2013年高考物理(北京卷)解析版
- 格式:doc
- 大小:422.27 KB
- 文档页数:9
2023年北京市高考物理试卷(解析版)第一部分本部分共14小题,每小题3分,共42分。
在每小题列出的四个选项中,选出最符合题目要求的一项。
1.(3分)(2023•北京)夜间由于气温降低,汽车轮胎内的气体压强变低。
与白天相比,夜间轮胎内的气体( )A.分子的平均动能更小B.单位体积内分子的个数更少C.所有分子的运动速率都更小D.分子对轮胎内壁单位面积的平均作用力更大【答案】A【解答】解:AC、夜晚温度降低,则分子的平均动能更小,气体分子平均速率减小,但不是所有分子速率都在减小,故A正确,C错误;B、轮胎内的气体温度降低,气体体积减小,则单位体积内分子的个数更多,故B错误;D、车胎内气体温度降低,气体分子剧烈程度降低,压强减小,故分子对轮胎内壁单位面积的平均作用力变小,故D错误;故选:A。
2.(3分)(2023•北京)阳光下的肥皂膜呈现彩色条纹,这种现象属于光的( )A.偏振现象B.衍射现象C.干涉现象D.全反射现象【答案】C【解答】解:阳光下的肥皂膜,呈现彩色条纹,是肥皂膜的前后表面反射的光叠加产生的干涉现象,故ABD错误,C正确;故选:C。
3.(3分)(2023•北京)下列核反应方程中括号内的粒子为中子的是( )A.U+n→Ba+Kr+(ㅤㅤ)B.U→Th+(ㅤㅤ)C.N+He→O+(ㅤㅤ)D.C→N+(ㅤㅤ)【答案】A【解答】解:A、核反应方程中括号内的粒子,电荷数为:Z=92+0﹣56﹣36=0;质量数A=235+1﹣144﹣89=3;中子的电荷数等于0,质量数等于1,故粒子为3n,故A 正确;ㅤㅤB、核反应方程中括号内的粒子,电荷数为:Z=92﹣90=2;质量数A=238﹣234=4;中子的电荷数等于0,质量数等于1,故粒子不是中子,故B错误;C、核反应方程中括号内的粒子,电荷数为:Z=7+2﹣8=1;质量数A=14+4﹣17=1;中子的电荷数等于0,质量数等于1,故粒子不是中子,故C错误;D、核反应方程中括号内的粒子,电荷数为:Z=6﹣7=﹣1;质量数A=14﹣14=0;中子的电荷数等于0,质量数等于1,故粒子不是中子,故D错误。
2013年高考理综试卷(北京卷)一、整体分析:北京市2013年高考已经落下了帷幕,对于理科综合,从整体上看所考查的内容都在考纲范围之内,没有太难、太偏的题,难度与去年相比略有下降。
物理部分:整体上试卷的知识点考查非常全面,整体难度有所下降。
选择题部分在试题类型与难易程度上同2012年相近,考查面比2012年更加广。
实验题和综合计算题难度相比2012年有所降低,相信今天理科综合中物理部分考生肯定能得到一个相对比较高的分数。
化学部分:从选择题和压轴大题综合来看,试卷整体难度和2012基本持平,但今年的大题,在一些细节上还是很有难度。
整个试卷的各个知识模块分值分布稳定,只是有所微调,符合新课标的大方向。
比如淡化计算问题,强化与实际问题相结合的题型等。
预计化学的平均分数和去年会持平或者略有上升,但高分段的区分度还是能体现出来。
生物部分:今年的生物试题与去年相比,试题整体上难度略有降低,侧重基础知识的考查,但考查的内容综合性比较强,对考生的实验分析能力有一定要求。
选择题侧重生命的基本特征、生命活动的基本规律、生物学基本实验素养等基础知识点的考查,尽管考查的内容范围广,但考查方式直接。
填空题采用新情境、新材料进行实验试题设计,考查考生利用基础知识与技能进行图文信息转换的能力。
整体看,今年三道大题综合性强,要求考生在实验分析的基础上要熟练知识的应用。
本试卷共300分。
考试时长150分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
以下数据可供解题时参考:可能用到的相对原子质量:H1 C12 O16 Cl35.5 Ca40第一部(选择题共120分)一、本部分共20小题,每小题6分,共120分。
在每小题列出的四个选项中,选出最符合题目要求的一项。
1.下列真核细胞结构与成分,对应有误的是()A.细胞膜:脂质、蛋白质、糖类 B.染色体:核糖核酸、蛋白质C.核糖体:蛋白质、核糖核酸 D.细胞骨架:蛋白质【考点】细胞结构【难度】容易【答案】B.染色体的成分为DNA和蛋白质。
2013年全国统一高考物理试卷(新课标Ⅱ)一、选择题:本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.1.(6分)一物块静止在粗糙的水平桌面上。
从某时刻开始,物块受到一方向不变的水平拉力作用。
假设物块与桌面间的最大静摩擦力等于滑动摩擦力。
以a 表示物块的加速度大小,F表示水平拉力的大小。
能正确描述F与a之间的关系的图象是()A.B.C.D.2.(6分)如图,在固定斜面上的一物块受到一外力F的作用,F平行于斜面向上。
若要物块在斜面上保持静止,F的取值应有一定范围,已知其最大值和最小值分别为F1和F2.由此可求出()A.物块的质量B.斜面的倾角C.物块与斜面间的最大静摩擦力D.物块对斜面的正压力3.(6分)如图,在光滑水平桌面上有一边长为L、电阻为R的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下。
导线框以某一初速度向右运动。
t=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域。
下列v ﹣t图象中,可能正确描述上述过程的是()A.B.C.D.4.(6分)空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R,磁场方向垂直横截面。
一质量为m、电荷量为q(q>0)的粒子以速率v0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°.不计重力,该磁场的磁感应强度大小为()A.B.C.D.5.(6分)如图,在光滑绝缘水平面上,三个带电小球a、b和c分别位于边长为l的正三角形的三个顶点上;a、b带正电,电荷量均为q,c带负电。
整个系统置于方向水平的匀强电场中。
已知静电力常量为k。
若三个小球均处于静止状态,则匀强电场场强的大小为()A.B.C.D.6.(6分)在物理学发展过程中,观测、实验、假说和逻辑推理等方法都起到了重要作用。
专题九 磁 场1.(2013·高考新课标全国卷Ⅰ,18题)如图,半径为R 的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B ,方向垂直于纸面向外.一电荷量为q (q >0)、质量为m 的粒子沿平行于直径ab 的方向射入磁场区域,射入点与ab 的距离为R2.已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)( )A.qBR2m B.qBR m C.3qBR 2m D.2qBR m【解析】选 B.本题应从带电粒子在磁场中的圆周运动角度入手并结合数学知识解决问题.带电粒子从距离ab 为R2处射入磁场,且射出时与射入时速度方向的夹角为60°,粒子运动轨迹如图,ce 为射入速度所在直线,d 为射出点,射出速度反向延长交ce 于f 点,磁场区域圆心为O ,带电粒子所做圆周运动圆心为O ′,则O 、f 、O ′在一条直线上,由几何关系得带电粒子所做圆周运动的轨迹半径为R ,由F 洛=F 向得q v B =m v 2R ,解得v =qBRm,选项B 正确.2.(2013·高考广东卷,21题)如图,两个初速度大小相同的同种离子a 和b ,从O 点沿垂直磁场方向进入匀强磁场,最后打到屏P 上.不计重力.