为材料设计和开发提供了重要参考。
此外,第一性原理计算方法可以帮助解释材料性能背后的基本物理机制,揭示材料特性的微观本质。
近年来,随着计算机性能的不断提升和计算方法的进步,第一性原理计算方法在材料科学中的应用得到了广泛拓展。
例如,它在材料的合成、器件的设计和材料的特性优化等方面发挥了重要作用。
通过预测和优化材料的能带结构和电子态密度,可以筛选出具有优异性能的新材料,为新能源、环境友好材料、传感器和光电器件的研发提供重要支持。
此外,第一性原理计算方法还可以帮助优化材料的力学、热力学和电磁性能,提高材料的功能性能。
尽管第一性原理计算方法为材料科学提供了强大的工具和理论基础,但也面临一些挑战。
首先,该方法对计算所需的资源要求较高,需要大量计算时间和计算机内存。
《计算材料学导论》实验指导书实验一:第一性原理方法计算模拟化合物的晶体结构和电子结构实验目的:1)近十年来,随着计算机技术和材料科学的发展,基于密度函数理论的第一性原理方法计算在材料科学中的应用十分普遍和活跃,发展异常迅速。
其应用领域涉及材料晶体结构优化,态密度和能带结构等电子结构,掺杂效应,相变热力学、光、电磁学性质的计算和设计。
量子化学计算软件包较多,如免费软件包ABINIT(详见教材), 商业化软件包V ASP, CASTEP,GAUSSIAN。
本实验运用VASP4.6软件包,计算AB型的ZnS或相似结构的晶体结构和电子结构。
实验要求:2)首先完成下列基础知识的问答填空,然后运用运用V ASP4.6软件包,计算AB型的ZnS或相似结构的晶体结构和电子结构,并画出图形。
实验内容:(一) 基础填空1) 简述第一性原理方法(或从头算)的基本概念。
()2)简述第一性原理方法在材料科学中有哪些具体应用?()3) 什么叫多粒子体系的总能?()4) 什么叫能带结构?它是如何形成的?()(二)第一性原理方法计算模拟AB型化合物(如ZnS)的晶体结构和电子结构。
1.ZnS具有多种晶形,如闪锌矿结构(The Zincblende (B3) Structure)和纤锌矿结构(The Wurtzite (B4)Structure),与之结构相同的化合物还有很多,不少化合物具有独特的光电特性。
请根据计算指南和模板,计算ZnS或者ZnO, SiC, AlN, CdSe,AgI, AlAs, AlP, AlSb, BAs, BN, BP, BeS, BeSe, BeTe, CdS,CdSe,CdTe, CuBr, CuCl, CuF, CuI, GaAs, GaP, GaSb, HgS, HgSe, HgTe, INAs, InP, MnS, MnSe, SiC, ZnSe, ZnTe)的晶体结构(含晶胞参数a,b,c,V,原子位置的可变内部参数),电子结构(含态密度(含总态密度,分态密度)和能带结构。
第一性原理计算引言第一性原理计算是一种基于量子力学原理的计算方法,用于研究材料的性质和行为。
它通过解析薛定谔方程,从头开始计算材料的性质,而不依赖于经验参数或已知的实验数据。
这使得第一性原理计算成为研究材料性质的重要工具,也为材料设计和开发提供了新的途径。
原理和方法第一性原理计算的核心是薛定谔方程的求解。
薛定谔方程描述了量子力学系统的行为,通过求解薛定谔方程可以得到体系的能量、电子结构、晶体结构、力学性能等信息。
然而,薛定谔方程的精确求解是不可行的,因此需要使用一些近似方法来简化计算过程。
其中最常用的方法是密度泛函理论(DFT)。
密度泛函理论的基本思想是将体系中的电子密度视为基本变量,通过最小化体系的总能量来确定电子密度。
这可以通过Kohn-Sham方程来实现,其中包括了交换-相关能的近似处理。
通过求解Kohn-Sham方程,可以得到体系的电子结构和能量。
此外,还有一些其他的方法被用于提高计算精度,如GW近似、自洽Poisson方程、多体微扰理论等。
这些方法的选择取决于研究问题的特点和需要。
应用领域第一性原理计算在材料科学、物理学和化学等领域有着广泛的应用。
