我高考椭圆知识点总结
- 格式:doc
- 大小:602.50 KB
- 文档页数:11
椭圆高考知识点总结椭圆作为高考数学中的一个重要知识点,是极坐标和二次曲线的重要组成部分。
椭圆具有丰富的性质和应用,掌握椭圆的基本概念和相关公式对于解题非常重要。
本文将对椭圆的知识点进行总结和归纳,帮助大家更好地理解和掌握椭圆的相关内容。
一、椭圆的基本概念椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点的轨迹,记为E,F1F2的中点为圆心O,直线F1F2的长度为2c,那么我们有以下的基本概念:1. 长轴和短轴:椭圆的两个焦点F1和F2之间的距离2a称为椭圆的长轴,过圆心O的直线中长轴的两倍称为椭圆的短轴。
2. 首焦距和垂直焦距:首焦距也就是焦点到椭圆上一点的距离,垂直焦距就是焦点到椭圆的一条切线的距离。
3. 离心率:椭圆的离心率定义为离心距与长轴的比值,记为e。
离心率e的范围是0<e<1,当e=0时,椭圆退化为圆。
二、椭圆的方程椭圆的方程是椭圆上的一点(x, y)满足的条件,一般形式为:((x-h)²/a²) + ((y-k)²/b²) = 1其中,(h, k)为椭圆的圆心坐标。
三、椭圆的性质椭圆有许多重要的性质,包括以下几个方面:1. 对称性:椭圆具有两个互相关于长轴和短轴对称的轴线,这两个轴线称为椭圆的对称轴。
2. 切线性质:椭圆上任意一点处的切线斜率等于这点椭圆的切线的斜率。
3. 焦点性质:对于椭圆上的任意一点P(x, y),有PF1 + PF2 = 2a,其中PF1和PF2分别为点P到焦点F1和F2的距离。
4. 弦长性质:椭圆上两点之间的弦和对应的准线之积等于常数4a²。
5. 曲线方程的性质:椭圆的标准方程为((x-h)²/a²) + ((y-k)²/b²) = 1,等于1的点表示椭圆上的点,大于1和小于1的点在椭圆的内部和外部。
四、椭圆的常见问题在高考试题中,椭圆常常与坐标系、焦点坐标、离心率、方程等形式相关,考察的重点主要有以下几个方面:1. 椭圆的焦点坐标和离心率的确定;2. 椭圆的方程参数的确定,如长轴、短轴或焦点的坐标;3. 椭圆的对称轴、矩形、标准方程的应用和转化;4. 椭圆的参数方程与极坐标方程的变换;5. 椭圆与抛物线、双曲线等其他二次曲线的关系。
高中椭圆知识点归纳一、椭圆的定义1. 椭圆的数学定义- 椭圆是平面上所有到两个固定点(焦点)距离之和为常数的点的集合。
- 椭圆的标准方程。
2. 椭圆的基本要素- 焦点(F1, F2)- 长轴(2a)- 短轴(2b)- 焦距(2c)- 离心率(e)二、椭圆的性质1. 焦点性质- 焦点位于主轴上。
- 焦点到椭圆上任意一点的距离之和是常数,等于长轴的长度。
2. 离心率- 离心率是衡量椭圆形状的一个参数。
- 离心率的计算公式:e = c/a。
3. 椭圆的对称性- 椭圆关于长轴和短轴具有对称性。
三、椭圆的几何关系1. 长轴和短轴的关系- b^2 = a^2 - c^2。
2. 焦点与椭圆的关系- 焦点到椭圆上任意一点的距离之和等于长轴的长度。
四、椭圆的方程1. 标准方程- 椭圆的标准方程形式为:(x^2/a^2) + (y^2/b^2) = 1。
2. 椭圆的参数方程- 参数方程的形式:x = a * cos(t), y = b * sin(t),其中t为参数。
五、椭圆的应用1. 天文学- 行星轨道的描述。
2. 工程学- 轮轴和凸轮设计。
3. 物理学- 电场和磁场中的某些路径。
六、椭圆的图形绘制1. 绘制方法- 使用绘图工具(如圆规)绘制椭圆。
2. 椭圆的变换- 平移和旋转椭圆。
七、椭圆与圆的关系1. 特殊情形- 当离心率为0时,椭圆变为圆。
- 当两个焦点重合时,椭圆退化为抛物线。
八、练习题1. 椭圆方程的求解。
2. 焦点性质的应用。
3. 椭圆的几何关系计算。