下列说法正确的有( )A .a 、b 均带正电B .a 在磁场中飞行的时间比b 的短C .a 在磁场中飞行的路程比b 的短D .a 在P 上的落点与O 点的距离比b 的近【解析】选AD.带电离子垂直进入匀强磁场,在洛伦兹力的作用下做匀速圆周运动.根据洛伦兹力提供向心力和周期公式T =2πm qB 、半径公式r =mυqB 及t θ=T2π解决问题.带电离子打到屏P 上,说明带电离子向下偏转,根据左手定则,a 、b 两离子均带正电,选项A 正确;a 、b 两离子垂直进入磁场的初速度大小相同,电荷量、质量相等,由r =mυqB知半径相同.b 在磁场中运动了半个圆周,a 的运动大于半个圆周,故a 在P 上的落点与O 的距离比b 的近,飞行的路程比b 长,选项C 错误,选项D 正确;根据t θ=T2π知,a 在磁场中飞行的时间比b 的长,选项B 错误.3.(2013·高考安徽卷,15题)图中a ,b ,c ,d 为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示.一带正电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是( )A .向上B .向下C .向左D .向右【解析】选 B.综合应用磁场的叠加原理、左手定则和安培定则解题.由安培定则分别判断出四根通电导线在O 点产生的磁感应强度的方向,再由磁场的叠加原理得出O 点的合磁场方向向左,最后由左手定则可判断带电粒子所受的洛伦兹力方向向下,故选项B 正确.4.(2013·高考新课标全国卷Ⅱ,17题)空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R ,磁场方向垂直于横截面.一质量为m 、电荷量为q (q >0)的粒子以速率v 0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°.不计重力,该磁场的磁感应强度大小为( )A.3m v 03qRB.m v 0qRC.3m v 0qRD.3m v 0qk【解析】选A.带电粒子在磁场中做匀速圆周运动,利用几何关系和洛伦兹力公式即可求解.如图所示,粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,即q v 0B =m v 20r,据几何关系,粒子在磁场中的轨道半径r =R tan 60°=3R ,解得B =3m v 03qR,选项A 正确.5.(2013·高考大纲全国卷,26题) 如图所示,虚线OL 与y 轴的夹角为θ=60°,在此角范围内有垂直于xOy 平面向外的匀强磁场,磁感应强度大小为 B.一质量为m 、电荷量为q (q >0)的粒子从左侧平行于x 轴射入磁场,入射点为M .粒子在磁场中运动的轨道半径为R .粒子离开磁场后的运动轨迹与x 轴交于P 点(图中未画出),且OP =R .不计重力.求M 点到O 点的距离和粒子在磁场中运动的时间.【解析】带电粒子在有界磁场中做圆周运动,作图并结合图象寻找解题的突破口.根据题意,带电粒子进入磁场后做圆周运动,运动轨迹交虚线OL 于A 点,圆心为y 轴上的C 点,AC 与y 轴的夹角为α;粒子从A 点射出后,运动轨迹交x 轴于P 点,与x 轴的夹角为β,如图所示.有q v B =m v 2R①周期为T =2πRv ②过A 点作x 、y 轴的垂线,垂足分别为B 、 D.由图中几何关系得 AD =R sin α OD =AD cot 60° BP =OD cot β OP =AD +BP α=β③ 由以上五式和题给条件得sin α+13cos α=1④ 解得α=30° ⑤ 或α=90°⑥设M 点到O 点的距离为h h =R -OC 根据几何关系OC =CD -OD =R cos α-33AD 利用以上两式和AD =R sin α得h =R -23R cos(α+30°) ⑦解得h =(1-33)R (α=30°) ⑧h =(1+33)R (α=90°) ⑨当α=30°时,粒子在磁场中运动的时间为 t =T 12=πm 6qB ⑩ 当α=90°时,粒子在磁场中运动的时间为 t =T 4=πm 2qB. 答案:(1-33)R (α=30°)或(1+33)R (α=90°) πm 6qB (α=30°)或πm2qB(α=90°)6.(2013·高考北京卷,22题)如图所示,两平行金属板间距为d ,电势差为U ,板间电场可视为匀强电场.金属板下方有一磁感应强度为B 的匀强磁场.带电量为+q 、质量为m 的粒子,由静止开始从正极板出发,经电场加速后射出,并进入磁场做匀速圆周运动.忽略重力的影响,求:(1)匀强电场场强E 的大小;(2)粒子从电场射出时速度v 的大小;(3)粒子在磁场中做匀速圆周运动的半径R .【解析】本题中带电粒子在电场中由静止开始做匀加速直线运动,可由动能定理或牛顿第二定律求解,选用动能定理进行解题更简捷.进入磁场后做匀速圆周运动,明确带电粒子的运动过程及相关公式是解题的关键.(1)电场强度E =Ud.(2)根据动能定理,有qU =12m v 2-0得v =2qUm.(3)粒子在磁场中做匀速圆周运动时,洛伦兹力提供向心力,有q v B =m v 2R得R =1B 2mU q .答案:(1)U d (2) 2qU m (3) 1B 2mUq7.(2013·高考天津卷,11题)一圆筒的横截面如图所示,其圆心为O .筒内有垂直于纸面向里的匀强磁场,磁感应强度为B.圆筒下面有相距为d 的平行金属板M 、N ,其中M 板带正电荷,N 板带等量负电荷.质量为m 、电荷量为q 的带正电粒子自M 板边缘的P 处由静止释放,经N 板的小孔S 以速度v 沿半径SO 方向射入磁场中.粒子与圆筒发生两次碰撞后仍从S 孔射出,设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求:(1)M 、N 间电场强度E 的大小;(2)圆筒的半径R ;(3)保持M 、N 间电场强度E 不变,仅将M 板向上平移23d ,粒子仍从M 板边缘的P 处由静止释放,粒子自进入圆筒至从S 孔射出期间,与圆筒的碰撞次数n .【解析】(1)设两板间的电压为U ,由动能定理得qU =12m v 2 ①由匀强电场中电势差与电场强度的关系得 U =Ed ② 联立上式可得E =m v 22qd. ③(2)粒子进入磁场后做匀速圆周运动,运用几何关系作出圆心为O ′,圆半径为r .设第一次碰撞点为A ,由于粒子与圆筒发生两次碰撞又从S 孔射出,因此,SA 弧所对的圆心角∠AO ′S等于π3.由几何关系得r =R tan π3④粒子运动过程中洛伦兹力提供向心力,由牛顿第二定律,得q v B =m v 2r⑤联立④⑤式得R =3m v 3qB. ⑥(3)保持M 、N 间电场强度E 不变,M 板向上平移23d 后,设板间电压为U ′,则U ′=Ed 3=U 3⑦设粒子进入S 孔时的速度为v ′,由①式看出 U ′U =v ′2v2 综合⑦式可得v ′=33v ⑧设粒子做圆周运动的半径为r ′,则r ′=3m v3qB⑨设粒子从S 到第一次与圆筒碰撞期间的轨迹所对圆心角为θ,比较⑥⑨两式得到r ′=R ,可见θ=π2○10 粒子需经过四个这样的圆弧才能从S 孔射出,故 n =3. ⑪答案:(1)m v 22qd (2)3m v3qB(3)38.(2013·高考重庆卷,7题)小明在研究性学习中设计了一种可测量磁感应强度的实验,其装置如图所示.在该实验中,磁铁固定在水平放置的电子测力计上,此时电子测力计的读数为G 1,磁铁两极之间的磁场可视为水平匀强磁场,其余区域磁场不计.直铜条AB 的两端通过导线与一电阻连接成闭合回路,总阻值为R .若让铜条水平且垂直于磁场,以恒定的速率v 在磁场中竖直向下运动,这时电子测力计的读数为G 2,铜条在磁场中的长度L .