实验1小信号放大器
- 格式:ppt
- 大小:320.82 KB
- 文档页数:12
实验一高频小信号调谐放大器一、实验目的1.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算。
2.掌握信号源内阻及负载对谐振回路Q值的影响。
3.掌握高频小信号放大器动态范围的测试方法。
二、实验内容1.调测小信号放大器的静态工作状态。
2.用示波器观察放大器输出与偏置及回路并联电阻的关系。
3.观察放大器输出波形与谐振回路的关系。
4.调测放大器的幅频特性。
5.观察放大器的动态范围。
三、基本原理:小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图1-1所示。
该电路由晶体管VT7、选频回路CP2二部分组成。
它不仅对高频小信号放大,而且还有一定的选频作用。
本实验中输入信号的频率fs=10MH。
R67、R68和射极电阻决定晶体管的静态工作点。
拨码开关S7改变回路并联电阻,即改变回路Q值,从而改变放大器的增益和通频带。
拨码开关S8改变射极电阻,从而改变放大器的增益。
四、实验步骤:熟悉实验板电路和各元件的作用,正确接通实验箱电源。
1.静态测量将开关S8的2,3,4分别置于“ON”,测量对应的静态工作点,将短路插座J27断开,用直流电流表接在J27C.DL两端,记录对应I c值,计算并填入表1.1。
将S8“l”置于“ON”,调节电位器VR15,观察电流变化。
2.动态测试(1)将10MHZ高频小信号(<50mV)输入到“高频小信号放大”模块中J30(XXH.IN)。
(2)将示波器接入到该模块中J31(XXH.OUT)。
(3)J27处短路块C.DL连到下横线处,拨码开关S8必须有一个拨向ON,示波器上可观察到已放大的高频信号。
(4)改变S8开关,可观察增益变化,若S8“ l”拨向“ON”则可调整电位器VR15,增益可连续变化。
(5)将S8其中一个置于“ON”,改变输出回路中周或半可变电容使增益最大,即保证回路谐振。
(6)将拨码开关S7逐个拨向“ON”,可观察增益变化,该开关是改变并联在谐振回路上的电阻,即改变回路Q值。
实验一 高频小信号放大器
一、 单调谐高频小信号放大器
图1.1 高频小信号放大器
1、 根据电路中选频网络参数值,计算该电路的谐振频率ωp ;
s rad CL w p /936.210580102001
1
612=⨯⨯⨯==--
2、 通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。
,708.356uV V I = ,544.1mV V O = ===
357
.0544.10I O v V V A 4.325 输入波形:
输出波形:
3、 利用软件中的波特图仪观察通频带,并计算矩形系数。
4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电
压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v相应的图,根据图粗略计算出通频带。
感谢下载!
欢迎您的下载,资料仅供参考。
实验一小信号调谐(单双调谐)放大器实验实验一高频小信号调谐放大器实验一、实验目的1.掌握小信号调谐放大器的基本工作原理; 2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 3.了解高频小信号放大器动态范围的测试方法;二、实验原理(一)单调谐放大器小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图1-1(a)所示。
该电路由晶体管Q1、选频回路T1二部分组成。
它不仅对高频小信号进行放大,而且还有一定的选频作用。
本实验中输入信号的频率fS=12MHz。
基极偏置电阻W3、R22、R4和射极电阻R5决定晶体管的静态工作点。
可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。
表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数Av0,放大器的通频带BW及选择性(通常用矩形系数Kr0.1来表示)等。
放大器各项性能指标及测量方法如下: 1.谐振频率放大器的调谐回路谐振时所对应的频率f0称为放大器的谐振频率,对于图1-1(a)所示电路(也是以下各项指标所对应电路),f0的表达式为式中,L为调谐回路电感线圈的电感量;为调谐回路的总电容,的表达式为式中,Coe为晶体管的输出电容;Cie为晶体管的输入电容;P1为初级线圈抽头系数;P2为次级线圈抽头系数。
谐振频率f0的测量方法是:用扫频仪作为测量仪器,测出电路的幅频特性曲线,调变压器T的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f0。
