博弈论(第一、二章)
- 格式:pdf
- 大小:2.32 MB
- 文档页数:111
第一章 什么是博弈一.管理活动中博弈现象无处不在1.如同我们的人生是由一局又一局的博弈组成的,各类管理实践也是如此,如管理者与被管理者之间的博弈,管理者之间的博弈,被管理者之间的博弈,企业与消费者之间的博弈,企业之间的博弈,等等。
案例1.斗鸡博弈白军红军 进攻后退问题:在该博弈中,甲和乙应该如何决策?最终的博弈结局会是什么样的? 斗鸡博弈在市场进入及许多社会问题的分析中有着非常重要的应用价值。
案例2.智猪博弈小猪大猪按等 问题:在该博弈中,甲和乙应该如何决策?最终的博弈结局会是什么样的? 智猪博弈在公共产品问题的分析中有着非常重要的应用。
案例3.报数博弈两人在1、2、3、4、5、6、7、8之间任意选择数字进行轮流报数,然后把两人已经报出的全部数字进行加总,谁报数后,加起来的数字大于等于174,谁就获胜。
如果让你先报,为了获胜,你应该采取什么报数策略?案例4:最低价格承诺我们上街经常会遇见一些大商场作出如下广告承诺:本商场承诺所卖的XX商品是市场最低价;若不是最低价,本商场将承诺退回差额并按照差额对消费者进行补偿。
问题:你有没有见过最低价格承诺?这些大商场为什么要作出最低价格承诺?他们的意图和目的是什么?2.到底什么是博弈(game)?(1)在日常生活中,人们经常把博弈狭隘地等同于讨价还价或勾心斗角、玩阴谋诡计。
(2)凡是具备以下几个特征的事件均可以视为博弈A.参与人之间或多或少存在利益上的相互冲突。
B.参与人获得的收益不仅取决于自己的决策,也取决于其他参与人的决策。
C.参与人的行动或决策相互之间存在直接的影响。
二.博弈的基本构成要素从上面的例子可以发现博弈是由以下基本要素构成的。
1.博弈的参与人(player)。
通常有n个人参与博弈,就称之为n人博弈思考:一场足球比赛是几人博弈?在构造博弈时一定要仔细辨别谁才是博弈真正的参与人,不要以为所有的当事人都是博弈的参与人。
例如,企业参加工程投标活动,博弈的参与人通常是谁?2.博弈的规则。
Document serial number [UU89WT-UU98YT-UU8CB-UUUT-UUT108]第一章导论1、什么是博弈博弈论的主要研究内容是什么2、设定一个博弈模型必须确定哪儿个方面3、举出烟草、餐饮、股市、房地产、广告、电视等行业的竞争中策略相互依存的例子。
4、"囚徒的困境”的内在根源是什么举出现实中囚徒的困境的具体例子。
5、博弈有哪些分类方法,有哪些主要的类型6、你正在考虑是否投资100万元开设一家饭店。
假设情况是这样的:你决定开,则的概率你讲收益300万元(包括投资),而的概率你将全部亏损;如果你不开,则你能保住本钱但也不会有利润,请你(a)用得益矩阵和扩展形式表示该博弈;(b)如果你是风险中性的,你会怎样选择(c)如果你是风险规避的,且期望得益的折扣系数为,你的策略选择是什么(d)如果你是风险偏好的,期望得益折算系数为,你的选择又是什么7、一逃犯从关押他的监狱中逃走,一看守奉命追捕。
如果逃犯逃跑有两条可选择的路线,看守只要追捕方向正确就一定能抓住逃犯。
逃犯逃脱可以少坐10年牢,但一旦被抓住则要加刑10年;看守抓住逃犯能得到1000元奖金。
请分别用得益矩阵和扩展形式表示该博弈,并作简单分析。
第二章完全信息静态博弈1、上策均衡、严格下策反复消去法和纳什均衡相互之间的关系是什么2、为什么说纳什均衡是博弈分析中最重要的概念3、找出现实经济或生活中可以用帕累托上策均衡、风险上策均衡分析的例子。
4、多重纳什均衡是否会影响纳什均衡的一致预测性质,对博弈分析有什么不利影响5、下面的得益矩阵表示两博弈方之间的一个静态博弈。
该博弈有没有纯策略纳什均衡t専弈的结果是什么6、求出下图中得益矩阵所表示的博弈中的混合策略纳什均衡。
7、博弈方1和2就如何分10 000元进行讨价还价。
假设确定了以下规则:双方同时提出自己要求的数额S1和S2, 0< sl,s2< 10 000,如果sl+s2W10 000,则两博弈方的要求都得到满足,即分别得到si和s2, 但如果是sl+s2>10 000,则该笔钱就被没收。