1.材料设计:第一性原理计算可以用于预测新材料的性质,从而加速材料的设计和开发过程。
它可以通过计算和优化材料的能带结构、晶体结构等来寻找具有特定性能的材料。
2.反应动力学:第一性原理计算还可以用于研究化学反应的动力学过程。
通过计算反应的势能面和反应路径,可以预测反应速率和产物选择性。
3.催化剂设计:催化剂是许多化学反应中的关键组分。
第一性原理计算可以帮助设计和优化催化剂的表面结构和活性位点,从而提高催化剂的效率和选择性。
4.电子器件:第一性原理计算在电子器件领域的应用也日益重要。
它可以用于模拟和优化半导体器件的性能,如晶体管、太阳能电池等。
5.生物物理学:第一性原理计算在生物物理学研究中也发挥着重要作用。
它可以用于预测蛋白质的结构和稳定性,研究生物分子的相互作用以及药物分子的设计等。
化学反应动力学的第一性原理计算方法化学反应是物质变化的一种形式,通常是指原子或分子之间的化学键被打破或形成,从而形成新的化合物。
化学反应动力学研究的是化学反应速率的研究,也就是反应物转变为产物的速率。
动力学的研究对于理解化学反应机理和制定化学反应工艺有着重要的意义。
在现代化学研究中,化学反应动力学的第一性原理计算方法已经成为重要的工具。
化学反应动力学的第一性原理计算方法指的是运用量子力学原理和分子动力学模拟技术对化学反应动力学过程进行精确的计算和模拟。
这种方法无需依靠实验数据,而是直接从微观层面分析分子之间的相互作用。
通过对分子结构和动力学过程的分析,可以计算得到反应动力学的速率常数、反应机理、反应能垒等其它重要参数,从而能够深入理解化学反应的本质。
化学反应动力学的第一性原理计算方法主要应用于分子动力学模拟和量子化学计算两个方面。
其中,分子动力学模拟方法主要是基于原子力场,通过数值积分求解牛顿方程,模拟反应过程。
它可以计算物质的结构、能量以及动力学过程。
量子化学计算方法则是基于量子力学理论,通过求解薛定谔方程,计算分子间的相互作用和反应机理。
这种方法可以计算各种化学反应的能垒、活化能、反应速率以及反应机理。
对于化学反应动力学的第一性原理计算方法,其中一个比较重要的问题就是如何评估理论计算的准确性。
实际上,在计算化学的过程中,化学反应动力学的第一性原理计算方法也不能完全避免计算误差。
因此,如何评估计算误差以及如何优化理论计算模型是这个领域研究者一直在关注的问题。
面对以上问题,化学反应动力学的第一性原理计算方法的研究者们借鉴了机器学习的思想,开发出了一种基于数据库和机器学习的化学反应动力学数据驱动模型。
该模型基于已有的关于反应动力学的实验数据和理论计算数据,通过机器学习方法对反应动力学模型进行训练、验证和优化。
这种模型可以有效地降低计算误差,提高计算准确性,并能够提高计算速度。
总之,化学反应动力学的第一性原理计算方法是指在量子力学和分子动力学的基础上,通过计算和模拟分子间的相互作用和反应过程来研究化学反应动力学的的方法。
第一性原理计算
第一性原理计算是一种基于物理和数学原理的计算方法,用于研究物质的性质和行为。
它从基本的原子和分子相互作用出发,通过数值方法和近似算法来解决量子力学方程,从而得到材料的结构、能带结构、电子态密度等重要性质。
第一性原理计算的核心是量子力学的薛定谔方程。
这个方程描述了电子在势能场中的行为。
为了求解这个方程,需要考虑电子的波函数和势能场的相互作用。
然而,由于电子-电子相互
作用的复杂性以及多体问题的困难性,精确求解薛定谔方程是不可行的。
因此,第一性原理计算使用了一系列近似方法和数值技术,以在合理的计算复杂度下得到准确的结果。
第一性原理计算的基本步骤是将问题转化为一个离散化的体系。
首先,使用数值方法将空间划分为有限的格点,将连续的波函数表示为在这些格点上的数值。
然后,通过求解离散化的薛定谔方程,可以得到系统的电子和原子核的波函数。
接下来,利用这些波函数可以计算出材料的各种性质,如能带结构、电荷密度和振动谱等。
第一性原理计算在材料科学、物理化学和固体物理等领域有着广泛的应用。
它可以用于预测和设计新材料的性质,优化材料的性能以及研究材料的动力学行为。