以上是关于高中椭圆知识点的归纳文档的大纲和示例内容。
在实际编写文档时,每个部分都应包含详细的解释、公式推导、图示和实例。
此外,文档应使用专业的排版和格式,确保清晰易读,并且方便编辑和打印。
高中数学椭圆知识点总结第一篇:椭圆的定义及基本性质一、椭圆的定义椭圆是指平面内到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
两点F1和F2称为椭圆的焦点,中间的线段称为椭圆的长轴,垂直于长轴的线段称为椭圆的短轴,长轴的一半a称为椭圆的半长轴,短轴的一半b称为椭圆的半短轴。
二、椭圆的基本性质1. 椭圆上的任意一点P到两焦点F1和F2的距离之和等于椭圆的长轴长度2a。
2. 椭圆上的任意一点P到两焦点F1和F2的距离之差等于椭圆的短轴长度2b。
3. 椭圆上与长轴平行的直线称为椭圆的次中心轴,垂直于长轴的直线称为椭圆的主中心轴。
4. 椭圆的离心率e等于焦点距离除以长轴长度,即e=√(a²-b²)/a。
5. 椭圆的面积为πab。
6. 椭圆的周长无解析式,但可以通过积分求解。
7. 椭圆对称性:关于长轴、短轴、次中心轴和主中心轴都有对称轴。
三、椭圆的求解椭圆的标准方程为(x²/a²)+(y²/b²)=1,其中a和b 分别为半长轴和半短轴的长度。
椭圆的一般方程为Ax²+Bxy+Cy²+Dx+Ey+F=0,其中A、B、C、D、E、F为常数。
常用的求解方法有以下几种:1. 椭圆的标准方程变形法。
通过移项、变形等方法将一般方程转化为标准方程。
2. 半坐标轴法。
通过平移和旋转椭圆,使其长轴与坐标轴平行或垂直。
3. 矩阵法。
通过矩阵运算,将一般方程转化为标准方程。
四、椭圆的应用椭圆在生活和工程中有广泛的应用。
例如,在太阳系中行星的运动轨迹、卫星的轨道以及天体的椭球形等都具有椭圆的特征。
此外,在建筑设计中,椭圆形的建筑物也十分常见,如伦敦的温布利球场和巴黎的凯旋门等。
椭圆也广泛应用于牙轮、机械手、调速器等机械制造中。
椭圆知识点一、椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.二、椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有)0(>>b a 和222b ac -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c -三、椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a 说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范 围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
(3)顶 点:① 椭圆的对称轴与椭圆的交点称为椭圆的顶点。
② 椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B③ 线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。
高三椭圆知识点总结1. 椭圆的定义椭圆是平面上的一个点集,它的定义是:给定一个点 F1 和一个实数 e(e<1),平面上到 F1 的距离与到另一定点 F2 的距离的和是一个常数 2a ,即:PF1 + PF2 = 2a(a>0)。
这样的点集就构成了一个椭圆。
2. 椭圆的性质(1)椭圆的对称性椭圆具有两条互相垂直的对称轴,称为长轴和短轴。
椭圆的中心既是长轴的中点,也是短轴的中点。
椭圆具有中心对称性,即椭圆上的任意点关于中心对称。
(2)焦点和直径在椭圆上存在两个特殊的点 F1 和 F2,它们被称为焦点。
椭圆上的所有点到焦点的距离和为定值 2a。
