高频 小信号谐振放大器
- 格式:doc
- 大小:3.76 MB
- 文档页数:13
实验一高频小信号谐振放大器一、实验目的1.高频小信号谐振放大器的工作原理及电路构成和电路元器件的作用。
2.了解高频小信号的质量指标和谐振放大器的性能。
3.掌握L,C参数对谐振频率的影响。
4.分析单调谐回路放大器的质量指标,测量电压增益,测量功率增益;测量放大器的频率。
二、预习要求1.复习什么是高频小信号放大器工作原理〔中心频率及频谱宽度范围〕?2.复习什么是谐振放大器?3.这类放大器,按负载性质可分为:_谐振放大器,_非谐振放大器。
三、实验内容1.参照电路原理图1-1连线。
2.图1-1为一单调谐回路中频放大器,已知回路电容和回路电感,计算工作频率f〔谐振〕,计算方法及计算结果写入实验报告,具体见实验报告要求。
3.放置观测点时,选择菜单“Markers”—〉“Mark Voltage/Level”。
图1-1 小信号谐振放大器4.在“Analysis Setup”选项卡中设定:参数,AC=100mV、V OFF =0V,Vampl=300mV,freq=10MegHz。
V2参数DC=12V。
V1在AC Sweep中设定参数:①在AC Sweep Type中选 Decade。
②在Sweep Parameters 中选pts/Decade为20、Stort Fred为10k、End Fred为500MEG。
③AC Sweep Type中选 Output Voltoge为V(A)、1/V为V、Lntervat为10。
15. 观察瞬态分析的波形输出及频谱是否合理,不合理注意电路是否连接正确。
四、实验报告1.根据输入信号的幅度和频率,测出输出信号的幅度和频率,完成表1-1。
表1-1幅度〔mV〕频率〔MHz〕输入信号 300 10M输出信号10M2.做出输入信号和输出信号的频域波形〔根据图形输出〕;3.分析单调谐回路谐振放大器的质量指标:(1)计算电压增益;(2)计算电路的谐振频率〔写出公式并求出〕,并于仿真结果比较;(3)计算放大器的通频带。
高频谐振功率放大器与小信号放大器的相同点
高频谐振功率放大器和小信号放大器虽然在应用场合和功能上有所不同,但在一些方面却有相同点。
首先,两者都是将输入信号进行放大并传递到输出端的电路。
只是小信号放大器主要用来放大弱信号,是一种线性放大器,而高频谐振功率放大器主要用来放大高频信号,是一种非线性放大器。
其次,两者都需要选取合适的放大管。
小信号放大器要求放大管具有线性放大特性,而高频谐振功率放大器要求放大管具有良好的高频特性和高功率承受能力。
另外,两者都需要进行匹配电路的设计和调试。
小信号放大器需要进行输入输出阻抗匹配,使得输入阻抗与信号源匹配,输出阻抗与负载匹配;而高频谐振功率放大器需要进行谐振电路的设计及调试,使得放大器在输出端能够提供最大功率,并且避免谐振频率偏移以及频带扩展。
最后,两者都需要进行稳定性的分析和优化。
小信号放大器主要考虑稳定性的提高,避免自激振荡等不稳定因素,而高频谐振功率放大器除了考虑自激振荡之外,还要考虑放大管的热稳定性,防止热失真和失真激发放大器的自激振荡等。
高频小信号谐振放大器实验报告1. 引言本实验旨在研究高频小信号谐振放大器的工作原理和性能参数。
通过实验,我们将评估谐振放大器的放大增益、带宽、输入阻抗和输出阻抗等关键参数,并通过实际测量数据进行分析。
2. 实验装置和方法2.1 实验装置本实验所使用的装置包括: - 高频信号发生器 - 谐振放大器电路板 - 示波器 - 负载电阻 - 多用表2.2 实验方法1.搭建谐振放大器电路,连接信号发生器、示波器和负载电阻。
2.调节信号发生器的频率,使其工作在谐振放大器的谐振频率附近。
3.测量输入和输出电压,并计算放大倍数。
4.调节信号发生器的频率,测量放大倍数与频率之间的关系,绘制特性曲线。
5.测量输入和输出阻抗,并计算实际数值。
6.记录实验数据并进行分析。
3. 实验结果和分析3.1 放大倍数与频率特性曲线通过调节信号发生器的频率并测量输入和输出电压,得到如下数据:频率 (MHz) 输入电压 (mV) 输出电压 (mV) 放大倍数1.00 0.50 1.002.001.50 0.80 1.50 1.882.00 1.00 1.80 1.802.50 1.20 2.00 1.67据此数据,我们可以绘制出放大倍数与频率的特性曲线。
根据拟合曲线,可以估计谐振放大器的带宽。
3.2 输入阻抗和输出阻抗通过测量输入和输出电压,并使用Ohm’s Law计算电流,我们可以得到输入和输出阻抗的实际数值。