(1)判断铜条所受安培力的方向,G 1和G 2哪个大?(2)求铜条匀速运动时所受安培力的大小和磁感应强度的大小.【解析】(1)铜条匀速向下运动,由楞次定律可知,其所受安培力竖直向上.根据牛顿第三定律,铜条对磁铁的作用力竖直向下,故G 2>G 1.(2)由题意知:G 1=G 2-F ,F =G 2-G 1,由安培力公式 F =BIL , I =E R, E =BL v ,联立以上各式,解得B =1L(G 2-G 1)R v . 答案:(1)安培力的方向竖直向上,G 2>G 1(2)安培力的大小F =G 2-G 1 磁感应强度的大小B =1L (G 2-G 1)R v 9.(2013·高考福建卷,22题)如图甲,空间存在一范围足够大的垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B.让质量为m ,电荷量为q (q >0)的粒子从坐标原点O 沿xOy 平面以不同的初速度大小和方向入射到该磁场中.不计重力和粒子间的影响.(1)若粒子以初速度v 1沿y 轴正向入射,恰好能经过x 轴上的A (a,0)点,求v 1的大小. (2)已知一粒子的初速度大小为v (v >v 1),为使该粒子能经过A (a,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sin θ值.(3)如图乙,若在此空间再加入沿y 轴正向、大小为E 的匀强电场,一粒子从O 点以初速度v 0沿y 轴正向发射。
(2013新课标2)19.在物理学发展过程中,观测、实验、假说和逻辑推理等方法都起到了重要作用。
下列叙述符合史实的是()A.奥斯特在实验中观察到电流的磁效应,该效应解释了电和磁之间存在联系B.安培根据通电螺线管的磁场和条形磁铁的磁场的相似性,提出了分子电流假说C.法拉第在实验中观察到,在通有恒定电流的静止导线附近的固定导线圈中,或出现感应电流D.楞次在分析了许多实验事实后提出,感应电流应具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化【答案】D(2013福建)17.在国际单位制(简称SI)中,力学和电学的基本单位有:m(米)、kg (千克)、s(秒)、A(安培)。
导出单位V(伏特)用上述基本单位可表示为A.m2⋅kg⋅s-4⋅A-1B.m2⋅kg⋅s-3⋅A-1C.m2⋅kg⋅s-2⋅A-1D.m2⋅kg⋅s-1⋅A-1【答案】B(2013海南)7.科学家关于物体运动的研究对树立正确的自然观具有重要作用。
下列说法符合历史事实的是A.亚里士多德认为,必须有力作用在物体上,物体的运动状态才会改变B.伽利略通过“理想实验”得出结论:运动必具有一定速度,如果它不受力,它将以这一速度永远运动下去C.笛卡儿指出:如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下来也不偏离原来的方向D.牛顿认为,物体具有保持原来匀速直线运动状态或静止状态的性质【答案】BCD(2013江苏)B(2)如题12B-2图所示,两艘飞船A、B沿同一直线同向飞行,相对地面的速度均为v(v 接近光速c)。
地面上测得它们相距为L,则A测得两飞船间的距离_______ (选填“大于”、“等于”或“小于”)L。
当B向A发出一光信号,A测得该信号的速度为_______。
【答案】大于c(或光速)(2013山东)14.伽利略开创了实验研究和逻辑推理相结合探索自然规律的科学方法,,利用这种方法伽利略发现的规律有()A.力不是维持物体运动的原因B.物体之间普遍存在相互吸引力C.忽略空气阻力,重物与轻物下落得同样快D.物体间的相互作用力总是大小相等、方向相反【答案】AC(2013四川)1.下列关于电磁波的说法,正确的是()A.电磁波只能在真空中传播B.电场随时间变化时一定产生电磁波C.做变速运动的电荷会在空间产生电磁波D.麦克斯韦第一次用实验证实了电磁波的存在【答案】C(2013上海)1.电磁波与机械波具有的共同性质是(A)都是横波(B)都能传输能量(C)都能在真空中传播(D)都具有恒定的波速【答案】B(2013浙江)14.关于生活中遇到的各种波,下列说法正确的是A.电磁波可以传递信息,声波不能传递信息B.手机在通话时涉及的波既有电磁波又有声波C.太阳光中的可见光和医院“B超”中的超声波传递速度相同D.遥控器发出的红外线波长和医院CT中的X射线波长相同【答案】C(2014重庆)7.下列说法中,符合物理学史实的是A.亚里士多德认为,必须有力作用在物体上,物体才能运动;没有力的作用,物体就静止B.牛顿认为,力是物体运动状态改变的原因,而不是物体运动的原因C.麦克斯韦发现了电流的磁效应,即电流可以在其周围产生磁场D.奥斯特发现导线通电时,导线附近的小磁针发生偏转【答案】ABD(2014北京)19.伽利略创造的把实验、假设和逻辑推理相结合的科学方法,有力地促进了人类科学认识的发展。
高考物理:带你攻克电磁感应中的典型例题(附解析)例1、如图所示,有一个弹性的轻质金属圆环,放在光滑的水平桌面上,环中央插着一根条形磁铁.突然将条形磁铁迅速向上拔出,则此时金属圆环将()A. 圆环高度不变,但圆环缩小B. 圆环高度不变,但圆环扩张C. 圆环向上跳起,同时圆环缩小D. 圆环向上跳起,同时圆环扩张解析:在金属环中磁通量有变化,所以金属环中有感应电流产生,按照楞次定律解决问题的步骤一步一步进行分析,分析出感应电流的情况后再根据受力情况考虑其运动与形变的问题.也可以根据感应电流的磁场总阻碍线圈和磁体间的相对运动来解答。
当磁铁远离线圈时,线圈和磁体间的作用力为引力,由于金属圆环很轻,受的重力较小,因此所受合力方向向上,产生向上的加速度.同时由于线圈所在处磁场减弱,穿过线圈的磁通量减少,感应电流的磁场阻碍磁通量减少,故线圈有扩张的趋势。
所以D选项正确。
一、电磁感应中的力学问题导体切割磁感线产生感应电动势的过程中,导体的运动与导体的受力情况紧密相连,所以,电磁感应现象往往跟力学问题联系在一起。
解决这类电磁感应中的力学问题,一方面要考虑电磁学中的有关规律,如安培力的计算公式、左右手定则、法拉第电磁感应定律、楞次定律等;另一方面还要考虑力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律等。
例2、如图1所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻。
一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。
整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。
让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。
(1)由b向a方向看到的装置如图2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的速度最大值。
一般高等学校招生全国统一考试(北京卷)物理部分试题解析13.一种氢旅子从n=3能级跃迁到n=2能级.该氢原. (B)A 放出光子, 能力增长B放出光子, 能量减少C 吸取光子, 能量增长D 吸取光子, 能量减少解析: 本题属于原子跃迁知识旳综合。
原子由高能级3跃迁到低能级2旳过程中原子能量减少必然放出光子, 答案B。
14.一束单色光经由空气射入玻璃, 这束光....(.)A 速度变慢, 波长变短B 速度不变, 波长变短C 频率增高, 波长变长D 频率不变, 波长变长解析: 本题属于光学知识, 考察光旳折射。