椭圆的长轴称为椭圆的主轴,短轴称为椭圆的次轴。
椭圆的主轴的两端点被称为端点,也被称为椭圆的顶点。
(3)椭圆的离心率椭圆的离心率 e 定义为焦点 F1 到椭圆中心 O 的距离与椭圆的底边长 b 的比值,即 e = OF1 / b。
离心率的取值范围为 0<e<1,当 e=0 时,椭圆退化为一个圆;当e→1 时,椭圆逐渐趋近于一个狭长的形状。
(4)椭圆的方程椭圆的标准方程为 x^2 / a^2 + y^2 / b^2 = 1 ,其中 a 和 b 分别是椭圆的长轴和短轴的长度。
椭圆的方程也可以表示为其它形式,如标准方程的极坐标形式、参数方程、直角坐标系下的一般形式等。
3. 椭圆的相关定理(1)椭圆的焦点定理椭圆上任意一点 P 到椭圆的两个焦点 F1 和 F2 的距离之和等于常数 2a,即 PF1 + PF2 = 2a。
(2)椭圆的切线定理椭圆的切线与椭圆的两个焦点之间的距离之和等于椭圆的两条焦轴的长度,即 PT1 + PT2= 2a;PT1 和 PT2 分别为切线的两个切点到椭圆两焦点的距离。
(3)椭圆的两条辅助圆定理椭圆与其两个辅助圆相交于同一条直线上,椭圆的两个焦点为圆心,椭圆的长轴为直径的圆被称为椭圆的第一辅助圆,椭圆的两个顶点为圆心,椭圆的短轴为直径的圆被称为椭圆的第二辅助圆。
第一部分 椭圆相关知识点讲解二.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外⇔2200221x y a b+>; (2)点00(,)P x y 在椭圆上⇔220220by a x +=1; (3)点00(,)P x y 在椭圆内⇔2200221x y a b+< 三.椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为 )0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。
a 和b 分别叫做椭圆的长半轴长和短半轴长。
三.直线与椭圆的位置关系:(1)相交:0∆>⇔直线与椭圆相交;(2)相切:0∆=⇔直线与椭圆相切;(3)相离:0∆<⇔直线与椭圆相离; 四.椭圆12222=+b y a x 与 12222=+bx a y )0(>>b a 的区别和联系 6.弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则AB =2121k x x +-,若12,y y 分别为A 、B 的纵坐标,则AB =21211y y k-+。
高考椭圆的知识点高考数学中关于椭圆的知识点主要包括以下几个方面:1、椭圆的定义:椭圆是平面内到两个固定点(焦点)的距离之和为定值(大于两焦点间距离)的所有点的轨迹。
2、椭圆的标准方程:当焦点在x轴上时,标准方程为:(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(a > b > 0),(h, k)是椭圆中心的坐标。
当焦点在y轴上时,标准方程为:(y-k)^2/a^2 + (x-h)^2/b^2 = 1,同样a>b>0,(h, k)为椭圆中心坐标。
3、参数形式:椭圆还可以用参数方程表示,例如:x = a * cosθ + h,y = b * sinθ + k。
4、基本性质:长半轴a和短半轴b决定了椭圆的形状和大小,离心率e = c/a(c为焦距的一半),范围在0 < e < 1。
椭圆的面积公式S = πab。
焦点与长轴、短轴的关系:焦距|F1F2| = 2c,长轴长2a,短轴长2b,有关系式a^2 = b^2 + c^2。
5、几何性质:焦点弦性质、通径(过焦点垂直于长轴的弦)、共轭直径等。
与圆锥曲线相关的光学性质,如反射定律等。
6、解题方法:利用定义求解有关焦点、焦半径等问题。
根据给定条件确定椭圆的标准方程,通常采用待定系数法。