2.电压放大倍数放大器的谐振回路谐振时,所对应的电压放大倍数AV0称为调谐放大器的电压放大倍数。
AV0的表达式为式中,为谐振回路谐振时的总电导。
要注意的是yfe本身也是一个复数,所以谐振时输出电压V0与输入电压Vi相位差不是180º而是为180º+Φf e。
AV0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1(a)中输出信号V0及输入信号Vi的大小,则电压放大倍数AV0由下式计算:AV0=V0/Vi或AV0=20lg(V0/Vi)dB3.通频带由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数AV下降到谐振电压放大倍数AV0的0.707倍时所对应的频率偏移称为放大器的通频带BW,其表达式为BW=2△f0.7=f0/QL 式中,QL为谐振回路的有载品质因数。
实验一小信号调谐放大电路一、实验目的1.熟悉THKGP高频电子线路综合实验箱、示波器、扫频仪、频率计、高频信号发生器、低频信号发生器、万用表的使用;2.了解谐振回路的幅频特性分析——通频带与选择性。
3.了解信号源内阻及负载对谐振回路的影响,并掌握频带的展宽。
二、预习要求实验前,预习第一章:基础知识;第二章:高频小信号放大电路;三、实验原理与参考电路高频小信号放大器电路是构成无线电设备的主要电路,它的作用是放大信道中的高频小信号。
为使放大信号不失真,放大器必须工作在线性范围内,例如无线电接收机中的高放电路,都是典型的高频窄带小信号放大电路。
窄带放大电路中,被放大信号的频带宽度小于或远小于它的中心频率。
如在调幅接收机的中放电路中,带宽为9KHz,中心频率为465KHz,相对带宽Δf/f0约为百分之几。
因此,高频小信号放大电路的基本类型是选频放大电路,选频放大电路以选频器作为线性放大器的负载,或作为放大器与负载之间的匹配器。
它主要由放大器与选频回路两部分构成。
用于放大的有源器件可以是半导体三极管,也可以是场效应管,电子管或者是集成运算放大器。
用于调谐的选频器件可以是LC谐振回路,也可以是晶体滤波器,陶瓷滤波器,LC集中滤波器,声表面波滤波器等。
本实验用三极管作为放大器件,LC 谐振回路作为选频器。
在分析时,主要用如下参数衡量电路的技术指标:中心频率、增益、噪声系数、灵敏度、通频带与选择性。
单调谐放大电路一般采用LC回路作为选频器的放大电路,它只有一个LC回路,调谐在一个频率上,并通过变压器耦合输出,图1-1为该电路原理图。
CEcf0.7071u中心频率为f0 带宽为Δf=f2-f1图1-1、单调谐放大电路四、实验内容首先在实验箱上找到本次实验所用到的单元电路,然后接通实验箱电源,并按下+12V总电源开关K1,以及本实验单元电源开关K1100。
1.单调谐放大器增益和带宽的测试。
把K1101和K1102的1和2短接,把扫频仪的输出探头接到电路的输入端(TP 1101),扫频仪的检波探头接到电路的输出端(TP1102),然后在放大器的射极和调谐回路中分别接入不同阻值的电阻,分别测量单调谐放大器的中心频率、增益和带宽,记录并完成表1-1。
实验一高频小信号谐振放大器一、实验目的1.高频小信号谐振放大器的工作原理及电路构成和电路元器件的作用。
2.了解高频小信号的质量指标和谐振放大器的性能。
3.掌握L,C参数对谐振频率的影响。
4.分析单调谐回路放大器的质量指标,测量电压增益,测量功率增益;测量放大器的频率。
二、预习要求1.复习高频小信号放大器的功用。
答:高频小信号放大器主要用于放大高频小信号, 属于窄带放大器。
由于采用谐振回路作负载,解决了放大倍数、通频带宽、阻抗匹配等问题,高频小信号放大器又称为小信号放谐振放大器。
就放大过程而言,电路中的晶体管工作在小信号放大区域中,非线性失真很小。
一方面可以对窄带信号实现不失真放大,另一方面又对带外信号滤除, 有选频作用。
2.高频小信号放大器,按有源器件分可分为:_以分立元件为主的集中选频放大器__,_以集成元件为主的集中选频放大器_;按频带宽度可分为:_窄带放大器_,宽带放大器。
三、实验内容1.参照电路原理图1-1连线。
,计算回路电容和回路2.图1-1为一单调谐回路中频放大器,已知工作频率f电感。
图1-1 小信号谐振放大器1.在选用三极管时要查晶体管手册,使参数合理。
2.观察瞬态分析的波形输出及频谱分析是否合理。
3.在pspice中设定:参数,AC=100mV、V OFF =0V,Vampl=300mV,freq=10MegHz。
V2参数CD=12V。
V1在AC Sweep中设定参数:①在AC Sweep Type中选 Decade。
②在Sweep Parameters 中选pts/Decade为20、Stort Fred为10k、End Fred为500MEG。