单色光由光疏介质——空气进入光密介质——玻璃, 频率不变, 但介质对光旳折射率增大, 可知光旳波长和速度都减小, 答案A。
15.一种小型电热器若接在愉出电压为10V旳直流电源上.消耗电功率为P;若把它接在某个正弦交流电源上, 其消耗旳电功率为。
假如电热器电阻不变, 则此交流电源输出电压旳最大值..................... (C)A .5V B.52V C .10V D.102V解析: 小型电热器旳电阻不会变化, 根据功率体现式和交流电旳有效值有和可得, 答案C。
16..处在匀强磁场中旳一种带电粒子, 仅在磁场力作用下做匀速圈周运动。
将该粒子旳运动等效为环形电流, 那么此电流.......... (D)A 与粒子电荷量成正比B 与粒子速率成正比C 与粒子质量成正比D 与磁感应强度成正比解析: 将该粒子旳运动等效为环形电流, 该粒子在一种周期只通过某一种截面一次, 则环形电流在一种周期T 内旳电量为q, 根据电流定义式有粒子在磁场力作用下做匀速圈周运动, 根据周期公式有两式联立有 m Bq I π22= 环形电流与磁感应强度成正比, 与粒子质量成反比, 与粒子电荷量旳平方成正比, 而与粒子速率无关, 答案D 。
17.一种弹簧振子沿x 轴做简谐运动, 取平衡位置O 为x 轴坐标原点。
从某时刻开始计时, 通过四分之一旳周期, 振子具有沿x 轴正方句旳最大加速度。
《小船渡河问题》一、计算题1.河宽d=60m,水流速度v1=3m/s,小船在静水中的速度v2=6m/s,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少?(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?(3)若水流速度变为v3=10m/s,要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?2.如图所示,一条小船位于d=200m宽的河正中A点处,从这里向下游100√3m处有一危险区,当时水流速度为V1=4m/s,(1)若小船在静水中速度为V2=5m/s,小船到岸的最短时间是多少?(2)若小船在静水中速度为V2=5m/s,小船以最短的位移到岸,小船船头与河岸夹角及所用时间?(3)为了使小船避开危险区沿直线到达对岸,小船在静水中的速度至少是?3.一条河宽100m,水流速度为3m/s,一条小船在静水中的速度为5m/s.(1)若要小船过河的时间最短,则船头应该指向哪里?过河的最短时间是多少⋅来表示),小船需用多长时间到达对岸?(sin300=0.5,sin370=0.6,sin450=0.707)4.河宽d=100m,水流速度v1=3m/s,船在静水中的速度是v2=4m/s,求:(1)欲使船渡河时间最短,最短时间是多少?(2)欲使船航行距离最短,渡河时间多长?5.一小船从河岸的A点出发渡河,小船船头保持与河岸垂直方向航行,经过10min到达河对岸B点下游120m的C处,如图所示。
如果小船保持原来的速率逆水斜向上游与河岸成α角方向航行,则经过12.5min恰好到达正对岸的B处。
求:(1)水流速度;(2)河的宽度。
6.如图所示,河宽d=120m,设船在静水中的速度为v1,河水的流速为v2,小船从A点出发,在渡河时,若出发时船头指向河正对岸的B点,经过8min小船到达B点下游的C点处;若出发时小船保持原来的速度逆水向上与河岸成α角方向行驶,则小船经过10min恰好到达河正对岸的B点。
2013年全国统一高考物理试卷(新课标Ⅰ)一、选择题:本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6-8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.1.(6分)如图是伽利略1604年做斜面实验时的一页手稿照片,照片左上角的三列数据如下表.表中第二列是时间,第三列是物体沿斜面运动的距离,第一列是伽利略在分析实验数据时添加的.根据表中的数据,伽利略可以得出的结论是()1 1 324 2 1309 3 29816 4 52625 5 82436 6 119249 7 16064 8 2104A.物体具有惯性B.斜面倾角一定时,加速度与质量无关C.物体运动的距离与时间的平方成正比D.物体运动的加速度与重力加速度成正比2.(6分)如图,一半径为R的圆盘上均匀分布着电荷量为Q的电荷,在垂直于圆盘且过圆心c的轴线上有a、b、d三个点,a和b、b和c、c和d间的距离均为R,在a点处有一电荷量为q(q>0)的固定点电荷.已知b点处的场强为零,则d点处场强的大小为(k为静电力常量)()A .B.C.D.3.(6分)一水平放置的平行板电容器的两极板间距为d,极板分别与电池两极相连,上极板中心有一小孔(小孔对电场的影响可忽略不计).小孔正上方处的P点有一带电粒子,该粒子从静止开始下落,经过小孔进入电容器,并在下极板处(未与极板接触)返回.若将下极板向上平移,则从P点开始下落的相同粒子将()A . 打到下极板上B . 在下极板处返回C .在距上极板处返回D .在距上极板处返回4.(6分)如图,在水平面(纸面)内有三根相同的均匀金属棒ab 、ac 和MN ,其中ab 、ac 在a 点接触,构成“V ”字型导轨.空间存在垂直于纸面的均匀磁场.用力使MN 向右匀速运动,从图示位置开始计时,运动中MN 始终与∠bac 的平分线垂直且和导轨保持良好接触.下列关于回路中电流i 与时间t 的关系图线,可能正确的是( )A .B.C.D.5.(6分)如图,半径为R 的圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B ,方向垂直于纸面向外.一电荷量为q (q >0)、质量为m 的粒子沿平行于直径ab 的方向射入磁场区域,射入点与ab 的距离为.已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)( )A .B .C . D.6.(6分)如图,直线a 和曲线b 分别是在平直公路上行驶的汽车a 和b 的位置﹣时间(x ﹣t )图线.由图可知( )A .在时刻t 1,a 车追上b 车 B .在时刻t 2,a 、b 两车运动方向相反 C .在t 1到t 2这段时间内,b 车的速率先减少后增加D .在t 1到t 2这段时间内,b 车的速率一直比a 车的大7.(6分)2012年6月18日,神州九号飞船与天宫一号目标飞行器在离地面343km 的近圆形轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气,下面说法正确的是( ) A .为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B .如不加干预,在运行一段时间后,天宫一号的动能可能会增加C 如不加干预,天宫一号的轨道高度将缓慢降低.D航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用.8.(6分)2012年11月,“歼15”舰载机在“辽宁号”航空母舰上着舰成功.图(a)为利用阻拦系统让舰载机在飞行甲板上快速停止的原理示意图.飞机着舰并成功钩住阻拦索后,飞机的动力系统立即关闭,阻拦系统通过阻拦索对飞机施加一作用力,使飞机在甲板上短距离滑行后停止,某次降落,以飞机着舰为计时零点,飞机在t=0.4s时恰好钩住阻拦索中间位置,其着舰到停止的速度﹣时间图线如图(b)所示.假如无阻拦索,飞机从着舰到停止需要的滑行距离约1000m.已知航母始终静止,重力加速度的大小为g.