计算椭圆上的点与焦点或准线的距离,以及运用离心率解决相关问题。
7、离心率的应用:离心率常作为约束条件出现在题目中,用来求解椭圆方程或者判断椭圆形状。
8、交点问题:椭圆与其他图形(直线、圆、抛物线等)相交时求交点坐标及相关长度、面积计算。
高考中的椭圆题目类型多样,包括但不限于以上知识点,要求考生能够灵活运用椭圆的基本概念、性质及方程来解答不同难度的问题。
椭圆高考知识点总结一、椭圆的定义和基本性质1. 椭圆的定义椭圆的定义有多种表述方式,其中一种常见的定义是:椭圆是平面上到两个定点F1、F2的距离之和等于定常长2a(a>0)的点P的轨迹。
称F1、F2为椭圆的焦点,2a为椭圆的长轴。
即椭圆定义为$|PF_1|+|PF_2|=2a$。
根据这个定义,我们可以推导出椭圆的标准方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$2a$和$2b$分别为椭圆的长轴和短轴。
椭圆的离心率e满足$0<e<1$。
2. 椭圆的基本性质(1)主轴和短轴: 通过椭圆两个焦点连线的中垂线叫做长轴,椭圆的两个焦点所在直线叫做长轴;长轴的两端点叫做椭圆的顶点。
垂直于长轴的直线段叫做短轴。
(2)顶点和焦点:椭圆的两个端点叫做顶点,两个焦点分别叫做F1和F2。
(3)公式中的取值范围:椭圆标准方程中的参数a和b满足$a>b>0$。
(4)对称性:椭圆具有镜面对称性。
(5)内外离心率:椭圆的内离心率e1满足:$0<e_1<1$,外离心率e2满足:$1<e_2$。
3. 椭圆的离散表示:根据离心率e和焦点F1、F2获知椭圆的表达式$|PF_1|+|PF_2|=2a$表示椭圆的定点,即点到两个定点的距离之和等于一个定常长2a。
其中a是椭圆的长轴,F1、F2是焦点。
这个定义可以描述椭圆的形状和性质。
二、椭圆的方程和坐标变换1. 椭圆标准方程:椭圆的标准方程是$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。
其中a和b分别为椭圆的长半轴和短半轴。
2. 椭圆的一般方程:如果椭圆的长轴不在x、y轴上,可以通过坐标变换将椭圆的标准方程转化为一般方程$Ax^2+By^2+Cx+Dy+E=0$。
3. 椭圆的参数方程:椭圆的参数方程为$x=acos\theta$,$y=bsin\theta$,其中$\theta$是参数,$-\pi<\theta<\pi$。
高三知识点总结椭圆一、椭圆的定义椭圆是平面上一个动点到两个不同的固定点的距离之和等于常数的轨迹。
这两个固定点分别称为焦点,这个常数称为椭圆的半长轴的长度。
椭圆的定义可以用数学表达式表示为:椭圆的标准方程为:$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a>b>0)$其中,a和b分别为椭圆的半长轴和半短轴的长度,且椭圆的长轴在x轴上,短轴在y轴上。
二、椭圆的性质1. 焦点性质:椭圆定义的两个焦点到椭圆曲线上的任意一点的距离之和等于常数2a。
2. 直径性质:椭圆的任意一条直径上任意一点到焦点的距离与到准位线的距离之和等于直径的长。
3. 对称性质:椭圆具有关于x轴、y轴和原点对称的性质。
4. 离心率:椭圆的离心率为$e = \sqrt{1-\frac{b^2}{a^2}}$,它描述了椭圆的扁平程度,离心率越接近于0,椭圆越圆。
三、椭圆的参数方程椭圆的参数方程可以表示为:$x=a \cos t$$y=b \sin t$其中,t为参数,a和b分别为椭圆的半长轴和半短轴的长度。
四、椭圆的焦点与准位线椭圆的焦点和准位线是椭圆的重要性质之一,它们在椭圆的图形、方程和计算中起着重要作用。
1. 焦点的坐标:椭圆的焦点坐标为$(\pm \sqrt{a^2 - b^2},0)$2. 准位线方程:椭圆的准位线方程为$x=\pm a \epsilon$,其中ε为椭圆的离心率。