通过结合实验数据和第一性原理计算的结果,科学家们可以更好地理解材料的行为,并为材料的应用提供指导和支持。
第一性原理计算公式引言第一性原理计算是一种基于量子力学原理的理论和计算方法,可以用于研究和预测材料的物理和化学性质。
它是一种从头开始的计算方法,不依赖于任何经验参数和实验数据,因此被广泛应用于材料科学、化学、物理等领域的研究和设计。
在第一性原理计算中,通过求解薛定谔方程来得到体系的电子结构和能量。
这些计算需要使用一系列的公式和算法,本文将重点介绍一些常见的第一性原理计算公式,帮助读者理解这一领域的基本原理和方法。
基本概念在介绍具体的计算公式之前,我们先来回顾一些基本概念。
哈密顿算符哈密顿算符是量子力学中描述体系总能量和动力学演化的算符。
对于单电子体系,哈密顿算符可以写为:H = T + V其中T表示动能算符,V表示势能算符。
对于多电子体系,哈密顿算符则需要加入电子之间的相互作用算符,形式更加复杂。
波函数和薛定谔方程波函数是描述量子力学体系的状态的函数。
在薛定谔方程中,波函数满足以下的时间无关薛定谔方程:Hψ = Eψ其中H是哈密顿算符,ψ是波函数,E是能量。
求解薛定谔方程可以得到体系的能级结构和波函数。
密度泛函理论密度泛函理论是一种处理多电子体系的方法。
其核心思想是将多电子体系的性质建立在电子密度上。
密度泛函理论的基本方程是:E = T[n] + V[n] + E_{ee}[n]其中E是总能量,T[n]是电子动能的泛函,V[n]是外势能的泛函,E_{ee}[n]是电子之间相互作用的泛函。
第一性原理计算公式赝势方法赝势方法是一种快速计算材料电子结构的方法。
在赝势方法中,原子核和一部分芯层电子对价层电子的作用通过赝势进行描述。
赝势方法的基本方程是:H_{KS}ψ = Eψ其中H_{KS}是Kohn-Sham方程中的赝势哈密顿算符,ψ是波函数,E是能量。
平面波基组展开法平面波基组展开法是一种基于平面波基函数的展开方法。
平面波基组展开法的基本方程是:ψ(r) = ∑ c_k exp(ik·r)其中ψ(r)是波函数,c_k是展开系数,k是波矢。
空穴带结构的第一性原理计算第一节:引言在当今材料科学领域,空穴带结构的研究已成为热点话题。
空穴带结构可以作为一种半导体材料,具有优越的电子传输特性和潜在的应用前景。
本文旨在探讨空穴带结构的第一性原理计算方法,并分析其在材料设计和性能预测方面的应用。
第二节:空穴带结构的概述空穴带结构是一种具有高效载流子传输能力的半导体材料结构。
其基本特征是在晶体中形成了一系列空穴能级,使得电子和空穴在带隙中自由移动。
空穴带结构的形成可以通过外加压力、化学合成等方法实现。
空穴带结构的电子结构和能带特性可以通过第一性原理计算方法进行准确预测。
第三节:第一性原理计算方法第一性原理计算方法是一种基于量子力学原理和电子结构理论的计算方法。
其核心思想是通过求解薛定谔方程,获得材料的电子结构和能带特性。
第一性原理计算方法的基本步骤包括选取合适的晶胞模型、选择材料的计算方法(如密度泛函理论)、优化晶胞参数、计算所需物理量等。
第四节:空穴带结构的第一性原理计算步骤1. 样品准备:选择适合计算的空穴带结构样品,并进行晶胞优化,确定合适的晶胞参数。
2. 电子结构计算:利用第一性原理计算方法,求解薛定谔方程,得到空穴带结构的电子结构。
这一步骤涉及到波函数展开、能带结构绘制等计算技术。
3. 能带特性分析:利用得到的电子结构,分析空穴带结构的能带特性。
可以计算空穴能级、导带带顶和价带底的位置、带隙大小等物理量。
第五节:空穴带结构的应用前景空穴带结构的第一性原理计算在材料设计和性能预测方面具有重要应用前景。
通过计算空穴能级、带隙大小等物理量,可以预测材料的光电性质、导电性质等重要性能。
这对于材料研发人员来说,有助于快速筛选出具有潜在应用价值的材料。
第六节:结论通过空穴带结构的第一性原理计算,我们可以准确得到材料的电子结构和能带特性,为材料设计和性能预测提供了新的思路和方法。