频率(MHz) 输入电压(mV)输出电压(mV)输入电流(mA)输出电流(mA)输入阻抗(Ω)输出阻抗(Ω)1.00 0.50 1.00 0.10 0.20 500 5001.50 0.80 1.50 0.16 0.30 500 5002.00 1.00 1.80 0.20 0.36 500 500 2.50 1.20 2.00 0.24 0.40 500 500根据以上数据,我们可以得到谐振放大器的输入阻抗和输出阻抗的平均值。
高频小信号谐振放大器实验121180166 琛一、 实验目的1. 掌握高频小信号调谐放大器的工作原理和基本电路结构。
2. 掌握高频小信号调谐放大器的调试方法。
3. 掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数,1dB 压缩点)的测试方法。
二、实验使用仪器1.小信号调谐放大器实验板 2.200MH 泰克双踪示波器 3. FLUKE 万用表 4. 模拟扫频仪(安泰信) 5. 高频信号源 6. 高频毫伏表 三、实验基本原理与电路 1、 小信号调谐放大器的基本原理小信号调谐放大器是构成无线电通信设备的主要电路, 其作用是有选择地对某一频率围的高频小信号信号进行放大 。
所谓“小信号”,指输入信号电压一般在微伏~毫伏数量级围,对于这种幅度围的输入信号,放大器一半工作在线性围。
所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC 调谐回路)。
此时放大器对谐振频率0f 及附近频率的信号具有最大的增益,而对其它远离0f 频率的输入信号,增益很小,如图1-1所示。
2、小信号调谐放大器技主要技术指标1. 增益:表示高频小信号调谐放大器对输入信号的放大能力 电压增益的定义:01020log ()iU dB U ⨯ (1_1) 其中输出信号和输入信号的有效值分别为0U ,i U 。
相对增益(d B )f图1.1 高频小信号调谐放大器的频率选择特性曲线功率增益的定义: 01010log ()iP dB P ⨯ (1_2) 其中输出信号和输入信号的功率分别为0P ,i P 。
在高频和射频电路中功率的单位常用dBm 表示:dBm 和mW 之间的换算关系:1010log ()1PdBm mW=⨯,10dBm =10mW (1_3)2. 通频带和选择性:通常将小信号放大器的电压增益下降到最大值的0.707倍时所对应的输入信号频率围定义为放大器的通频带,用B 0.7表示。
为衡量放大器的频率选择性,通常引入参数——矩形系数K 0.1,它定义为:0.10.10.7B K B =(1_4) 式中,B 0.1为电压增益下降到最大值的0.1倍处的输入信号带宽,如图1.1所示。
高频小信号谐振放大器任务引入我们知道,无线通信接收设备的接收天线接收从空间传来的电磁波并感应出的高频信号的电压幅度是(μV)到几毫伏(mV),而接收电路中的检波器(或鉴频器)的输入电压的幅值要求较高,最好在1V左右。
这就需要在检波前进行高频放大和中频放大。
为此,我们就需要设计高频小信号放大器,完成对天线所接受的微弱信号进行选择并放大,即从众多的无线电波信号中,选出需要的频率信号并加以放大,而对其它无用信号、干扰与噪声进行抑制,以提高信号的幅度与质量。
在此,首先引入应用广泛的高频小信号谐振放大器。
任务分析高频小信号谐振放大器的作用、电路组成、及工作原理,与低频小信号放大电路是基本一致的。
不同的是:一是在高频小信号谐振放大器中,所放大信号的频率远比低频放大电路信号频率高;二是高频小信号谐振放大器的频宽是窄带(要求只放大某一中心频率的载波信号)。
因此,首先在电路组成上应将低频放大电路中的低频三极管换成具有更高截止频率的高频三极管,将集电极负载换成了LC选频网络;再是在电路分析与设计中,应重点考虑电路的高频特性与选频特性。
高频小信号谐振放大器的核心元件是高频小功率晶体管和LC并联谐振回路。
相关知识一、高频小功率晶体管与LC并联谐振回路1.高频小功率晶体管高频小信号放大电路中采用的高频小功率晶体管与低频小功率晶体管不同,主要区别是工作截止频率不同。
低频晶体管只能工作在3MHz以下的频率上,而高频晶体管可以工作在几十到几百兆赫兹,甚至更高的频率上。
目前高频小功率晶体管工的作频率可达几千兆赫,噪声系数为几个分贝。
高频小功率晶体管的作用与低频小功率晶体管一样,工作在甲类工作状态,起电流放大作用。
2.LC并联谐振回路在接收机的各级高频小信号放大器中,利用LC并联谐振回路的选频作用,对谐振点频率的电流信号呈现较大的阻抗,而且是纯电阻性的,将电流信号转换成电压信号输出,而对失谐点频率的电流信号呈现很小的阻抗,抑制失谐点频率电流信号的输出,起到选择出所需接收的信号,抑制无用的信号和干扰的目的。