博弈论(部分英文版翻译)博弈论托马斯·S.Ferguson/translator:·xly第一部分:公平组合游戏1.外卖游戏1.1简单的外卖游戏1.2什么是组合游戏?1.3 P状态和N状态1.4游戏1.5相关练习2.尼姆游戏初步分析尼姆和多堆尼姆游戏布顿理论证明守财奴版尼姆游戏相关练习3.图形游戏有向图形游戏SG函数相关例子的一般图的SG函数4.组合游戏和N图游戏及SG定理的相关应用与休息游戏相关的练习5.硬币游戏的例子二维空间中的硬币旋转游戏尼姆复杂的网格游戏练习6.绿色哈肯布什竹竿树木上的绿色哈肯布什普通根图练习的绿色引导参考材料第一部分:公平组合游戏1。
外卖游戏组合游戏是两人游戏。
如果有足够的条件,当一方不能继续经营时,游戏的结果就会出来。
这个游戏的结果取决于一系列的状态,包括初始状态和准备操作的玩家。
游戏双方轮流操作,直到达到最终状态。
最终状态意味着该状态不能再运行。
此时,结果已经出现分歧。
这里有两个关于组合游戏的主要材料。
一部是康威的《论数字与游戏》,学术出版社1976年出版。
这本书介绍了这一领域的许多基本思想,加速了这一领域今天的发展。
另一本更适合这门课的参考书是学术出版社于1982年出版的两卷本平装本,书名是《柏林坎普、康威和盖伊的数学游戏制胜之道》。
这本书介绍了许多有趣的游戏,学习数学的本科生可以理解。
这些理论可以分为两类。
公平游戏指的是任何给定的状态,游戏双方要采取的行动是相同的。
另一方面,游击队游戏意味着给定一个状态,游戏双方将采取不同的行动。
例如,国际象棋是一种游击队游戏。
在第一部分,我们只研究“公平竞争”。
公平组合游戏的介绍可以在理查德·盖伊写的公平游戏中找到(发表在1989年的COMAP数学探索系列中)。
让我们从一个简单的例子开始。
1.1一个简单的外卖游戏。
这是这个公平组合游戏的一些规则(从一堆筹码中取一些):(1)有两个玩家,我们分别将他们标记为1号和2号;(2)桌上有一堆筹码,总共21个筹码;(3)一次操作可以取1、2、3个筹码,至少要取一个筹码,最多要取3个筹码。
博弈论与信息经济学答案第⼀章5.n 个企业,其中的⼀个⽅程:π1=q 1(a -(q 1+q 2+q 3……q n )-c ),其他的类似就可以了,然后求导数,结果为每个值都相等,q 1= q 2=……q n=(a-c)/(n+1)。
或者先求出2个企业的然后3个企业的推⼀下就好了。
6.假定消费者从价格低的⼚商购买产品,如果两企业价格相同,就平分市场,如果企业i 的价格⾼于另⼀企业,则企业i 的需求量为0,反之,其它企业的需求量为0。
因此,企业i 的需求函数由下式给出:i ii i i i i i p pi p p p p 0)/2Q(p )Q(p q --->==从上述需求函数的可以看出,企业i 绝不会将其价格定得⾼于其它企业;由于对称性,其它企业也不会将价格定的⾼于企业i ,因此,博弈的均衡结果只可能是每家企业的价格都相同,即p i =p j 。
但是如果p i =p j >c 那么每家企业的利润02i ij i p cq ππ-==>,因此,企业i 只要将其价格略微低于其它企业就将获得整个市场的需求,⽽且利润也会上升⾄()()22i i i i p c p cQ p Q p εε---->,()0ε→。
同样,其它企业也会采取相同的策略,如果此下去,直到每家⼚商都不会选择降价策略,此时的均衡结果只可能是p i =p j =c 。
此时,企业i 的需求函数为2ia cq -=。
在静态的情况下,没有⼀个企业愿意冒险将定价⾼于⾃⼰的单位成本C ,最终P=C ,利润为0。
因为每个参与⼈都能预测到万⼀⾃⼰的定价⾼于C ,其他⼈定价为C 那么⾃⼰的利益就是负的(考虑到⽣产的成本⽆法回收)。
就算两个企业之间有交流也是不可信的,最终将趋于P=C 。
现实情况下⼀般寡头不会进⼊价格竞争,⼀定会取得⼀个P 1=P 2=P 均衡。
此时利润不为零,双⽅将不在进⾏价格竞争。
7.设企业的成本相同为C ,企业1的价格为P 1,企业2的价格为P 2。