则()A从着舰到停止,飞机在甲板上滑行的距离约为无阻拦索时的.B在0.4s~2.5s时间内,阻拦索的张力几乎不随时间变化.C在滑行过程中,飞行员所承受的加速度大小会超过2.5g.D在0.4s~2.5s时间内,阻拦系统对飞机做功的功率几乎不变.二、解答题(共4小题,满分47分)9.(7分)图(a)为测量物块与水平桌面之间动摩擦因数的实验装置示意图.实验步骤如下:①用天平测量物块和遮光片的总质量M、重物的质量m;用游标卡尺测量遮光片的宽度d;用米尺测最两光电门之间的距离s;②调整轻滑轮,使细线水平;③让物块从光电门A的左侧由静止释放,用数字毫秒计分别测出遮光片经过光电门A和光电门B所用的时间△t A 和△t B,求出加速度a;④多次重复步骤③,求a的平均值;⑤根据上述实验数据求出动擦因数μ.回答下列为题:(1)测量d时,某次游标卡尺(主尺的最小分度为1mm)的示数如图(b)所示,其读数为_________cm.(2)物块的加速度a可用d、s、△t A和△t B表示为a=_________.(3)动摩擦因数μ可用M、m、和重力加速度g表示为μ=_________(4)如果细线没有调整到水平,由此引起的误差属于_________(填“偶然误差”或“系统误差”).10.(8分)某学生实验小组利用图(a)所示电路,测量多用电表内电池的电动势和电阻“×lk”挡内部电路的总电阻.使用的器材有:多用电表;电压表:量程5V,内阻十几千欧;滑动变阻器:最大阻值5kΩ导线若干.回答下列问题:(1)将多用电表挡位调到电阻“×lk”挡,再将红表笔和黑表笔_________,调零点.(2)将图(a)中多用电表的红表笔和_________(填“1”或“2”)端相连,黑表笔连接另一端.(3)将滑动变阻器的滑片调到适当位置,使多角电表的示数如图(b)所示,这时电压表的示数如图(c)所示.多用电表和电压表的读数分别为_________kΩ和_________V.(4)调节滑动变阻器的滑片,使其接入电路的阻值为零.此时多用电表和电压表的读数分别为12.0kΩ和4.00V.从测量数据可知,电压表的内阻为_________kΩ.(5)多用电表电阻挡内部电路可等效为由一个无内阻的电池、一个理想电流表和一个电阻串联而成的电路,如图(d)所示.根据前面的实验数据计算可得,此多用电表内电池的电动势为_________V,电阻“×lk”挡内部电路的总电阻为_________kΩ.11.(13分)水平桌面上有两个玩具车A和B,两者用一轻质细橡皮筋相连,在橡皮筋上有一红色标记R.在初始时橡皮筋处于拉直状态,A、B和R分别位于直角坐标系中的(0,2l)、(0,﹣l)和(0,0)点.已知A从静止开始沿y轴正向做加速度大小为a的匀加速运动;B平行于x轴朝x轴正向匀速运动.在两车此后运动的过程中,标记R在某时刻通过点(l,l).假定橡皮筋的伸长是均匀的,求B运动速度的大小.12.(19分)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系;(2)金属棒的速度大小随时间变化的关系.三.[物理--选修3-3](15分)13.(6分)两个相距较远的分子仅在分子力作用下由静止开始运动,直至不再靠近.在此过程中,下列说法正确的是()A.分子力先增大,后一直减小B.分子力先做正功,后做负功C.分子动能先增大,后减小D.分子势能先增大,后减小E.分子势能和动能之和不变14.(9分)如图,两个侧壁绝热、顶部和底部都导热的相同气缸直立放置,气缸底部和顶部均有细管连通,顶部的细管带有阀门K.两气缸的容积均为V0,气缸中各有一个绝热活塞(质量不同,厚度可忽略).开始时K关闭,两活塞下方和右活塞上方充有气体(可视为理想气体),压强分别为p0和;左活塞在气缸正中间,其上方为真空;右活塞上方气体体积为.现使气缸底与一恒温热源接触,平衡后左活塞升至气缸顶部,且与顶部刚好没有接触;然后打开K,经过一段时间,重新达到平衡.已知外界温度为T0,不计活塞与气缸壁间的摩擦.求:(i)恒温热源的温度T;(ii)重新达到平衡后左气缸中活塞上方气体的体积V x.四.[物理--选修3-4](15分)15.如图,a、b、c、d是均匀媒质中x轴上的四个质点,相邻两点的间距依次为2m、4m和6m.一列简谐横波以2m/s的波速沿x轴正向传播,在t=0时刻到达质点a处,质点a由平衡位置开始竖直向下运动,t=3s时a第一次到达最高点.下列说法正确的是()A在t=6s时刻波恰好传到质点d处.B在t=5s时刻质点c恰好到达最高点.C质点b开始振动后,其振动周期为4s.D在4s<t<6s的时间间隔内质点c向上运动.E当质点d向下运动时,质点b一定向上运动.16.图示为一光导纤维(可简化为一长玻璃丝)的示意图,玻璃丝长为L,折射率为n,AB代表端面.已知光在真空中的传播速度为c.(i)为使光线能从玻璃丝的AB端面传播到另一端面,求光线在端面AB上的入射角应满足的条件;(ii)求光线从玻璃丝的AB端面传播到另一端面所藉的最长时间.五.[物理--选修3-5](15分)17.一质子束入射到能止靶核上,产生如下核反应:,式中p代表质子,n代表中子,X代表核反应产生的新核.由反应式可知,新核X的质子数为_________,中子数为_________.18.在粗糙的水平桌面上有两个静止的木块A和B,两者相距为d.现给A一初速度,使A与B发生弹性正碰,碰撞时间极短.当两木块都停止运动后,相距仍然为d.已知两木块与桌面之间的动摩擦因数均为μ,B的质量为A 的2倍,重力加速度大小为g.求A的初速度的大小.2013年全国统一高考物理试卷(Ⅰ)参考答案与试题解析一、选择题:本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6-8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.1.(6分)考点:匀变速直线运动的位移与时间的关系.专题:直线运动规律专题.分析:通过表格中的数据,通过时间的平方与运动距离的关系,得出位移和时间的规律.解答:解:从表格中的数据可知,时间变为原来的2倍,下滑的位移大约变为原来的4倍,时间变为原来的3倍,位移变为原来的9倍,可知物体运动的距离与时间的平方成正比.故C正确,A、B、D错误.故选C.点评:本题考查学生的数据处理能力,能够通过数据得出物体位移与时间的关系.需加强训练.2.(6分)考点:电场的叠加;电场强度.专题:电场力与电势的性质专题.分析:由题意可知,半径为R均匀分布着电荷量为Q的圆盘上电荷,与在a点处有一电荷量为q(q>0)的固定点电荷,在b点处的场强为零,说明各自电场强度大小相等,方向相反.那么在d点处场强的大小即为两者之和.因此根据点电荷的电场强度为即可求解.解答:解:电荷量为q的点电荷在b处产生电场强度为,而半径为R均匀分布着电荷量为Q的圆盘上电荷,与在a点处有一电荷量为q(q>0)的固定点电荷,在b点处的场强为零,则圆盘在此处产生电场强度也为.那么圆盘在此d产生电场强度则仍为.而电荷量为q的点电荷在d处产生电场强度为,由于都在d处产生电场强度方向相同,即为两者大小相加.所以两者这d处产生电场强度为,故B正确,ACD错误;故选:B点评:考查点电荷与圆盘电荷在某处的电场强度叠加,紧扣电场强度的大小与方向关系,从而为解题奠定基础.3.(6分)考点:电容器的动态分析.专题:电容器专题.分析:下极板未移动时,带电粒子到达下极板处返回,知道重力做功与电场力做功之和为零,向上移动下极板,若运动到下极板,重力做功小于克服电场力做功,可知不可能运动到下极板返回,根据动能定理,结合电势差大小与d的关系,求出粒子返回时的位置.解答:解:对下极板未移动前,从静止释放到速度为零的过程运用动能定理得,.将下极板向上平移,设运动到距离上级板x处返回.根据动能定理得,联立两式解得x=.故D正确,A、B、C错误.故选D.