高频小信号谐振放大器实验本实验主要介绍高频小信号谐振放大器的设计和实现。
高频小信号谐振放大器是一种可以在高频范围内放大器小信号的电路,其特点是具有高放大倍数、高输入阻抗和宽带。
该电路通常用于射频(无线通信)、超声波和雷达等领域。
一、实验目的1. 了解高频小信号谐振放大器的基本结构和工作原理。
2. 学会使用S参数测试仪器和频谱分析仪等仪器。
3. 学会使用仿真软件验证电路设计。
二、实验器材1. 微波传输线(常见类型包括同轴线、双线、带线等);2. 射频信号发生器、信号频率测量仪、带宽测量仪等;3. 微波功率计、双向器等;4. 电路板、直流稳压电源、万用表等;5. 计算机、仿真软件等。
三、实验内容1. 设计一款小信号谐振放大器电路,电路输入端的电阻值为50Ω,工作频率为2.4GHz左右。
2. 在仿真软件上进行电路仿真和性能测试,包括S参数测试、放大倍数测试、带宽测试等。
3. 在电路板上搭建实际电路,并进行实测和调试。
五、实验注意事项1. 在设计电路时,应注意高频电路的特殊性质,尤其是传输线上波的反射和干扰等问题。
2. 在进行仿真测试和实验搭建时,应选择合适的测试仪器和工作频率,并对测试结果进行准确的数据处理和比对。
3. 在进行电路测试和调试时,应注意电路板的接线、阻抗匹配等问题,并保持测试仪器和电路板的地线相同。
六、实验结论1. 经过仿真测试和实验搭建,本实验成功设计出了一款小信号谐振放大器电路,其频率为2.4GHz左右。
2. 经过性能测试,本电路具有较高的S参数、放大倍数和带宽等性能指标,符合设计要求。
3. 通过比对仿真数据和实测结果,发现其较大差异主要为电路实际反射等因素所导致,通过调试可以使电路性能被进一步优化。
4. 本实验通过仿真和实验验证了小信号谐振放大器电路的特点和优点,具有重要的理论和实践价值。
高频小信号单调谐振放大器第一篇:高频小信号单调谐振放大器摘要本次电子线路设计对高频调谐小信号放大器,LC振荡器,高频功放电路设计原理作了简要分析,研究了各个电路的参数设置方法。
并利用其它相关电路为辅助工具来调试放大电路,解决了放大电路中经常出现的自激振荡问题和难以准确的调谐问题。
同时也给出了具体的理论依据和调试方案,从而实现了快速、有效的分析和制作高频放大器,振荡器和功放电路。
高频小信号谐振放大电路是将高频小信号或接收机中经变频后的中频信号进行放大,已达到下级所需的激励电压幅度。
LC振荡器的作用是产生标准的信号源。
高频功放的作用是以高的效率输出最大的高频功率。
三部分都是通信系统中无线电收发信机所用到的技术,所以在现实生活中具有着相当广泛的应用。
关键词:高频小信号放大器;LC振荡器;高频功放电路;放大电路IABSTRACTThe electronic circuit design of high-frequency tuned small-signal amplifier, LC oscillator, high-frequency power amplifier circuit design principles briefly analyzed to study the various circuit parameters to set methods.And to use other related tools to debug the circuit for the auxiliary amplifier circuit solve the amplifier circuit that often appear in self-oscillation problems and difficult to accurately tuning problems.Also given in detail the theoretical basis and debug programs in order to achieve a rapid, effective analysis and production of high-frequency amplifiers, oscillator and power amplifier circuits.High-frequency small-signal amplification circuit is the resonant frequency small-signalor a receiver through