钢的热处理及热处理后的显微组织观察实验报告
- 格式:doc
- 大小:28.00 KB
- 文档页数:3
碳钢热处理后的组织和性能变化的分析实验一、实验目的1、观察和研究碳钢经不同形式热处理后其显微组织的特点。
2、了解热处理工艺对钢组织和性能的影响。
3、了解硬度测定的基本原理及应用范围。
4、了解洛氏硬度试验机的主要结构及操作方法。
5、掌握金属显微试样的制作过程,正确地制作所要观察的试件。
二、实验内容1、制作经热处理后的试样,完成打磨、刨光、浸蚀的所有制作步骤。
2、热处理后的试件进行硬度测试。
3、热处理后的试样进行组织观察分析和比较。
三、实验设备的使用和注意事项(一)硬度计的原理、使用和注意事项金属的硬度可以认为是金属材料表面在接触应力作用下的抵抗塑性变形的一种能力。
硬度测量能够验出金属材料软硬程度的数量概念。
由于在金属表面以下不同深处材料所承受的应力和所发生的变形程度不同,因而硬度值可以综合地反映压痕附近局部体积内金属的弹性、微量塑变抗力、塑变强化能力以及大量形变抗力。
硬度值越高,表明金属抵抗塑性变形能力越大,材料产生塑性变形就越困难。
另外,硬度与其它机械性能(如强度指标σb及塑性指标ψ和δ)之间有着一定的内在联系,所以从某种意义上说硬度的大小对于机械零件或工具的使用性能及寿命具有决定性意义。
硬度的试验方法很多,在机械工业中广泛采用压入法来测定硬度。
压入法硬度试验的主要特点是:(1)试验时应力状态最软(即最大切应力远远大于最大正应力),因而不论是塑性材料还是脆性材料均能发生塑性变形。
(2)金属的硬度与强度指标之间存在如下近似关系:σb=K·HB式中:σb——材料的抗拉强度值HB——布氏硬度值K——系数退火状态的碳钢K=0.34~0.36合金调质钢K=0.33~0.35有色金属合金K=0.33~0.53(3)硬度值对材料的耐磨性、疲劳强度等性能也有定性的参考价值,通常硬度高,这些性能也就好。
在机械零件设计图纸上对机械性能的技术要求,往往只标注硬度值,其原因就在于此。
(4)硬度测定后由于仅在金属表面局部体积内产生很小压痕,并不损坏零件,因而适合于成品检验。
热处理实验报告[5篇范文]第一篇:热处理实验报告篇一:钢得热处理实验报告钢得热处理实验报告一、实验目得 1、了解热处理对材料性能得影响2、了解在相同得热处理状态下材料成分对材料性能得影响3、了解用显微镜观察金相得制样过程二、仪器材料箱式电炉(sx2—4-10、sx—4-10)、硬度测试仪(hr—150a)、30 钢、t10 钢、砂轮(砂纸)三、实验过程1)、金相得制备将一小块金属材料用金相砂纸磨光后进行抛光,去除金相磨面由细磨所留下得细微磨痕及表面变形层,使磨面成为无划痕得光滑镜面,然后用侵蚀剂进行腐蚀,以使组织被显示出来,这样就得到了一块金相样品。
2)、钢得热处理淬火与正火钢得淬火:淬火就就是将钢加热到相变温度以上,保温后放入各种不同得冷却介质中(v 冷应大于v临),以获得马氏体组织。
钢经淬火后得组织由马氏体及一定数量得残余奥氏体所组成。
步骤为:加热前先对试样进行硬度测定(为便于比较,一律用洛氏硬度测定);再将试样放入箱式电炉中,t10 钢在770℃左右,30 钢在860℃左右分别均匀加热15 分钟;然后迅速在水中冷却,并不断搅拌.将淬火后得试样用砂轮磨平,并测出硬度值(hrc)填入表 1 中。
钢得正火:钢加热到ac3(亚共析钢)或ac1(过共析钢)以上30~50℃以上,保温适当时间后,在自由流动得空气中冷却得热处理工艺。
步骤为:加热前先对试样进行硬度测定(为便于比较,一律用洛氏硬度测定)。
再将试样放入箱式电炉中,t10 钢在770℃左右,30 钢在860℃左右分别均匀加热 15 分钟,后在空气中缓慢冷却。
将正火后得试样用砂轮磨平,并测出硬度值(hrc)填入表 2 中。