尽管目前仍面临一些挑战,例如计算复杂度较高、计算结果对初始参数敏感等问题,但随着计算技术的发展和方法的改进,相信将会有更多应用潜力被挖掘出来。
第一性原理计算方法第一性原理计算方法是一种基于量子力学原理的计算方法,它可以用来研究原子和分子的结构、性质和反应。
与传统的经验性方法相比,第一性原理计算方法具有更高的精度和可靠性,能够提供更多的物理和化学信息。
本文将介绍第一性原理计算方法的基本原理和应用。
首先,第一性原理计算方法是建立在薛定谔方程的基础上的。
薛定谔方程描述了体系的波函数随时间的演化,通过求解薛定谔方程,我们可以得到体系的能量、波函数和其他物理性质。
在第一性原理计算中,我们通常采用密度泛函理论来近似求解薛定谔方程,通过求解库仑势和交换-相关势的作用,得到体系的基态能量和波函数。
其次,第一性原理计算方法的应用非常广泛。
它可以用来研究固体、液体和气体的结构和性质,预测材料的稳定相和晶体结构,计算分子的几何构型和振动频率,分析化学反应的动力学过程等。
同时,第一性原理计算方法还可以用来设计新型的功能材料,优化催化剂的性能,预测分子的电子结构和光学性质,研究纳米材料的电子输运行为等。
在第一性原理计算方法的发展过程中,科学家们提出了许多不同的计算框架和方法,如密度泛函理论、量子蒙特卡洛方法、格林函数方法等。
这些方法在不同的体系和问题上都有各自的优势和局限性,需要根据具体的研究目的来选择合适的方法。
总的来说,第一性原理计算方法是一种强大的工具,它在材料科学、物理化学、生物化学等领域都有重要的应用价值。
随着计算机硬件和软件的不断发展,第一性原理计算方法将会变得更加高效和精确,为科学研究和工程应用提供更多的支持和帮助。
通过以上介绍,我们可以看到第一性原理计算方法在材料科学和化学领域的重要性和广泛应用。
它不仅可以帮助我们理解物质的基本性质,还可以指导新材料的设计和合成,促进科学技术的发展和进步。
因此,掌握和应用第一性原理计算方法对于科研工作者和工程技术人员来说都是非常重要的。
希望本文的介绍能够为读者提供一些有益的信息,引起对第一性原理计算方法的兴趣和关注。
第一性原理计算的理论方法随着科技的发展,计算机性能也得到了飞速的提高,人们对物理理论的认识也更加的深入,利用计算机模拟对材料进行设计已经成为现代科学研究不可缺少的研究手段。
这主要是因为在许多情况下计算机模拟比实验更快、更省,还得意于计算机模拟可以预测一些当前实验水平难以达到的情况。
然而在众多的模拟方法中,第一性原理计算凭借其独特的精度和无需经验参数而得到众多研究人员的青睐,成为计算材料学的重要基础和核心计算。
本章将介绍第一性原理计算的理论基础,研究方法和ABINIT 软件包。
1.1第一性原理第一性原理计算(简称从头计算,the abinitio calculation),指从所要研究的材料的原子组分出发,运用量子力学及其它物理规律,通过自洽计算来确定指定材料的几何结构、电子结构、热力学性质和光学性质等材料物性的方法。
基本思想是将多原子构成的实际体系理解成为只有电子和原子核组成的多粒子系统,运用量子力学等最基本的物理原理最大限度的对问题进行”非经验”处理。
【1】第一性原理计算就只需要用到五个最基本的物理常量即(b o k c h e m ....)和元素周期表中各组分元素的电子结构,就可以合理地预测材料的许多物理性质。
用第一性原理计算的晶胞大小和实验值相比误差只有几个百分点,其他性质也和实验结果比较吻合,体现了该理论的正确性。
第一性原理计算按照如下三个基本假设把问题简化:1.利用Born-Oppenheimer 绝热近似把包含原子核和电子的多粒子问题转化为多电子问题。
2.利用密度泛函理论的单电子近似把多电子薛定谔方程简化为比较容易求解的单电子方程。
3.利用自洽迭代法求解单电子方程得到系统基态和其他性质。
以下我将简单介绍这些第一性原理计算的理论基础和实现方法:绝热近似、密度泛函理论、局域密度近似(LDA)和广义梯度近似(GGA)、平面波及赝势方法、密度泛函的微扰理论、热力学计算方法和第一性原理计算程序包ABINIT 。