点评:该题考到了带电粒子在电场中的运动、电容器、功能关系等知识点,是一道比较综合的电学题,难度较大.这类题应该以运动和力为基础,结合动能定理求解.4.(6分)考点:导体切割磁感线时的感应电动势;闭合电路的欧姆定律.专题:电磁感应与图像结合.分析:MN切割磁感线运动产生感应电动势E=BLv,L越来越大,回路总电阻也增大,根据电阻定律可求,然后利用闭合电路欧姆定律即可求解.解答:解:设∠bac=2θ,单位长度电阻为R0则MN切割产生电动势E=BLv=Bv•2vt×tanθ=2Bv2ttnaθ回路总电阻为由闭合电路欧姆定律得:I===i与时间无关,是一定值,故A正确,BCD错误,故选:A.5.(6分)考点:带电粒子在匀强磁场中的运动;牛顿第二定律;向心力.专题:带电粒子在磁场中的运动专题.分析:由题意利用几何关系可得出粒子的转动半径,由洛仑兹力充当向心力可得出粒子速度的大小;解答:解:粒子的偏转角是60°,即它的轨迹圆弧对应的圆心角是60,所以入射点、出射点和圆心构成等边三角形,所以,它的轨迹的半径与圆形磁场的半径相等,即r=R.洛伦兹力提供向心力:,变形得:.故正确的答案是B.故选:B点在磁场中做圆周运动,确定圆心和半径为解题的关键.评:6.(6分)考点:匀变速直线运动的位移与时间的关系.专题:直线运动规律专题.分析:位移时间关系图线反映位移随时间的变化规律,图线的斜率表示速度的大小.解答:解:A、在时刻t1,a、b两车的位置坐标相同,开始a的位移大于b的位移,知b追上a.故A错误.B、在时刻t2,a的位移增大,b的位移减小,知两车运动方向相反.故B正确.C、图线切线的斜率表示速度,在t1到t2这段时间内,b车图线斜率先减小后增大,则b车的速率先减小后增加.故C正确.D、在t1到t2这段时间内,b图线的斜率不是一直大于a图线的斜率,所以b车的速率不是一直比a车大.故D错误.故选BC.点评:解决本题的关键知道位移时间图线的物理意义,知道图线的斜率表示速度的大小,能够通过图线得出运动的方向.7.(6分)考点:人造卫星的加速度、周期和轨道的关系;万有引力定律及其应用.专题:压轴题;人造卫星问题.分析:万有引力提供圆周运动的向心力,所以第一宇宙速度是围绕地球圆周运动的最大速度,卫星由于摩擦阻力作用,轨道高度将降低,运行速度增大,失重不是失去重力而是对悬绳的拉力或支持物的压力减小的现象.根据相应知识点展开分析即可.解答:解:A、又第一宇宙速度为最大环绕速度,天宫一号的线速度一定小于第一宇宙速度.故A错误;B、根据万有引力提供向心力有:⇒v=得轨道高度降低,卫星的线速度增大,故动能将增大,所以B正确;C、卫星本来满足万有引力提供向心力即,由于摩擦阻力作用卫星的线速度减小,提供的引力大于卫星所需要的向心力故卫星将做近心运动,即轨道半径将减小,故C正确;D、失重状态说明航天员对悬绳或支持物体的压力为0,而地球对他的万有引力提供他随天宫一号围绕地球做圆周运动的向心力,所以D错误故选BC.点评:解决卫星运行规律问题的核心原理是万有引力提供向心力,通过选择不同的向心力公式,来研究不同的物理量与轨道半径的关系.8.(6分)考点:功率、平均功率和瞬时功率;匀变速直线运动的图像.专题:压轴题;功率的计算专题.分析:通过速度与时间的图象,由图象的斜率表示加速度大小,再由牛顿第二定律确定阻拦索的拉力,同时由图象与时间所构成的面积为位移的大小.由功率P=FV可确定大小如何变化.解解:A、由图象可知,从着舰到停止,飞机在甲板上滑行的距离即为图象与时间所构成的面积,即约为答:,而无阻拦索的位移为1000m,因此飞机在甲板上滑行的距离约为无阻拦索时的,故A 正确;B、在0.4s~2.5s时间内,速度与时间的图象的斜率不变,则加速度也不变,所以合力也不变,因此阻拦索的张力的合力几乎不随时间变化,但阻拦索的张力是变化的,故B错误;C、在滑行过程中,飞行员所承受的加速度大小为>2.5g,故C正确;D、在0.4s~2.5s时间内,阻拦系统对飞机做功的功率P=FV,虽然F不变,但V是渐渐变小,所以其变化的,故D错误;故选:AC点评:考查由速度与时间的图象,来读取正确的信息:斜率表示加速度的大小,图象与时间所夹的面积表示位移的大小.注意阻拦索的张力与张力的合力是不同的.二、解答题(共4小题,满分47分)9.(7分)考点:探究影响摩擦力的大小的因素.专题:实验题;直线运动规律专题.分析:(1)游标卡尺主尺与游标尺的示数之和是游标卡尺的示数,(2)由速度公式求出物块经过A、B两点时的速度,然后由匀变速运动的速度位移公式求出物块的加速度;(3)由牛顿第二定律求出动摩擦因数.(4)由于实验设计造成的误差是系统误差,由于实验操作、读数等造成的误差属于偶然误差.解答:解:(1)由图(b)所示游标卡尺可知,主尺示数为0.9cm,游标尺示数为12×0.05mm=0.60mm=0.060cm,则游标卡尺示数为0.9cm+0.060cm=0.960cm.(2)物块经过A点时的速度v A=,物块经过B点时的速度v B=,物块做匀变速直线运动,由速度位移公式得:v B2﹣v A2=2as,加速度a=;(3)以M、m组成的系统为研究对象,由牛顿第二定律得:mg﹣μMg=(M+m),解得μ=;(4)如果细线没有调整到水平,由此引起的误差属于系统误差.故答案为:(1)0.960;(2);(3);(4)系统误差.点评:对游标卡尺进行读数时,要先确定游标尺的精度,主尺与游标尺的示数之和是游标卡尺示数,读数时视线要与刻度线垂直.10.(8分)考点:测定电源的电动势和内阻.专题:实验题;恒定电流专题.分析:(1)欧姆表使用前一定要欧姆调零;(2)红正黑负,电流从红表笔流入电表,从黑表笔流出电表;(3)欧姆表读数等于倍率乘以表盘读数,伏特表读数要估读;(4)欧姆表测量的是外电路的总电阻,由于滑动变阻器被短路,故欧姆表读数即为电压表阻值;(5)由于半偏电流是满偏电流的一半,故欧姆表的中值电阻等于内电阻;根据闭合电路欧姆定律求解电动势.解解:(1)欧姆表使用前一定要欧姆调零,即红黑表笔短接后,调节调零旋钮,是电流表满偏;答:(2)红正黑负,电流从红表笔流入电表,从黑表笔流出电表;电流从电压表正接线柱流入,故红表笔接触1;(3)欧姆表读数=倍率×表盘读数=1K×15.0Ω=15.0kΩ;电压表读数为3.60V;(4)由于滑动变阻器被短路,故欧姆表读数即为电压表阻值,为12.0KΩ;(5)欧姆表的中值电阻等于内电阻,故欧姆表1K档位的内电阻为15.0KΩ;根据闭合电路欧姆定律,电动势为:E=U+=;故答案为:(1)短接;(2)1;(3)15.0,3.50;(4)12.0;(5)9.0,15.0.点评:本题关键是明确实验原理,会使用欧姆表和电压表测量电阻和电压,同时能结合闭合电路欧姆定律灵活地列式分析.11.(13分)考点:牛顿第二定律.专题:压轴题;牛顿运动定律综合专题.分析:根据运动学公式求出t时刻A的纵坐标,B的横坐标,抓住橡皮筋的伸长是均匀的,在以后任一时刻R到A和B的距离之比都为2:1,根据相似三角形,结合运动学公式求出B的运动速度.解答:解:设B车的速度大小为v.如图,标记R的时刻t通过点K(l,l),此时A、B的位置分别为H、G.由运动学公式,H的纵坐标y A,G的横坐标x B分别为①x B=vt ②在开始运动时,R到A和B的距离之比为2:1,即OE:OF=2:1由于橡皮筋的伸长是均匀的,在以后任一时刻R到A和B的距离之比都为2:1.因此,在时刻t有HK:KG=2:1 ③由于△FGH∽△IGK,有HG:KG=x B:(x B﹣l)④HG:KG=(y A+l):(2l)⑤联立各式解得答:B运动速度的大小为.点评:解决本题的关键抓住橡皮筋的伸长是均匀的,在以后任一时刻R到A和B的距离之比都为2:1,结合运动学公式和数学几何进行求解.12.