四、结果及讨论1、为什么淬火处理后得硬度值比正火处理后得高?答:因为淬火冷却速度比正火冷却速度快,由过冷奥氏体得连续冷却转变图像可知淬火后得到得就是马氏体组织,而正火后得到得组织主要就是珠光体.马氏体比珠光体晶粒度细晶界面多,使得晶体得位错滑移阻力增大,从而硬度提高。
热处理实验报告热处理是指通过加热和冷却来改变材料的性能和微观结构。
热处理可以改善材料的硬度、强度、韧性、耐蚀性等性能,使材料适应不同的工作条件和要求。
本实验旨在通过热处理来研究钢的显微组织和性能的变化。
实验步骤:1.准备试样:将钢材切割成长约10cm、宽约1cm、厚约0.1cm 的试样。
2.加热处理:将试样放入坩埚中,放入电炉中进行加热处理。
首先进行均质化处理,将试样加热到900℃,保温一段时间,然后迅速冷却。
接下来进行退火处理,将试样加热到800℃,保温一段时间,然后缓慢冷却。
最后进行淬火处理,将试样加热到900℃,保温一段时间,然后迅速冷却。
3.组织观察:使用金相显微镜观察不同处理状态下的试样的显微组织结构。
4.硬度测试:使用洛氏硬度计对不同处理状态下的试样进行硬度测试。
5.拉伸实验:使用拉伸试验机对不同处理状态下的试样进行拉伸实验,测量其屈服强度、抗拉强度和延伸率等力学性能。
实验结果:经过均质化处理后,试样的组织结构变得均匀细小,硬度略有增加。
经过退火处理后,试样的组织结构发生晶粒长大和再结晶,硬度降低,但韧性和延伸率增加。
经过淬火处理后,试样的组织结构发生马氏体转变,硬度大幅度增加,但韧性降低。
结论:通过热处理,可以显著改善钢的性能和微观结构。
均质化处理可以使试样的组织结构更加均匀细小,硬度略有增加。
退火处理可以使试样的组织结构发生晶粒长大和再结晶,降低硬度,增加韧性和延伸率。
淬火处理可以使试样的组织结构发生马氏体转变,大幅度增加硬度,但降低韧性。
附图:[在这里插入显微组织结构的图片][在这里插入硬度测试结果的表格][在这里插入拉伸实验结果的表格]实验存在的问题和改进方向:1.实验样品的选择和加工方式可以继续优化,以得到更准确和可比较的结果。
2.实验过程中,温度和时间的控制可以进一步细化,以确保实验的准确性和可重复性。
3.实验结果的分析和讨论可以更加深入和详细,包括显微组织结构的形成机制和力学性能的影响机制。
钢的热处理及其对组织和性能的影响一、实验目的1.熟悉钢的几种基本热处理操作(退火、正火、淬火及回火);2.研究加热温度、冷却速度及回火温度等主要因素对碳钢热处理后性能的影响;3.观察和研究碳素钢经不同形式热处理后显微组织的特点;4.了解材料硬度的测定方法,学会正确使用硬度计。
二、实验概述钢的热处理就是利用钢在固态范围内的加热、保温和冷却,以改变其内部组织,从而获得所需要的物理、化学、机械和工艺性能的一种操作。
普通热处理的基本操作有退火、正火、淬火、回火等。
加热温度、保温时间和冷却方式是热处理最重要的三个基本工艺因素。
正确合理选择这三者的工艺规范,是热处理质量的基本保证。
1.加热温度选择(1)退火加热温度一般亚共析钢加热至A C3+(20~30)℃(完全退火);共析钢和过共析钢加热至A C1+(20~30)℃(球化退火),目的是得到球化体组织,降低硬度,改善高碳钢的切削性能,同时为最终热处理做好组织准备。
(2)正火加热温度一般亚共析钢加热至A C3+(30~50)℃;过共析钢加热至A Cm+(30~50)℃,即加热到奥氏体单相区。
退火和正火加热温度范围选择见图3-1。
图1 退火和正火的加热温度范围图2 淬火的加热温度范围(3)淬火加热温度一般亚共析钢加热至A C3+(30~50)℃;共析钢和过共析钢则加热至A C1+(30~50)℃,加热温度范围选择见图3-2。
淬火按加热温度可分为两种:加热温度高于A C3时的淬火为完全淬火;加热温度在A C1和A C3(亚共析钢)或A C1和A CCm(过共析钢)之间是不完全淬火。