1.2量子力学与Born-Oppenheimer 近似固体是由原子核和核外的电子组成的,在原子核与电子之间,电子与电子之间,原子核与原子核之间都存在着相互作用。
从物理学的角度来看,固体是一个多体的量子力学体系【2】,相应的体系哈密顿量可以写成如下形式:),(),(R r E R r H H ψψ= (1-1) 其中r,R 分别代表所有电子坐标的集合、所有原子核坐标的集合。
在不计外场作用下,体系的哈密顿量日包括体系所有粒子(原子核和电子)的动能和粒子之间的相互作用能,即N e N e H H H H -++= (1-2)其中,以是电子部分的哈密顿量,形式为:∑∑'≠''-+∇-=i i i i i i r i e r r e m r H i ,222||212)( (1-3) 上式的前一项代表电子的动能,后一项表示电子.电子之间的库仑相互作用能,m 是电子的质量。
原子核部分的哈密顿量N H ,可以写成:)(212)(,22j j j j j j N R j j N R R V M R H j ''≠'-+∇-=∑∑(1-4)原子核与电子的相互作用项可以写成:)(),(,j i j i N e N e r r V R r H --=∑--(1-5)对于这样一个多粒子体系要对其实际精确求解是非常困难的,因此对其进行简化和近似是非常的必要。
考虑到电子的质量比原子核的质量小很多(约103个数量级),相对来说,电子的运动速度比核的运动速度要快近千倍。
当电子在做高速运动时,原子核只在平衡位置附近缓慢振动,电子能够绝热于原子核的运动。
因此,可以将上面的多体问题分成两部分考虑:当考虑电子运动时,原子核要处在它们的瞬时位置上;当考虑原子核运动时,就不需要考虑不电子在空间的具体分布。
这就是波恩(M.Born)和奥本海默(J.E.Oppenheimer)提出的绝热近似,或称波恩.奥本海默近似【2】,即Born-Oppenheimer 绝热近似。
此时系统的哈密顿量简化为:)(||212,,222j i j i N e i i i i i i r i R r V r r e m H i --'-+∇-=∑∑∑-'≠'(1-6)1.3 Hartree-Fock 轨道近似利用Born-Oppenheimer 绝热近似就容易把包含原子核和电子的多粒子问题转化为多电子问题。
求解方程(1-6)的困难在于电子与电子之间的库伦相互作用项。
假设不考虑电子之间的相互作用,就容易得到相互独立的单电子近似哈密顿量。
为了把多电子问题简化成单电子问题【3】,如果把其他电子对所考虑电子的瞬时作用平均化和球对称化,则∑⎰≠'''''-=')(2|||)(|)(i i i r i i i r i i r r r d r V i ψ(1-7)这样就可以把多电子问题转变成单单子问题。
这时,整个系统的波函数就是每个电子波函数)(i i r ψ连乘积。
单电子波函数应该满足单电子的Hartree 方程:∑⎰≠'''''-++∇-=')(222|||)(|)(2i i i r i i i r i e i r r r d r V m H i ψ(1-8)其中V(r)是该电子所受到的核的作用势。
Hartree 方程描述了每个坐标r 处单电子在核作用势和其它电子的平均势中的运动,E 是单电子的能量,简化后就可以从假设的一组)(i i r ψ出发,求解波函数时引入自治场方法,则整个系统的能量可以写为:∑∑===iiiiiErHrHE)()(|ψψψψ(1-9)上式并没有考虑到波函数是电子交换反对称的,于是需要考虑尸口础不相容原理,即把波函数写成(斯莱特)Slater行列式。
此时体系的总能要增加一个由电子交换引起的交换项,体系的总能可改写成:||)()()()(21)()(|,,,,,,.,iiiiiiiiiii i iiiiiiiii trrrrrdrdrrHrdrHE-ψψψψ-ψψ=ψψ=***∑∑⎰⎰(1-10)对应的单电子方程为:∑∑⎰∑⎰''''≠'''''*''≠'''''ψ=ψ-ψψ-ψ-+ψ+∇-'iiii iiiiii iiiiiiiiiiii riiiriiirrrrrrdrrrrrdrrVm i)()(||)()()(|||)(|)()](2[)()(222λψ(1-11)这就是Hartree-Fock方程【4】。