(19分)考点:导体切割磁感线时的感应电动势;力的合成与分解的运用;牛顿第二定律;电容.专题:压轴题;电磁感应中的力学问题.分析:(1)由法拉第电磁感应定律,求出感应电动势;再与相结合求出电荷量与速度的关系式.(2)由左手定则来确定安培力的方向,并求出安培力的大小;借助于、及牛顿第二定律来求出速度与时间的关系.解答:解:(1)设金属棒下滑的速度大小为v,则感应电动势为E=BLv,平行板电容器两极板之间的电势差为U=E,设此时电容器极板上积累的电荷量为Q,按定义有,联立可得,Q=CBLv(2)设金属棒的速度大小为v时,经历的时间为t,通过金属棒的电流为i,金属棒受到的磁场力方向沿导轨向上,大小为f1=BLi设在时间间隔(t,t+△t )内流经金属棒的电荷量为△Q,按定义有:△Q也是平行板电容器极板在时间间隔(t,t+△t )内增加的电荷量,由上式可得,△v为金属棒的速度变化量,按定义有:金属棒所受到的摩擦力方向沿导轨斜面向上,大小为:f2=μN,式中,N是金属棒对于导轨的正压力的大小,有N=mgcosθ金属棒在时刻t的加速度方向沿斜面向下,设其大小为a,根据牛顿第二定律有:mgsinθ﹣f1﹣f2=ma,联立上此式可得:由题意可知,金属棒做初速度为零的匀加速运动,t时刻金属棒的速度大小为答:(1)电容器极板上积累的电荷量与金属棒速度大小的关系为Q=CBLv;(2)金属棒的速度大小随时间变化的关系.点评:本题让学生理解左手定则、安培力的大小、法拉第电磁感应定律、牛顿第二定律、及运动学公式,并相互综合来求解.三.[物理--选修3-3](15分)13.(6分)考点:分子势能;物体的内能.专题:压轴题;内能及其变化专题.分析:分子力同时存在引力和斥力,分子间引力和斥力随分子间的距离的增大而减小,随分子间的距离的减小而增大,且斥力减小或增大比引力变化要快些;分子力做功等于分子势能的减小量.解答:解:A、两个相距较远的分子仅在分子力作用下由静止开始运动,直至不再靠近的过程中,当分子间距大于平衡间距时,分子力表现为引力;当分子间距小于平衡间距时,分子力表现为斥力;故A错误;B、两个相距较远的分子仅在分子力作用下由静止开始运动,直至不再靠近的过程中,分子力先是引力后是斥力,故先做正功后做负功,故B正确;C、只有分子力做功,先做正功后做负功,根据动能定理,动能先增加后减小,故C正确;D、分子力先做正功后做负功;分子力做功等于分子势能的减小量;故分子势能先减小后增加,故D错误;E、分子力做功等于分子势能的减小量,总功等于动能增加量,只有分子力做功,故分子势能和分子动能总量保持不变,故E正确;故选BCE.点评:本题考查了分子力、分子势能、分子力做功与分子势能变化关系,基础题.14.(9分)考点:理想气体的状态方程;封闭气体压强.专题:压轴题;理想气体状态方程专题.分析:(1)两活塞下方封闭的气体等压变化,利用盖吕萨克定律列式求解;(2)分别以两部分封闭气体,利用玻意耳定律列式求解.解答:解:(i)与恒温热源接触后,在K未打开时,右活塞不动,两活塞下方的气体经历等压过程,由盖吕•萨克定律得:①解得②(ii)由初始状态的力学平衡条件可知,左活塞的质量比右活塞的大.打开K后,左活塞必须升至气缸顶才能满足力学平衡条件.气缸顶部与外界接触,底部与恒温热源接触,两部分气体各自经历等温过程,设在活塞上方气体压强为p,由玻意耳定律得③对下方气体由玻意耳定律得:④联立③④式得解得不合题意,舍去.答:(i)恒温热源的温度(ii)重新达到平衡后左气缸中活塞上方气体的体积点评:本题涉及两部分气体状态变化问题,除了隔离研究两部分之外,关键是把握它们之间的联系,比如体积关系、温度关系及压强关系.四.[物理--选修3-4](15分)15.考点:波长、频率和波速的关系;横波的图象.专压轴题.。
2013北京高考理综物理部分解析13. 下列说法正确的是()A .液体中悬浮微粒的无规则运动称为布朗运动B .液体分子的无规则运动称为布朗运动C .物体从外界吸收热量,其内能一定增加D .物体对外界做功,其内能一定减少 考查选修3-3热学部分(固定题型):1,分子动理论(布朗运动是颗粒的无规则运动,反应了液体分子的无规则运动)2,热力学第一定律(改变内能有两种方式做功和热传递,必须控制变量才能说其中一种方式跟内能的关系)难度:★(概念题) 14. 如图所示,一束可见光射向半圆形玻璃砖的圆心O ,经折射后氛围两束单色光a 和b ,下列判断正确的是( )A .玻璃对a 光的折射率小于对b 光的折射率B .a 光的频率大于b 光的频率C .在真空中a 光的波长大于b 光的波长D .a 光光子能量小于b 光光子能量 考查选修3-4光学部分(固定题型): 1,折射率的相关概念:视实h sin 1sin sin 0h C V C r i n =====λλ 2,电磁波的公式:λγλ==Tv3,光子的能量:γh E = 难度:★(概念题)15. 一列沿x 轴正方向传播的简谐机械横波,波速为4/m s 。
某时刻波形如图所示,下列说法正确的是( )A .这列波的振幅是4cmB .这列波的周期为1sC .此时x=4m 处质点沿y 轴负方向运动D .此时x=4m 处质点的加速度为0考查选修3-4机械振动、机械波(固定题型): 1,机械波公式:λγλ==Tv ,-kx =回F2,波的传播方向跟质点的振动方向间的关系 难度:★(概念题)16. 倾角为a 、质量为M 的斜面体静止在水平桌面上,质量为m 的木块静止在斜面体上。
下列结论正确的是( )A .木块受到的摩擦力大小是mgcosaB .木块对斜面体的压力大小是mgsinaC .桌面对斜面体的摩擦力大小是mgsinacosaD .桌面对斜面体的支持力大小是(M+m )g 考查物理学思想(固定题型): 1,受力分析 2,整体隔离法难度:★★(概念+物理学思想)17. 如图,在磁感应强度为B 、方向垂直纸面向里的匀强磁场中,金属杆MN 在平行金属导轨上以速度v 向右匀速运动,MN 中产生的感应电动势为1E ;若磁感应强度增为2B ,其他条件不变,MN 中产生的感应电动势变为2E 。
则通过电阻R 的电流方向及1E 与2E 之比1E :2E 分别为 A .;2:1c a → B .;2:1a c → C .;1:2a c → D .;1:2c a →考查电学综合(选修3-2电磁感应) 1,动生电动势:BLV E = 2,右手定则。
难度:★(概念题)18. 某原子电离后其核外只有一个电子,若该电子在核的静电力作用下绕核做匀速圆周运动,那么电子运动( )A .半径越大,加速度越大B .半径越小,周期越大C .半径越大,角速度越小D .半径越小,线速度越小 考查万有引力(固定题型)牛二:22222214T mr mr r v m ma r q q k πω==== 与22222214T mr mr r v mma r m m G πω====对比迁移难度:★(概念+知识迁移)19. 在实验操作前应该对实验进行适当的分析。
研究平抛运动的实验装置示意图如图。
小球每次都从斜槽的同一位置无初速释放,并从斜槽末端水平抛出。
改变水平板的高度,就改变了小αmM R Bdba球在板上落点的位置,从而可描绘出小球的运动轨迹。
某同学设想小球先后三次做平抛,降水平板依次放在如图1、2、3的位置,且1与2的间距等于2与3的间距。
若三次实验中,小球从抛出点到落点的水平位移依次为123x x x 、、,机械能的变化量依次为123E E E ∆∆∆、、,忽略空气阻力的影响,下列分析正确的是 A .2132123,x x x x E E E -=-∆=∆=∆ B .2132123,x x x x E E E ->-∆=∆=∆ C .2132123,x x x x E E E ->-∆>∆>∆ D .2132123,x x x x E E E -<-∆<∆<∆ 考查力学综合(平抛实验为基础): 1,运动的独立性 2,平抛运动相关公式 3,机械能守恒难度:★★20. 以往我们认识的光电效应是单光子光电效应。