在完全淬火时,钢的淬火组织主要是由马氏体组成;在不完全淬火时亚共析钢得到马氏体和铁素体组成的组织,过共析钢得到马氏体和渗碳体的组织。
亚共析钢用不完全淬火是不正常的,因为这样不能达到最高硬度。
而过共析钢采用不完全淬火则是正常的,这样可使钢获得最高的硬度和耐磨性。
在适宜的加热温度下,淬火后得到的马氏体呈细小的针状;若加热温度过高,其形成粗针状马氏体,使材料变脆甚至可能在钢中出现裂纹。
实验(实习)报告
实验名称钢的热处理及热处理后显微组织的观察班级姓名
组别学号
五、实验报告要求
1.按实验结果完成下表
45 T12 测
试记录
加热温度保温
时间
冷却
时间
回火
温度
硬度
HRC
加热
温度
保温
时间
冷却
时间
回火
温度
硬度
HRC
860℃10min
空冷
5min
无
780℃10min
水冷
0.5min
无油冷
2min
无
水冷
0.5min
无
水冷
0.5min
200℃
10min
水冷
0.5min
400℃
10min
水冷
0.5min
600℃
10min
2.在显微镜下观察45 钢的退火、正火、淬火、回火处理后的组织,并在下图中绘出组织特征,标明热处理状态。
3.在显微镜下观察T12 的淬火、回火后组织,并在下图中绘出组织特征,标明热处理状态。
钢的热处理及热处理后的显微组织观察实验报告罗毅晗2014011673一、实验目的(1)熟悉钢的几种基本热处理操作:退火、正火、淬火、回火。
(2)了解加热温度、冷却速度、回火温度等主要因素对45钢热处理后性能(硬度)的影响。
(3)观察碳钢热处理后的显微组织。
二、概述钢的热处理就是利用钢在固态范围内的加热、保温和冷却,以改变其内部组织,从而获得所需要的物理、化学、机械和工艺性能的一种操作。
热处理的基本操作有退火、正火、淬火、回火等。
进行热处理时,加热温度、保温时间和冷却方式是最重要的三个基本工艺因素。
三、实验内容加热温度冷却方法回火温度洛氏硬度洛氏硬度洛氏硬度平均值860℃水冷﹨52.0 52.1 52.6 52.2 860℃油冷﹨20.2 23.4 19.1 20.9 860℃空冷﹨94.1 94.6 94.2 94.3 860℃炉冷﹨86.0 85.2 85.7 85.6 860℃水冷200℃51.9 52.0 52.1 52.0 860℃水冷400℃34.8 35.3 35.7 35.3 860℃水冷600℃20.3 21.5 19.6 20.5显微组织观察45钢860℃气冷索氏体+铁素体45钢860℃油冷马氏体+屈氏体45钢860℃水冷马氏体45钢 860℃水冷+600℃回火回火索氏体T12钢 760℃球化退火球化体T12钢 780℃水冷+200℃回火回火马氏体+二次渗碳体+残余奥氏体T12钢 1100℃水冷粗大马氏体+残余奥氏体四、实验分析1.火温度而言,淬火温度越高,硬度越高。
但是一旦达到过高温度会导致形成的马氏体,使得力学性能恶化。
2.火介质而言,硬度大小:空冷>炉冷>水冷>油冷。
3.火温度而言,回火温度越高,硬度越低。
图像:分析原因:①据铁碳相图,淬火温度升高,45钢(亚共析钢)中铁素体含量减少,珠光体含量提高,而珠光体硬度很高,铁素体硬度低,导致硬度提高。
②根据C曲线,对亚共析钢的连续冷却,空冷生成F+S,炉冷生成F+P,水冷产生M,油冷产生T+M。
钢的热处理:是将固态钢材采用适当的方式进行加热、保温和冷却以获得所需组织结构与性能的工艺。
热处理不仅可用于强化钢材,提高机械零件的使用性能,而且还可以用于改善钢材的工艺性能。
其共同点是:只改变内部组织结构,不改变表面形状与尺寸。
第一节钢的热处理原理热处理的目的是改变钢的内部组织结构,以改善钢的性能,通过适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。