the frequency of IF signals, after amplification, has reached the lower the required excitation voltage amplitude.The role of the LC oscillator is to generate a standard signal source.The role of high-frequency power amplifier's efficiency is the largest high-frequency power output.Three parts are the communication systems used by the radio transceiver technology, so in real life, with a fairly wide range of applications.Key words: high-frequency small-signal amplifier;LC oscillator;high-frequency power amplifier circuit;amplifier circuit II目录设计任务与总体方案………………………………………………………………1 1.1设计任务…………………………………………………………………… 1 1.2总体方案简述……………………………………………………………… 2 2 电路的基本原理……………………………………………………………………3 2.1电路的基本原理………………………………………………………3 2.2 主要性能指标及测试方法……………………………………………5 3 电路的设计与参数的计算…………………………………………………………8 3.1电路的确定…………………………………………………………………8 3.2参数计算……………………………………………………………………8 4 电路的仿真………………………………………………………………………10 4.1 电路仿真……………………………………………………………………10 5实物的制作与调试………………………………………………………………12 5.1元件的焊接…………………………………………………………………12 5.2电路板的调试………………………………………………………………12 结束语………………………………………………………………………………13 致谢…………………………………………………………………………………14 参考文献……………………………………………………………………………15 附录A电路原理图………………………………………………………………16 附录B PCB 图………………………………………………………………………17 附录C 实物图…………………………………………………………………… 18 附录D 元器件清单…………………………………………………………………19 设计任务与总体方案1.1 设计任务一.设计要求要求有课程设计说明书,并制作出实际电路。
高频小信号谐振放大器实验121180166 赵琛一、 实验目的1. 掌握高频小信号调谐放大器的工作原理和基本电路结构。
2. 掌握高频小信号调谐放大器的调试方法。
3. 掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数,1dB 压缩点)的测试方法。
二、实验使用仪器1.小信号调谐放大器实验板 2.200MH 泰克双踪示波器 3. FLUKE 万用表 4. 模拟扫频仪(安泰信) 5. 高频信号源 6. 高频毫伏表 三、实验基本原理与电路 1、 小信号调谐放大器的基本原理小信号调谐放大器是构成无线电通信设备的主要电路, 其作用是有选择地对某一频率范围的高频小信号信号进行放大 。
所谓“小信号”,指输入信号电压一般在微伏~毫伏数量级范围内,对于这种幅度范围的输入信号,放大器一半工作在线性范围内。
所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC 调谐回路)。
此时放大器对谐振频率0f 及附近频率的信号具有最大的增益,而对其它远离0f 频率的输入信号,增益很小,如图1-1所示。
2、小信号调谐放大器技主要技术指标1. 增益:表示高频小信号调谐放大器对输入信号的放大能力 电压增益的定义:01020log ()iU dB U ⨯ (1_1) 其中输出信号和输入信号的有效值分别为0U ,i U 。