五、椭圆的相关定理1. 椭圆的直径定理:椭圆的所有直径的长度之和为常数2a。
2. 椭圆的离心率定理:椭圆的离心率e的平方等于1减去b平方除以a平方。
六、椭圆的应用椭圆在生活和工程领域中有着广泛的应用,例如:1. 太阳系中行星的轨迹一般为椭圆,椭圆的性质可以帮助我们更好地理解天体运动规律。
2. 椭圆在工程中的应用:例如建筑、机械、航天等领域都会涉及到椭圆的应用,例如在建筑设计中椭圆形的圆顶结构、在机械制造中椭圆齿轮的设计等等。
高中椭圆知识点总结大全一、椭圆的定义椭圆可以通过一个固定点F(称为焦点)和一个固定线段2a(称为长轴)来定义:对于平面上的任意一点P到F的距离加上到线段上两个端点的距离之和恒为常数2a。
即对于平面上任意一点P(x, y),有PF1 + PF2 = 2a,其中PF1和PF2分别是点P到焦点F1和F2的距离。
椭圆的数学定义为:椭圆是平面上到两个给定点F1和F2的距离之和为定值2a的所有点P(x, y)的集合。
2a称为椭圆的主轴长。
椭圆的中点O为原点,主轴与x轴平行。
a称为半长轴,b称为半短轴。
椭圆的方程通常表示为(x^2)/a^2 + (y^2)/b^2 = 1,当a=b时,椭圆的长轴和短轴相等,称为圆。
二、椭圆的参数方程椭圆还可以通过参数方程来描述。
椭圆的参数方程为x = a*cos(t),y = b*sin(t),其中t为参数,a和b分别为半长轴和半短轴。
参数方程可以将椭圆的轨迹表示为一个参数的函数,很方便进行曲线的分析和运算。
三、椭圆的焦点与离心率椭圆有两个焦点F1和F2,它们在长轴上与中点O等距离。
椭圆的离心率e定义为焦距2c与长轴2a的比值,即e = c/a。
e的取值范围为0<e<1,当e=0时,椭圆为圆,当e逐渐增大时,椭圆的形状变得更加扁平。
四、椭圆的方程与性质1. 椭圆的标准方程椭圆的标准方程为(x^2)/a^2 + (y^2)/b^2 = 1,其中a和b分别为半长轴和半短轴的长度。
一般来说,可以通过椭圆的焦点和长短轴长短求出标准方程。
2. 椭圆的性质(1)椭圆的对称轴:椭圆相对于x轴、y轴或坐标原点都是对称的。
(2)椭圆的离心率:椭圆的形状特征由离心率e决定,e越接近于0,椭圆的形状越接近于圆。
(3)椭圆的焦点与直径:椭圆有两个焦点F1和F2,它们在长轴上与中点O等距离。
它的两个焦点连成的直线叫作椭圆的长轴,而过椭圆中点与垂直于长轴的直线的交点叫作椭圆的短轴。
长轴的长度等于2a,短轴的长度等于2b。
椭圆知识点一、椭圆的定义平面一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.二、椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有)0(>>b a 和222b ac -=;3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c -三、椭圆的简单几何性质 椭圆:12222=+b y a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a 说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形,所以椭圆上点的坐标满足a x ≤,b y ≤。
(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。
a 和b 分别叫做椭圆的长半轴长和短半轴长。
(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作aca c e ==22。
②因为)0(>>c a ,所以e 的取值围是)10(<<e 。