热处理工艺不但可以强化金属材料、充分挖掘材料性能潜力、降低结构重量、节省和能源,而且能够提高机械产品质量、大幅度延长机器零件的使用寿命。
热处理工艺分类:(根据热处理的目的、要求和工艺方法的不同分类如下)1、整体热处理:包括退火、正火、淬火、回火和调质;2、表面热处理:包括表面淬火、物理气相沉积(PVD)和化学气相沉积(CVD)等;3、化学热处理:渗碳、渗氮、碳氮共渗等。
热处理的三阶段:加热、保温、冷却一、钢在加热时的转变加热的目的:使钢奥氏体化(一)奥氏体(A)的形成奥氏体晶核的形成以共析钢为例A1点则W c =0.0218%(体心立方晶格F)W c =6.69%(复杂斜方渗碳体)当T 上升到A c1 后W c =0.77%(面心立方的A)由此可见转变过程中必须经过C和Fe原子的扩散,必须进行铁原子的晶格改组,即发生相变,A在铁素体和渗碳体的相界面上形成。
有两个有利条件①此相界面上成分介于铁素体和渗碳体之间②原子排列不规则,空位和位错密度高。
珠光体向奥氏体转变示意图a) 形核b) 长大c) 剩余渗碳体溶解d) 奥氏体均匀化(二)奥氏体晶粒的长大奥氏体大小用奥氏体晶粒度来表示。
分为00,0,1,2…10等十二个等级,其中常用的1~10级,4级以下为粗晶粒,5-8级为细晶粒,8级以上为超细晶粒。
影响A晶粒粗大因素1、加热温度越高,保温时间愈长,奥氏体晶粒越粗大。
因此,合理选择加热和保温时间。
以保证获得细小均匀的奥氏体组织。
(930~950℃以下加热,晶粒长大的倾向小,便于热处理)2、A中C含量上升则晶粒长大的倾向大。
碳钢热处理后的显微组织观察与分析
一、研究背景
碳钢是一种广泛应用的材料,具有高强度、良好的塑性、耐腐蚀性,以及较低的成本等优点。
狭义的碳钢是指碳含量不高于2.06%的钢,一般指碳含量在0.25~2.06%之间的碳素低合金钢,简称碳钢。
碳钢的力学性能极大程度上受组织影响,因此,碳钢的热处理是提高其力学性能的关键手段。
二、热处理方法
碳钢在热处理过程中,主要是正火、回火、淬火和回火等,根据加工目的和钢种的不同,还有退火和淬拔,等等。
1.正火:正火是指把钢从室温升温到一定的温度(相当于细化、强化钢组织)后,室温或其他低温下的冷却过程。
将钢置于明火中加热,加热到一定温度(软化温度),停止着火,让钢自然冷却(细化钢组织)。
2.回火:回火是指将钢比正火温度高一点加热,然后用较低温度的流体(水、油等)冷却(增强钢组织)。
回火可以改善零件的机械性能,使其获得更高的屈服强度、抗拉强度和断裂伸长率等。
3.淬火:淬火是把钢加热到一定的高温,然后用水、油、空气等低温流体进行冷却,使钢获得更高的强度、延展性和硬度。
碳钢热处理后的显微组织观察实验报告实验目的:通过对碳钢进行热处理,观察不同处理条件下的显微组织变化,了解热处理对材料性能的影响。
实验原理:碳钢是将铁和碳混合熔炼得到的一种合金。
由于碳元素的含量不同,可以分为低碳钢、中碳钢、高碳钢等。
在碳含量小于0.8%的碳钢中,碳的形态为固溶态,一般认为石墨化碳是一种强化剂,但是当碳含量高于一定程度时,石墨化碳就会成为材料的弱化因素,须采取措施排除其中的碳化物(Fe3C)。
其主要手段是通过热处理,使碳元素达到在钢中最佳状态。
热处理是指将材料加热到一定温度,然后以一定的速率冷却,以改变其组织和性能的过程。
其中,淬火是一种快速冷却的热处理方法,可使钢材组织变硬化;回火是在淬火后加热,然后缓慢冷却的过程,可使钢材组织变柔韧。
实验步骤:1. 选择一块碳钢,清洗干净,并用锉刀在表面画两条直线,以便观察显微组织变化。
2. 将碳钢样品置于电炉中,加热到红色,保持5分钟。
3. 将样品迅速取出,浸入凉水中进行淬火,使其从高温状态快速冷却。
4. 对淬火后的样品进行显微组织观察和比较。