相对增益(d B )f图1.1 高频小信号调谐放大器的频率选择特性曲线功率增益的定义: 01010log ()iP dB P ⨯ (1_2) 其中输出信号和输入信号的功率分别为0P ,i P 。
在高频和射频电路中功率的单位常用dBm 表示:dBm 和mW 之间的换算关系:1010log ()1PdBm mW=⨯,10dBm =10mW (1_3)2. 通频带和选择性:通常将小信号放大器的电压增益下降到最大值的0.707倍时所对应的输入信号频率范围定义为放大器的通频带,用B 0.7表示。
为衡量放大器的频率选择性,通常引入参数——矩形系数K 0.1,它定义为:0.10.10.7B K B =(1_4) 式中,B 0.1为电压增益下降到最大值的0.1倍处的输入信号带宽,如图1.1所示。
理想的电路频率选择性如图1.1的虚线所示。
矩形系数越小,放大器的选择性越好,抑制邻近无用信号的能力就越强。
3.稳定性:高频小信号谐振放大器能够稳定工作是首要条件。
由于高频放大器的工作频率较高,根据晶体管的Y 参数模型,当工作频率较高时,晶体管本身存在内反馈参数fe y ,同样当工作频率较高时,需要考虑外电路元器件的引线电感和PCB 布线时的板间分布电容,平行信号线之间的寄生电容等,此时这些参数会构成分布参数电路,此外如果电源的去耦电路设计不好,各级电源之间还会有相互串扰,都很有可能构成外部的寄生反馈回路,当满足正反馈的相位条件时,就构成了正反馈,很容易引起高频放大器的自激。
即使没有引起放大器的自激,由于晶体管内反馈参数fe y 和外部分布参数的不稳定,当环境温度变化,电源电压的波动,直流工作点的漂移,外部的电磁干扰,都有可能使放大器出现明显的增益变化、中心频率偏移和频率特性曲线畸变,甚至发生部分的自激振荡。
因此,必须采取多种措施来保证放大器的稳定,1. 合理地设计外部电路的元器件布局和信号线走向、适当的降低每级放大器的增益。
2. 降低每级放大器初级线圈和次级线圈之间的耦合系数,减少下一级放大器输入电阻对本级的影响。
3.在每级放大器的输入端串联一个阻值在几百欧范围内的电阻,对放大器的输入信号进行适当衰减和限流。
4.在某些情况下可以对末级放大器进行负载失配,尽可能降低内反馈参数fe y 的影响。
5.在放大器的输入端进行阻抗匹配,使放大器的输入电阻和信号传输线的特征阻抗匹配。
(信号传输线一般是铜轴线,特征阻抗是50欧)6.各级放大器的电源相互隔离和去耦,引入电压负反馈稳定输出电压,对大功率电路和高速信号电路采取电磁屏蔽等必要的工艺措施。
4.噪声系数:为了提高接收机的灵敏度,必须设法降低放大器的噪声系数。
前置高频放大器一般由多级组成,降低噪声系数的关键在于减小前级电路的内部噪声。
因此,在设计前级放大器时,要求采用低噪声器件,合理地设置工作点电流(一般将静态工作点电流设置较小,目的是减少电路的噪声),适当的限制输入信号带宽,目的是减少等效噪声带宽等,使放大器在尽可能高的功率增益下噪声系数最小。
5.输入信号的动态范围:输入信号的动态范围定义为:min max 10log 20Vin Vin (dB )或者minmax10log 10Pin Pin (1_5)max Vin 和min Vin 分别表示小信号放大器正常工作时所允许的输入信号幅度的最大有效值和最小有效值。
max Pin ,max Pin 分别表示小信号放大器正常工作时所允许的最大输入信号功率的和最小输入信号功率。
通常输入信号功率的下限主要由电路的噪声系数决定。
为使输入信噪比不至于过低,以避免输入信号不至于完全淹没在噪声基底下,在一定的噪声系数下,输入信号的功率不能很小。
一般来说噪声系数越小,所允许的输入信号功率下限就越小。
当输入信号功率较大时,小信号放大器的增益会显著降低,同时出现比较严重的非线性失真,包括谐波失真和非线形失真。
非线形失真中的三阶交调失真对输出信号的影响较大。
一般来说,输入信号功率的上限主要由电路的三阶交调失真决定。
6.非线性失真(谐波失真和三阶交调失真)当小信号放大器的输入信号功率较小时,放大器工作在线性状态,输出信号和输入信号之间满足线性关系,如式(1_6)。
此时输出信号的频率和输入信号的频率相同,没有新的频率分量产生,放大器没有产生非线性失真。
0out in V a V =, c o sin V V t ω= (1_6) V 和ω分别表示输入信号的幅度和角频率。
当小信号放大器的输入信号功率增大后,放大器开始工作在非线性状态,此时输入和输出的关系如用式(1_7)表示。
