发电机同期系统共33页
- 格式:ppt
- 大小:3.76 MB
- 文档页数:33
第十四章发电机的同期系统第一节同期系统综述发电厂中,将发电机组投入运行的操作是经常进行的操作。
在系统正常运行时,随着负荷的增加,要求备用发电机迅速投入电力系统,以满足用户用电量增长的要求;在系统发生事故时,会失去部分电源,也要求将备用机组快速投入电力系统以制止系统的频率崩溃。
这些情况均要对发电机进行同步操作,将发电机组安全可靠、准确快速地投人系统参加并列运行。
同期操作可以实现单台发电机与电力系统并列运行,也可解决系统中分开运行的线路断路器正确投入的问题,实现系统并列运行,从而提高电力系统的稳定性及线路负荷的合理、经济分配。
同期(也称同步)操作是发电厂、变电所中重要的操作。
对同期操作的基本要求是:(1)合闸瞬问对发电机的冲击电流和冲击力矩不超过允许值。
(2)并列后发电机能迅速被拉入同期。
同步方法分为准同期法和自同期法。
准同期方式是将待并发电机在投入系统前通过调速器调节原动机转速,使发电机转速接近同期转速,通过励磁调整装置调节发电机励磁电流,使发电机端电压接近系统电压,在频差及压差满足给定条件时,选择在零相角差到来前的适当时刻向断路器发出合闸脉冲,在相角差为零时完成并列操作。
自同期并列的操作是将未加励磁电流的发电机的转速升到接近额定转速,首先投入断路器,然后立即合上励磁开关供给励磁电流,随即将发电机拉入同步。
准同期方式断路器合闸瞬间引起的冲击电流小于允许值,发电机能迅速被拉入同步。
自同期并列方式的主要优点是操作简单,速度快。
在系统发生故障、频率波动较大时,发电机组仍能并列操作并迅速投入电网运行,可避免故障扩大,有利于系统事故处理,但因合闸瞬间发电机定子吸收大量无功功率,导致合闸瞬间系统电压下降较多。
因此,规程规定:“在正常运行情况下,同期发电机的并列应采用准同期方式;在故障情况下,水轮发电机可以采用自同期方式。
”本章重点讨论自动准同期方式及其自动准同期装置。
同期操作是电力系统的一项经常性的操作,它关系到发电机和电力系统的安全,应充分认识它的重要性。
同期系统讲义万建福一、什么叫同期:同步发电机投入电力系统并列运行的操作,或者,电力系统解列的两部分进行并列运行的操作称为并列或同期操作。
实践证明,在发电机并列瞬间,往往伴随有冲击电流和冲击功率。
这些冲击,将引起系统电压瞬间下降。
如果并列操作不当,冲击电流过大,还可能引起机组大轴发生机械损伤,或者引起机组绕组电气损伤。
为了避免并列操作不当而影响电力系统的安全运行,发电机的同期并列,应满足下列两个基本要求:(1)发电机投入瞬间冲击电流应尽可能小,其最大值不应超过允许值;(2)发电机组并入系统后,应尽可能快的进入同步运行状态。
同期并列的条件:相序;电压;频率;相位。
二、同期的方式:自同期手准准同期自准非同期三、自同期1、定义:自同期是待并发电机并列时,转子先不加励磁,调整待并发电机的转速,当转速接近同步转速时(正常情况下频差允许为(2~3)%,事故情况下可达10%),首先合上机端断路器,接着立刻合上励磁开关,给转子加励磁电流,在发电机电势逐渐增长的过程中由系统将发电机拉入同步运行。
2、优点:并列时间短,投入迅速,操作简单。
3、缺点:并列过程中出现较大的冲击电流,对发电机不利。
此外,自同期初期,待并发电机不加励磁,它将从系统吸收无功功率,从而导致系统电压突然降低,影响供电质量。
四、准同期1、定义:准同期是待并机组并列前,转子先加励磁电流,并调整到使发电机电压与系统电压相等;同时调整发电机转速使发电机频率与系统频率相等。
当上述两个条件满足时,在相位重合前一定时刻发出合闸脉冲,合上发电机与系统之间的并列断路器,这种并列称为准同期并列。
2、优点:在正常情况下,产生的冲击电流小,电压波动小3、缺点:因同期时需调整待并发电机的电压和频率,使之与系统电压、频率接近。
这就要花费一定时间,相对与自同期来说,并列时间长。
五、我公司Ⅰ、Ⅱ期均采用手动准同期方式,下面以#1发电机3270开关并列为例讲解。
在接到汽机发来“注意,可并列”信号后,合上励磁开关升压至额定值,1、将同期操作箱中“#1发电机”钥匙开关切至“投”位,按下选线按钮,直至选线灯亮这一步参照Ⅰ期同期图纸中“同期操作箱原理接线图”在这张图中,XK为钥匙开关,XHA为选线按钮,XHJ为选线装置,J2为遥控合闸的信号。
发电机的并列运行与同期系统图分析第一章发电机的并列运行一、发电机并列运行的条件1.待并发电机的电压有效值U f与电网的电压有效值U相等或接近相等,允许相差±5%的额定电压值。
待并发电机的电压有效值U f,与电网的电压有效值U之间的压差ΔU,若在允许范围内,所引起的无功冲击电流是允许的。
否则ΔU越大,冲击电流越大,这个过程相当于发电机的突然短路。