5. 将样品置于烘箱中回火,温度和时间由指导老师指定。
实验结果:经过淬火处理的碳钢样品在显微镜下可以看到整齐排列的马氏体组织,该组织具有较高的硬度和脆性,在撞击或载荷作用下容易产生裂纹或断裂。
经过回火处理后,样品显微镜下的组织发生了改变。
马氏体逐渐转化成铁素体,呈现出蓝色和灰色的颜色。
在较高的温度下回火处理后,钢的组织相对缓和,同时也具有一定的硬度和强度。
通过本实验,我们了解到热处理对钢材的影响,并通过不同条件下的显微组织观察和比较,得出了淬火和回火处理对碳钢组织和性能的影响。
淬火处理可以使钢的组织变硬,但脆性也增加;回火处理则可以提高钢的韧性和强度,并减少脆性。
在实际应用中,需要根据不同的需要选择合适的热处理工艺。
钢的热处理及热处理后的显微组织观察
实验报告
罗毅晗73
一、实验目的
(1)熟悉钢的几种基本热处理操作:退火、正火、淬火、回火。
(2)了解加热温度、冷却速度、回火温度等主要因素对45钢热处理后性能(硬度)的影响。
(3)观察碳钢热处理后的显微组织。
二、概述
钢的热处理就是利用钢在固态范围内的加热、保温和冷却,以改变其内部组织,从而获得所需要的物理、化学、机械和工艺性能的一种操作。
热处理的基本操作有退火、正火、淬火、回火等。
进行热处理时,加热温度、保温时间和冷却方式是最重要的三个基本工艺因素。
三、实验内容
显微组织观察
45钢 860℃气冷索氏体+铁素体
45钢860℃油冷马氏体+屈氏体
45钢860℃水冷马氏体
45钢 860℃水冷+600℃回火回火索氏体
T12钢 760℃球化退火球化体
T12钢 780℃水冷+200℃回火回火马氏体+二次渗碳体+残余奥氏体
T12钢 1100℃水冷粗大马氏体+残余奥氏体
四、实验分析
1.火温度而言,淬火温度越高,硬度越高。
但是一旦达到过高温度会导致形成的马氏体,使得力学性能恶化。
2.火介质而言,硬度大小:空冷>炉冷>水冷>油冷。
3.火温度而言,回火温度越高,硬度越低。
图像:
分析原因:
①据铁碳相图,淬火温度升高,45钢(亚共析钢)中铁素体含量减少,珠光体含量提高,而珠光体硬度很高,铁素体硬度低,导致硬度提高。
②根据C曲线,对亚共析钢的连续冷却,空冷生成F+S,炉冷生成F+P,水冷产生M,油冷产生T+M。
因此,硬度大小为:空冷>炉冷>水冷>油冷。
③高温回火生成回火索氏体,中温回火生成回火屈氏体,低温回火生成回火马氏体+残余奥氏体。
硬度大小为:回火马氏体>回火屈氏体>回火索氏体。
因此,回火温度越低,生成产物硬度就越高。
五、思考题
(1)45钢的热处理时850℃水淬+550℃回火,即淬火+高温回火(调质处理)。
生成物是回火索氏体。
45钢广泛用于制造齿轮、轴类件、连杆、螺栓等工件。
(2)回火温度越高,硬度越低。
因为高温回火生成回火索氏体,中温回火生成回火屈氏体,低温回火生成回火马氏体+残余奥氏体。
硬度大小为:回火马氏体>回火屈氏体>回火索氏体。
因此,回火温度越低,生成产物硬度就越高。
(3)用金相法观察产物。
若产物中观测到大量白色晶粒状的铁素体,则是淬火加热温度不足;若产物中观测到大块黑色晶团状的屈氏体,则是冷却速度不足。
(4)45钢调制处理后生成回火索氏体,它是由粒状渗碳体和等轴形铁素体组成的混合物,在光学显微镜下观测到渗碳体小颗粒,它均匀地分布在铁素体中,性能方面,它具有良好的韧性和塑性,同时具有较高的强度,因此具有良好的综合力学性能。
广泛用于制造汽车、拖拉机、机床和其他机器上的齿轮、轴类件、连杆、螺栓等工件。
T12球化退火的产物是球化体,球化体指的是铁素体基体上分布着细小均匀的球状渗碳体。
球化退火是使钢中碳化物球状化的热处理工艺。
性能方面,球化体塑性好,韧性强但硬度低;但球化体经过淬火和低温回火及磨削加工后的T12
钢产物硬度高,韧性较低,可制造锉刀、刮刀等刃具及量规、样套等量具。