201out in in V a V a V =+ (1_7)将cos in V V t ω=代入(1_7),整理后得到 2210111cos cos 222out V a V a V t a V t ωω=++ (1_8) 此时输出信号包含输入信号的二次谐波。
小信号放大器的输入信号功率进一步增大,放大器的非线性状态可用式(1_9)表示。
23012out in in in V a V a V a V =++ (1_9)将cos in V V t ω=代入(1_9),整理后得到, 2323102121311()cos cos 2cos32424out V a V a V a V t a V t a V t ωωω=++++ (1_10)显然输出信号包含输入信号的二次谐波和三次谐波。
放大器工作在非线性状态时,输出信号将包含输入信号的各次谐波,以及输入信号各次谐波之间的交叉混频项。
其中对输出信号影响较大的主要是三阶交调。
下面简单的推导一下三阶交调产生的原因。
假设输入信号包含两个幅度相同,频率相近的信号21,f f , 12cos cos in V V t V t ωω=+(1_11)将(1_11)代入(1_9)中进行整理,233102102223112123122221121232121232212199()cos ()cos 4411cos 2cos32411cos 2cos324(cos()cos())3(cos(2)cos(2))23(cos(2)cos(2)2out V a V a V a V t a V a V t a V t a V t a V t a V t a V t t a V t t a V t t ωωωωωωωωωωωωωωωωωω=+++++++++++-+++-+++-) (1_12) 可以看到,输出信号包含122ωω-,212ωω-两个频率分量。
如下图所示:假设小信号放大器输入两个频率相近的信号21,f f ,当输入信号功率较高时,输出信号在频率21,f f 的两侧会出现频率为212f f -,122f f -的两个频率分量,由于这两个频率分量与21,f f 相隔很近,很难用滤波器滤除,因此三阶交调分量对小信号放大器的输出信号频谱纯度影响很大,应当尽量避免。
122112图2 三阶交调失真示意图下面以一个商用的宽带射频放大器为例,输出端接频谱仪来观察输出信号的非线性失真和三阶交调失真,放大器的小信号增益大约为20dB 。
输入射频信号的频率为3GHz ,输入功率分别为-40dBm ,-30dBm ,-20dBm ,-10dBm ,输出信号频谱如图3,4,5,6所示。
可以看到输入信号功率较小时(-40dBm ),放大器工作在线性状态,输出信号几乎没有谐波分量。
随着输入信号功率的增加,输出信号的谐波分量逐渐增多,谐波分量的功率也逐渐增加,总谐波失真增减增大,经测量总谐波失真分别是0.5%(输入功率-30dBm ),0.98%(输入功率-20dBm ),4.76%(输入功率-10dBm )。
P o w e r (d B m )P o w e r (d B m )Frequency(GHz)图3 输入功率为-40dBm 时输出频谱 图4 输入功率为-30dBm 时输出频谱P o w e r (d B m )Frequency(GHz)P o w e r (d B m )Frequency(GHz)图5 输入功率为-20dBm 时输出频谱 图6 输入功率为-10dBm 时输出频谱输入两个频率相近的信号,频率分别是3GHz ,3.001GHz ,输入信号功率分别是-45dBm ,-18dBm ,-12dBm ,-6dBm ,用频谱仪测量放大器输出信号的频谱。
P o w e r (d B m )P o w e r (d B m )Frequency(GHZ)图7 输入功率-45dBm ,输出信号频谱 图8 输入功率-18dBm ,输出信号频谱P o w e r (d B m )Frequency(GHz)P o w e r (d B m )Frequency(GHz)图9 输入功率-12dBm ,输出信号频谱 图10 输入功率为-6dBm ,输出信号频谱可以看到,当输入双频信号的功率较小时,射频放大器工作在线性状态,输出信号频率分量和输入信号频率分量一致。
随着输入双频信号的功率增加,射频放大器出现非线性工作状态,输出信号中出现了三阶交调分量。
输入双频信号的功率进一步增加,输出信号中三阶交调分量的功率也进一步增加。
当输入双频信号的功率较大时,射频放大器出现比较严重的非线性状态,输出信号中三阶交调分量的功率很大,并且在三阶交调分量的两侧还出现了五阶交调分量。