因此,必须调整两者间的电压,使其接近相等后才可并列。
2.待并发电机的周波f f应与电网的周波f相等,但允许相差±0.05~0.1周/秒以内。
若两者周波不等,则会产生有功冲击电流,其结果使发电机转速增加或减小,导致发电机轴产生振动。
如果周波相差超出允许值而且较大,将导致转子磁极和定子磁极间的相对速度过大,相互之间不易拉住,容易失步。
因此,在待并发电机并列时,必须调整周波至允许范围内。
通常是将待并发电机的周波略调高于电网的周波,这样发电机容易拉入同步,并列后可立即带上部分负荷。
3.待并发电机电压的相位与电网电压的相位相同,即相角相同。
在发电机并列时,如果两个电压的相位不一致,由此而产生的冲击电流可能达到额定电流的20~30倍,所以是非常危险的。
冲击电流可分解为有功分量和无功分量,有功电流的冲击不仅要加重汽轮机的负担,还有可能使汽轮机受到很大的机械应力,这样非但不能把待并发电机拉入同步,而且可能使其它并列运行的发电机失去同步。
在采用准同期并列时,发电机的冲击电流很小。
所以,一般应将相角差控制在10º以内,此时的冲击电流约为发电机额定电流的0.5倍。
4.待并发电机电压的相序必须与电网电压的相序一致。
5.待并发电机电压的波形应与电网电压的波形一致。
以上条件中第4项关于相序的问题,要求在安装发电机的时候,根据发电机规定的转向,确定好发电机的相序而得到满足。
所以在以后的并列过程中,相序问题就不必考虑了。
第5项关于电压波形的问题,应在发电机生产制造过程中得以保证。
发电机同期系统检查及试验报告
1 项目名称
发电机同期系统检查及试验报告
2 项目简介
本项目对同期回路接线正确性进行检查,对同期装置动作特性进行调整试验,以保证同期系统调节快速有效,动作准确可靠。
本台机组以发变组高压侧断路器为并网时的同期并列点,同期电压分别取自线路PT三相电压和发电机机端PT三相电压,由同期装置接线方式补偿主变接线组别造成的相位差。
同期装置选用深圳市智能设备开发有限公司生产的SID-2CM型发电机微机准同期控制器。
本台机组中通过DCS系统实现对同期装置的投入、退出控制和复位操作,取消了传统的手动准同期方式,大大简化了并网操作步骤。
3 调试过程
3.1 调试过程简介
3.1.1 同期系统二次回路的调试工作
3.1.2 微机准同期控制器校验及整定
3.1.3 同期系统控制回路传动试验
3.1.4 同期电压回路检查(带线路零起升压)
3.1.5 自动准同期装置调频、调压控制系数调整
3.1.6 自动假同期试验
3.1.7 自动准同期并网
3.2 调试仪器清单
4 数据整理及结论
5 调试过程中的修改变更
5.1 为避免电磁型合闸中间继电器断电时反电势干扰,在继电器线圈两端并联(反向)一个续流二极管(二极管选400V,4A)。
附图1:同期并网录波图
附图2:假同期并网录波图。
发电机同期并网装置资料(集控公用,按值移交))第一节发电机同期并网装置介绍SID-2C是深圳市智能设备开发有限公司在总结前七代产品运行经验的基础上,在硬件设计及软件设计上作了较大的改进。
除了保留原有产品的精确性及快速性的优点外,还增加了全汉字显示及与上位机进行通讯的功能。
这为电站分布式控制系统(DCS)增加了一个重要的智能终端。
不仅使运行人员在同期控制器的安装现场可以看到有关并网过程中的各种信息,还能在远方的集控站对并网过程了如指掌。
SID-2C系列微机同期控制器有两类产品:SID-2CT适用于1~12条线路并网用,SID-2CM适用于1~12台、条发电机或线路并网复用。
各类产品均备有内置试验检测单元,毋需借助其它仪器设备即可进行控制器的例行试验、故障检测及外电路正确性校核等工作。
SID-2C系列微机同期控制器的突出特点是能自动识别差频和同频同期性质,确保以最短的时间和良好的控制品质促成同期条件的实现,并不失时机的捕捉到第一次出现的并网机会。
本使用说明书可供8个同期点的SID-2CM-8和12个同期点的SID-2CM-12共用。
一、主要功能SID-2CM有8~12个通道可供1~12台、条发电机或线路并网复用,或多台同期装置互为备用,具备自动识别并网性质的功能,即自动..识别当前是差频并网还是同频并网(合环)。
控制器以精确严密的数学模型,确保差频并网(发电机对系统或两解列系统间的线路并网)时捕捉第一次出现的零相差,进行无冲击并网。
在发电机并网过程中按模糊控制理论的算法,对机组频率及电压进行控制,确保最快最平稳地使频差及压差进入整定范围,实现更为快速的并网。
控制器具备自动识别差频或同频并网功能。
在进行线路同频并网(合环)时,如并列点两侧功角及压差小于整定值将立即实施并网操作,否则就进入等待状态,并发出遥信信号。
控制器运行过程中定时自检,如出错,将报警,并文字提示。
在并列点两侧TV信号接入后而控制器失去电源时将报警。