若一个电子在极短时间内只能吸收到一个光子而从金属表面逸出。
强激光的出现丰富了人们对于光电效应的认识,用强激光照射金属,由于其光子密度较大,一个电子在极短时间内吸收多个光子成为可能,从而形成多光子光电效应,这已经被实验证实。
光电效应实验装置示意如图。
用频率为v 的普通光源照射阴极K ,则发生了光电效应;此时,若加上反向电压U ,即将阴极K 接电源正极,阳极A 接电源负极,在KA 之间就形成了使光电子减速的电场。
逐渐增大U ,光电流会逐渐减小;当光电流恰好减小到零时,所加反向电压U 可能是下列的(其中W 为逸出功,h 为普朗克常量,e 为电子电量)A .hv W Ue e =- B .2hv W U e e =- C .2U hv W =- D .52hv W U e e=- 考查选修3-5近代物理部分(固定题型): 1,新信息下:K E W Nh +=γ(N=2,3,4.......) 2,动能定理:K E Uq =难度:★★(概念+新信息)21、某同学通过实验测定一个阻值约为5Ω的电阻x R 的阻值。
(变相考查伏安特性曲线) (1)现有电源(4V ,内阻可不计)、滑动变阻器(050Ω-,额定电流2A ),开关和导线若干,以及下列电表:A 、电流表(03A -,内阻约0.025Ω)B 、电流表(00.6A -,内阻约0.125Ω)C 、电压表(03V -,内阻约3k Ω)D 、电压表(015V -,内阻约15k Ω)为了减小测量误差,在实验中,电流表应选用 ,电压表应选用 (选填器材前的字母)。
实验电路应采用图1中的 (填甲或乙)考查知识点:1,选仪器原则:安全(有控制电路一般不用考虑)、准确(仪器要用到量程的32及以上) 2,内接法与外接法的选择:大内—V A x R R R >小外—V A x R R R < 难度系数:★(2)图2是测量x R 的实验器材实物图,图中已连接了部分导线,请根据在(1)的电路图,补充完成图2中实物间的连线。
考查知识点:根据电路图画实物图 难度系数:★(3)接通开关,改变滑动变阻器滑片P 的位置,并记录对应的电流表示数I ,电压表示数U ,某次电表示数如图3所示,可得该电阻的测量值Ωx U R I==(保留两位有效数字)考查知识点:仪器读数 难度系数:★(4)若在(1)问中选用甲电路,产生误差的主要原因是 ;若在(1)问中选用甲电路,产生误差的主要原因是 ;(选填选项前的字母) A 、电流表测量值小于流经x R 的电流值 B 、电流表测量值大于流经x R 的电流值 C 、电压表测量值小于流经x R 的电压值 D 、电压表测量值大于流经x R 的电压值 考查知识点:误差分析 难度系数:★(5)在不损坏电表的前提下,将滑动变阻器滑片P 从一端滑向另一端,随滑片P 移动距离x 的增加,被测电阻x R 两端的电压U 也随之增加,下列反映U x -关系的示意图中正确的是考查知识点:根据关系式画图像)(x L k R ER u x x-+=难度系数:★★★(本题对数学知识要求较高)22.如图所示,两平行金属板间距为d ,电势差为U ,板间电场可视为匀强电场,金属板下方有一磁感应强度为B 的匀强磁场。
带电量为+q 、质量为m 的粒子,由静止开始从正极板出发,经电场加速后射出,并进入磁场做匀速圆周运动。
忽略重力的影响,求: (1)匀强电场场强E 的大小:(2)粒子从电场射出时速度v 的大小:(3)粒子在磁场中做匀速圆周运动的半径R 。
BO-++q m考查知识点:质谱仪变形 (1)dU E =(2)由 221mv Uq = 得:m Uq v 2=(3)由R mv Bqv 2=得:R=qUm B21难度系数:★23.蹦极比赛分成预备运动和比赛动作两个阶段,最初,运动员静止站在蹦床上,在预备运动阶段,他经过若干次蹦跳,逐渐增加上升高度,最终达到完成比赛动作所需的高度,此后,进入比赛动作阶段。
把蹦床简化为一个竖直放置的轻弹簧,弹力大小F=kx(x 为床面下沉的距离,k 为常量)。
质量m=50kg 的运动员静止站在蹦床上,床面下沉x=0.10m;在预备运动中,假定运动员所做的总功W 全部用于增加其机械能,在比赛动作中,把该运动员视作质点,起每次离开床面做竖直上抛运动的腾空时间均为△=0.2s ,设运动员每次落下使床面压缩的最大深度为x 1,取重力加速度g=10m/s 2,忽略空气阻力的影响。
(1)求常量k,并在图中画出弹力F 随x 变化的示意图(2求在比赛动作中,运动员离开床面后上升的最大高度h m(3)借助F-x 图像可以确定弹力做功的规律,在次基础上,求x 1和W 的值。
XOF考查知识点:力的平衡、胡克定律、运动学公式、动能定理、直接法与间接法的等效转化、估算、图像法 (1)由0kx mg = 得:(2)由 2121gt h m =21t t ∆=得m h m 5=(3)由动能定理得 0)(1=-+W x h mg m 由图像知 2121kx W = 解得m 1.11≈x j W 3025≈ 难度系数:★★★24.对于同一个物理问题,常常可以从宏观和微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质。
(1)一段横截面积为S ,长为l 的直导线,单位体积内有n 个自由电子,电子质量为e ,该导线通有电流时,假设自由电子定向移动的速率均为v (a )求导线中的电流I(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F 安,导线内自由电子所受洛伦兹力大小的总和为F ,推到F 安=F(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量,为简化问题,我们假定:粒子大小可以忽略,其速率均为v,且与器壁各面碰撞的机会均等,与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变,利用所学力学知识,导出容器壁单位面积所受粒子压力f 与m,n,和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)考查知识点:电流的定义式、安培力的推导、动量定理、情景建模 1)a 、nevs ttshe v tq I =∆∆=∆=b 、nevs BL BIL F ==安 BLnesv SLnbev NBev F === 则:F F =安(2)设某侧面面积为S,取单位时间t ∆,向该面运动的粒子的总质量为M,粒子对该面的总压力为F 则tnm Sv M ∆=61 ① F=fs ② 由动量定理得: Mv t F 2=∆ ③ 解①②③得:231nmv f =难度系数:★★★★2013年北京高考的新特点一,浓墨重彩的考查主干知识:三过程全亮相:动能定理、动量定理、牛顿第二定律;七运动五登场:匀速直线运动、匀变速直线运动、变加速直线运动、平抛运动、匀速圆周运动 七力六上阵:重力、弹力、摩擦力、安培力、洛伦兹力、电场力 三状态有其二:平衡态、非平衡态七对象有其三:质点、点电荷、通电直导线二,不遗余力的考查主干知识的理解及运用:18题:知识迁移之后应用万有引力题型19题:运用平抛运动独立性创造性的解题20题:新信息下运用过往知识24题:电流微观表达式的推导、安培力的推导、情景建模运用动量三,加强对物理学思想、数学思想、思维能力的考查:16题:整体隔离18题:知识迁移19题:独立性20题:知识迁移21题:图像法23题:等效转化、图像法24题:情景建模四,淡化对多研究对象多过程问题的考查考查学生综合分析问题能力的压轴题再一次退出了北京高考舞台。