第二类曲面积分
- 格式:ppt
- 大小:310.50 KB
- 文档页数:19
第一二类曲面积分相互转化
第一类曲面积分和第二类曲面积分是两种不同的曲面积分类型。
它们可以相互转化。
第一类曲面积分是对向量场在曲面上的投影进行积分。
具体来说,对于一个向量场F(x,y,z),曲面S上的第一类曲面积分可以表示为
∬SF·dS。
其中,F·dS表示向量F在曲面上的投影与曲面的微元面积dS的点积。
相比之下,第二类曲面积分则是对标量场在曲面上的积分。
具体
来说,对于一个标量场f(x,y,z),曲面S上的第二类曲面积分可以表
示为∬Sfds。
其中,ds表示曲面S上的微元弧长。
这两种曲面积分类型之间的转化可以通过斯托克斯定理来实现。
斯托克斯定理表明,对于一个向量场F(x,y,z),曲面S的边界曲线C,有∫CF·dr = ∬S curlF·dS。
其中,curlF表示向量场F的旋度。
这意味着,通过计算旋度可以将第一类曲面积分转化为第二类曲面积分,反之亦然。
两类曲面积分的关系和转换方向余弦《两类曲面积分的关系和转换方向余弦》一、引言在数学和物理学领域,曲面积分是一个重要且复杂的概念。
它涉及到对曲面上各点处的向量场进行积分运算,常常用于描述电场、磁场等物理量在曲面上的分布情况。
在曲面积分的计算中,我们通常会遇到两类不同的曲面积分,它们之间存在一定的关系。
转换方向余弦是在曲面积分计算中经常使用的重要工具。
本文将从入门到深入,探讨这两类曲面积分的关系以及转换方向余弦的应用。
二、两类曲面积分的概念1. 第一类曲面积分第一类曲面积分又称为曲面上标量场的积分,它描述了标量场在曲面上的分布情况。
设曲面S的方程为\[r(u,v) = \begin{pmatrix}x(u,v)\\ y(u,v)\\ z(u,v)\end{pmatrix}\] 曲面上的标量场为$\phi(x,y,z)$,那么第一类曲面积分的计算公式为\[\iint_S \phi(x,y,z)dS = \iint_D\phi(x(u,v),y(u,v),z(u,v))|\frac{\partial r}{\partial u} \times\frac{\partial r}{\partial v}|dudv\]其中,D为曲面S在参数域内的投影区域,$\frac{\partial r}{\partial u}$和$\frac{\partial r}{\partial v}$为r对u和v的偏导数,$\times$表示向量叉乘。
2. 第二类曲面积分第二类曲面积分又称为曲面上向量场的积分,它描述了向量场在曲面上的分布情况。
设曲面S的方程和向量场均同第一类曲面积分一样,那么第二类曲面积分的计算公式为\[\iint_S \mathbf{F}(x,y,z) \cdot d\mathbf{S} = \iint_D\mathbf{F}(x(u,v),y(u,v),z(u,v)) \cdot (\frac{\partial r}{\partial u}\times \frac{\partial r}{\partial v})dudv\]三、两类曲面积分的关系可以看出,第一类曲面积分和第二类曲面积分在公式形式上有一定的相似性。
2019考研数学:第二类曲面积分的计算来源:文都教育曲线曲面积分的计算是高等数学中非常重要的一部分知识,在考研数学一中每年都会考查。
下面,文都教育的数学老师给2019考研的同学们总结一下一些考研数学经常用到的计算第二类曲面积分的基本方法,希望对同学们有些帮助。
(一)直接法(化为二重积分)1. 设有向曲面xy D y x y x z z ∈=∑),(),,(:,则⎰⎰⎰⎰±=∑xy D dxdyy x z y x R dxdy z y x R )),(,,(),,(若有向曲面的法线向量与z 轴正向夹角为锐角,即曲面的上侧,上式中取正号,否则取负号;2. 设有向曲面yz D z y z y x x ∈=∑),(),,(:,则⎰⎰⎰⎰±=∑yz D dydz z y z y x P dydz z y x P ),),,((),,(若有向曲面的法线向量与x 轴正向夹角为锐角,即曲面的前侧,上式中取正号,否则取负号;3. 设有向曲面zx D x z x z y y ∈=∑),(),,(:,则⎰⎰⎰⎰±=∑zx D dzdxz x z y x Q dzdx z y x Q )),,(,(),,(若有向曲面的法线向量与y 轴正向夹角为锐角,即曲面的右侧,上式中取正号,否则取负号。
评注:计算第二类曲面积分,可以分为三步:(1)把空间曲面∑投影到某一平面(以xoy 面为例),得到投影区域D (投影时,∑上的任何两点的投影点不能重合);(2)把曲面方程),(y x z z =代入到被积函数中;(3)把dxdy 改写成dxdy ±,其中∑为为上侧、右侧、前侧时取正号,否则取负号。
(二)高斯公式法高斯公式:设空间闭区域Ω由分片光滑闭曲面∑围成,函数),,(),,,(),,,(z y x R z y x Q z y x P 在Ω上具有一阶连续偏导数,则有公式 dv z R y Q x P Rdxdy Qdzdx Pdydz ⎰⎰⎰⎰⎰Ω∑⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂=++或dv z R y Q x P dS R Q P ⎰⎰⎰⎰⎰Ω∑⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂=++)cos cos cos (γβα这里的∑是Ω的整个边界曲面的外侧,γβαcos ,cos ,cos 是∑在点),,(z y x 处的法向量的方向余弦。