e 越接近1,则c 就越接近a ,从而22c a b -=越小,因此椭圆越扁;反之,e 越接近于0,c 就越接近0,从而b 越接近于a ,这时椭圆就越接近于圆。
当且仅当b a =时,0=c ,这时两个焦点重合,图形变为圆,方程为a y x =+22。
注:椭圆12222=+by a x 的图像中线段的几何特征(如右图):(1)122PF PF a +=;e PM PF PM PF ==2211;(椭圆的第二定义)2122a PM PM c+=;(2)12BF BF a ==;12OF OF c ==;12AB A B ==3)1122A F A F a c ==-;1221A F A F a c ==+;1a c PF a c -≤≤+;四、椭圆12222=+b y a x 与12222=+bx a y )0(>>b a 的区别和联系注:关于椭圆12222=+b y a x 与12222=+bx a y )0(>>b a 的说明:相同点:形状、大小都相同;参数间的关系都有)0(>>b a 和)10(<<=e ace ,222c b a +=; 不同点:两种椭圆的位置不同;它们的焦点坐标也不相同。
规律方法:1、如何确定椭圆的标准方程?任何椭圆都有一个对称中心,两条对称轴。
当且仅当椭圆的对称中心在坐标原点,对称轴是坐标轴,椭圆的方程才是标准方程形式。
此时,椭圆焦点在坐标轴上。
确定一个椭圆的标准方程需要三个条件:⎧⎪⎨⎪⎩两个定形条件,一个定位条件焦点坐标,由焦点坐标的形式确定标准方程的类型。
2、椭圆标准方程中的三个量c b a ,,的几何意义 椭圆标准方程中,c b a ,,三个量的大小与坐标系无关,是由椭圆本身的形状大小所确定的。
分别表示椭圆的长半轴长、短半轴长和半焦距长,均为正数,且三个量的大小关系为:)0(>>b a ,)0(>>c a ,且)(222c b a +=。
可借助右图理解记忆: 显然:c b a ,,恰构成一个直角三角形的三条边,其中a 是斜边,b 、c 为两条直角边。
3、如何由椭圆标准方程判断焦点位置椭圆的焦点总在长轴上,因此已知标准方程,判断焦点位置的方法是:看2x ,2y 的分母的大小,哪个分母大,焦点就在哪个坐标轴上。
4、方程均不为零)C B A C By Ax ,,(22=+是表示椭圆的条件方程C By Ax =+22可化为122=+CBy C Ax ,即122=+BC By A C x ,所以只有A 、B 、C 同号,且A ≠B 时,方程表示椭圆。
当B C A C >时,椭圆的焦点在x 轴上;当BCA C <时,椭圆的焦点在y 轴上。
5、求椭圆标准方程的常用方法:①待定系数法:由已知条件确定焦点的位置,从而确定椭圆方程的类型,设出标准方程,再由条件确定方程中的参数c b a ,,的值。
其主要步骤是“先定型,再定量”;②定义法:由已知条件判断出动点的轨迹是什么图形,然后再根据定义确定方程。
6.共焦点的椭圆标准方程形式上的差异共焦点,则c 相同。
与椭圆12222=+by a x )0(>>b a 共焦点的椭圆方程可设为12222=+++mb y m a x )(2b m ->,此类问题常用待定系数法求解。
7.判断曲线关于x 轴、y 轴、原点对称的依据:①若把曲线方程中的x 换成x -,方程不变,则曲线关于y 轴对称;②若把曲线方程中的y 换成y -,方程不变,则曲线关于x 轴对称;③若把曲线方程中的x 、y 同时换成x -、y -,方程不变,则曲线关于原点对称。
8.如何求解与焦点三角形△PF 1F 2(P 为椭圆上的点)有关的计算问题?思路分析:与焦点三角形△PF 1F 2有关的计算问题时,常考虑到用椭圆的定义及余弦定理(或勾股定理)、三角形面积公式2121sin 2121PF F PF PF S F PF ∠⨯⨯=∆相结合的方法进行计算解题。