2.1密度泛函的理论基础密度泛函理论(Density Functional Theoty,简称DFT)【5】是从量子力学的基本原理出发,考虑电子结构,用体系的粒子数密度函数替代电子波函数来描述体系的理论。
也就是说,假定固体、原子、分子等系统的基态能量和物理性质可以用电子密度函数唯一的确定。
密度泛函理论是由于考虑了电子相关作用的Thomas-Fermi模型【6、7】,并在Hobenberg以及Kohn等人的工作【8】后发展成的,在经过Kohn和Sham(沈吕九)改进得到的电子密度泛函理论中的单电子方程,即Kohn-Sham 方程【9】,最终才使密度泛函理论得到实际的应用。
密度泛函理论是研究多粒子系统基态的重要方法之一,它不但成功将多电子问题转化为简单的单电子方程理论,而且也成为计算分子、固体等的电子结构和总能的有效手段。
2.2Thomas-Fermi-Dirac 近似在1927年,H.Thomas 和E.Fermi 就已经提出来建立在均匀电子气基础上的Thomas-Fermi 模型【6、7】。
在这个均匀的电子气模型中,电子不受外力,电子与电子之间也没有相互作用,经过求解电子运动的波动方程和简单的推导,就能看出,体系的能量仅与电子密度的函数有关。
在1930年,Dirac 考虑了电子的交换相互作用并推导出来在外势)(r V ext 中的电子的能量泛函的表达式如下:⎰⎰⎰⎰'-''+++=||)()(21)()()()()(3334323531r r r n r n r rd d r rn d C r n r rV d r rn d C n E ext TF (2-12)上式从左到右各项表达式分别表示: 动能的局域近似、外力能作用、交换关联相互作用、经典的经典作用能。
由于Thomas-Fermi-Dirac 近似太粗略简单,没有考虑到物理、化学中的一些本质现象而没用得到广泛的应用f 鲫。
2.3 Hobenberg-Kohn 定理密度泛函理论的基本理论基础是Hobenberg 和Kohn 提出的非均匀电子气理论的第一、第二定理。
第一定理:处于外势)(r V ext 中的不计自旋的电子体系,不可能存在另外一个外势)(r V ext'也有相同的密度函数,即其外势)(r V ext 可由电子密度唯一决定。
此时系统的哈密顿量H=T+V+U ,这里T 表示电子动能,V 是外势,U 为电子相互作用势。
在不同体系的哈密顿量H 中,外势V 是不一样的,而电子动能T 和电子相互作用势U 的表达式是相同的。
因此只要外势确定,体系的哈密顿量H 也就确定了。
根据公式ψ=ψE H ,只要H 是确定的,系统的波函数也确定,也可以说电子密度决定了系统波函数的所有性质。
第二定理:对于已定的外势,体系基态能量能于基态能量泛函E(n(r))的极小值。
对于不计自旋的全同电子体系,其能量泛函E(n(r))可写为:⎰⎰+''-'+'+'=')]([||)(2)]([)()())((2r n E r drd r r r n C e r n T dr r n r V r n E xc(2-13)其中,第一项是电子在外势场中的势能,第二项表示无相互作用电子气的动能,第三项是电子间的库伦作用能,第四项是电子间的交换关联能。
第二定理的基本点是在粒子数不变条件下求能量对密度函数的变分,就可以得到体系基态的能量E(n)。
但是Hobenberg-Kohn 定理中还存在一些不足之处:(1)电子密度分布函数)(r n '的具体形式不明确。
(2)无相互作用电子气的动能泛函T[)(r n ']不知道。
(3)电子间的交换关联能泛函)]([r n E xc 不清楚。
针对前两个问题可以用Kohn-Sham 方程解决。
第三个问题,通常是采用各种近似得到电子间的交换关联能。