【解】 (1)(观察法)因为x∈{1,2,3,4,5},分别代入求 值,可得函数的值域为{2,3,4,5,6}.
(2)(配方法)y=x2-2x+3=(x-1)2+2,由x∈[0,3),再 结合函数的图象(如图),可得函数的值域为[2,6).①
(3)(分离常数法)y=2xx-+31=2x-x-33+7=2+x-7 3,② 显然x-7 3≠0,所以y≠2.故函数的值域为(-∞,2)∪ (2,+∞).
【例2】 求下列函数的值域: (1)y=x+1,x∈{1,2,3,4,5}; (2)y=x2-2x+3,x∈[0,3); (3)y=2xx-+31.
【解析】
(1)
分别求x为1,2,3,4, 5时相应的y值
→
y的所有取 值即为值域
(2) 对二次函数进行配方 → 结合图象求值域
将函数式进 利用反比例函数 (3) 行等价变形 → 的图象求值域
2.研究函数问题必须树立“定义域优先”原则.求函 数定义域一般有三种类型:(1)函数来自实际问题的定义 域;(2)已知函数解析式求定义域;(3)抽象函数求定义域.
3.求值域的方法有:(1)观察法:根据定义域和对应关 系求出;(2)数形结合法:作出函数的图象,然后求解;(3) 配方法:配方求解;(4)分离常数法:添一项、减一项,分 离出常数再求解;(5)换元法:可以将无理函数转换成有理 函数再求解.
通法提炼 当函数的定义域和对应关系确定后,函数的值域就确 定了,求值域常用的方法有观察法、换元法、分离常数 法、配方法、图象法等.
求下列函数的值域: (1)y=2x+1,x∈{0,1,3,4}; (2)y=x+x 1; (3)y=x2-4x+6,x∈[1,5).
解:(1)∵y=2x+1,x∈{0,1,3,4}, ∴y∈{1,3,7,9}. (2)∵y=x+x 1=x+x+11-1=1-x+1 1,且x+1 1≠0, ∴函数y=x+x 1的值域为{y|y≠1}. (3)配方,得y=(x-2)2+2.∵x∈[1,5),∴结合函数的图 象可知,函数的值域为{y|2≤y<11}.