将有关线段2121F F PF PF 、、,有关角21PF F ∠ (21PF F ∠≤21BF F ∠)结合起来,建立21PF PF +、21PF PF ⨯之间的关系.焦点三角形面积公式:12212tan 2PF F F PF S b ∆∠⎛⎫=⋅⎪⎝⎭(P 为椭圆上任一一点) 9.如何计算椭圆的扁圆程度与离心率的关系?长轴与短轴的长短关系决定椭圆形状的变化。
离心率)10(<<=e ace ,因为222b a c -=,0>>c a ,用b a 、表示为)10()(12<<-=e ab e 。
显然:当a b越小时,)10(<<e e 越大,椭圆形状越扁; 当ab越大,)10(<<e e 越小,椭圆形状越趋近于圆。
1、椭圆的定义(1)平面与两个定点F 1,F 2的距离的和等于常数(大于|F 1 F 2|)的点的轨迹叫做椭圆,这两个定点叫椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
(2)一动点到定点的距离和它到一条定直线的距离的比是一个)1,0(常数e ,那么这个点的轨迹叫做椭圆其中定点叫做焦点,定直线叫做准线,常数e 就是离心率2、椭圆的标准方程:()()222222221010x y y x a b a b a b a b+=>>+=>>或3、椭圆的参数方程)(sin cos 为参数ϕϕϕ⎩⎨⎧==b y a x4、离心率:椭圆焦距与长轴长之比a c =⇒e =<<e 5、椭圆的准线方程:左准线c a x l 21:-= 右准线ca x l 22:=(二)焦点在x 轴上的椭圆的焦半径公式:1200MF a ex a e M x F ⎧+⎪⎨-⎪⎩==( 其中21,F F 分别是椭圆的左右焦点)焦点在y 轴上的椭圆的焦半径公式:⎩⎨⎧-=+=0201ey a MF ey a MF ( 其中21,F F 分别是椭圆的下上焦点)(三)1、弦长公式:若直线b kx y l +=:与圆锥曲线相交与A 、B 两点,),(),,2211y x B y x A (则:弦长221221)()(y y x x AB -+-=221221)()(kx kx x x -+-=2121x x k -+=2122124)(1x x x x k -++=例1. 已知椭圆2241x y +=及直线y =x +m 。
(1)当直线和椭圆有公共点时,数m 的取值围; (2)求被椭圆截得的最长弦所在的直线的方程。
2、已知弦AB 的中点,研究AB 的斜率和方程AB 是椭圆x 2a 2+y 2b2=1(a >b >0)的一条弦,中点M 坐标为(x 0,y 0),则AB 的斜率为-b 2x 0a 2y 0. 运用点差法求AB 的斜率,设A (x 1,y 1),B (x 2,y 2).A 、B 都在椭圆上,∴⎩⎪⎨⎪⎧x 1 2a 2+y 12b 2=1,x 2 2a 2+y 22b 2=1,两式相减得: x 1 2-x 2 2a 2+y 1 2-y 22b 2=0,∴x 1-x 2x 1+x 2a2+y 1-y 2y 1+y 2b2=0,即:y 1-y 2x 1-x 2=-b 2x 1+x 2a 2y 1+y 2=-b 2x 0a 2y 0.故:k AB =-b 2x 0a 2y 0.例2、过椭圆141622=+y x 一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。
(四)1、已知椭圆C :1162522=+y x 有一点A (2,1),F 是椭圆C 的左焦点,P 为椭圆C 上的动点. 求:|PA |+35|PF |的最小值。
2、已知椭圆1162522=+y x 有一点A (2,1),F 为椭圆的左焦点,P 是椭圆上动点. 求:|PA |+|PF |的最大值与最小值。
3、已知椭圆1162522=+y x 外一点A (5,6),l 为椭圆的左准线,P 为椭圆上动点,点P 到l 的距离为d ,求:|PA |+d 53的最小值。