、Lntervat为10。
③AC Sweep Type中选 Output Voltoge为V(A)、1/V为V1四、实验报告1.根据输入信号的幅度和频率,测出输出信号的幅度和频率,完成表1-12.画出输入信号和输出信号的波形;(根据图形输出)仿真图如下:3.分析单调谐回路谐振放大器的质量指标:(1)测量电压增益;=60Au=UoUi(2)测量放大器的通频带;谐振回路的通频带:BW=fH-fL =0.02MHz实验二三点式振荡器一、实验目的1.熟悉三点式振荡器的工作原理及电路构成。
实验一高频小信号调谐放大器实验一、实验目的1.熟悉高频电路实验箱,示波器,扫频仪的使用。
2.掌握高频小信号谐振电压放大器的电路组成与基本工作原理。
3.熟悉谐振回路的调谐方法及幅频特性测试分析方法。
4.掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。
二、实验条件,设备,器材高频电路实验箱,示波器,扫频仪三、实验原理(包括电路原理图),实验方案与手段1、单调谐小信号放大器高频信号放大器工作频率高,但带宽相对工作频率却很窄。
按器件分:BJT、FET、集成电路(IC);按带宽分:窄带、宽带;按电路形式分:单级、多级;按负载性质分:谐振、非谐振。
晶体管集电极负载通常是一个由LC组成的并联谐振电路。
由于LC并联谐振回路的阻抗是随着频率变化而变化。
理论上可以分析,并联谐振在谐振频率处呈现纯阻,并达到最大值,即放大器在回路谐振频率上将具有最大的电压增益。
若偏离谐振频率,输出增益减小。
调谐放大器不仅具有对特定频率信号的放大作用,同时一也起着滤波和选频的作用。
单调谐放大器电路原理图2、双调谐放大器电路原理图双调谐回路放大器具有频带宽、选择性好的优点,并能较好地解决增益与通频带之间的矛盾,从而在通信接收设备中广泛应用。
在双调谐放大器中,被放大后的信号通过互感耦合回路加到下级放大器的输入端,若耦合回路初、次级本身的损耗很小,则均可被忽略。
电压增益为通频带为弱耦合时,谐振曲线为单峰;为强耦合时,谐振曲线出现双峰;临界耦合时,双调谐放大其的通频带BW四、实验内容,操作步骤1、单频率谐振的调整断电状态下,按如下框图进行连线:用示波器观测TP3,调节①号板信号源模块,使之输出幅度为200mV、频率为10.7MHz正弦波信号。
顺时针调节W1到底,用示波器观测TP1,调节中周,使TP1幅度最大且波形稳定不失真。
2、动态测试保持输入信号频率不变,调节信号源模块的幅度旋钮"RF幅度",改变输入信号TP3的幅度。
实验一高频小信号调谐放大器一、实验目的小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号或微弱信号的线性放大。
通过本实验,我们希望同学们能重点掌握以下几方面内容:1.静态工作点(直流工作状态)的调试. 小信号调谐放大器必需工作在甲类.2.小信号(交流工作状态)的定义. 输入信号必需小于5 毫伏.3.并联谐振回路的特性. 谐振曲线,通频带,矩形系数.4.放大特性. 电压放大倍数,动态特性(输入 ---- 输出电压特性).二、实验内容1、调节谐振回路使谐振放大器谐振在10.7MHz。
2、测量谐振放大器的电压增益。
3、测量谐振放大器的通频带。
4、测量谐振放大器的输入---- 输出电压特性5、判断谐振放大器选择性的优劣。
三、实验仪器1、20MHz模拟示波器一台2、数字万用表一块3、高频信号源一台四、实验原理图1-1所示电路为共发射极接法的晶体管高频小信号调谐放大器。
它不仅要放大高频信号,而且还要有一定的选频作用,因此晶体管的集电极负载为LC并联谐振回路。
在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率和相位。
晶体管的静态工作点由电阻R B1,R B2及R E决定,其计算方法与低频单管放大器相同。
图1-1 小信号调谐放大器放大器在高频情况下的等效电路如图1-2所示,晶体管的4个y 参数ie y ,oe y ,fe y 及re y 分别为输入导纳 ()e b e b b b e b e b ie jwc g r jwc g y '''''1+++≈(1-1) 输出导纳 ()e b e b e b b b e b b b m oe jwc jwc g r jwc r g y ''''''1+++≈ (1-2)正向传输导纳 ()e b e b b b m fe jwc g r g y '''1++≈ (1-3) 反向传输导纳 ()e b e b b b eb re jwc g r jwc y ''''1++-≈(1-4)图1-2 放大器的高频等效回路式中,m g ——晶体管的跨导,与发射极电流的关系为{}S mA I g E m 26= (1-5) e b g /——发射结电导,与晶体管的电流放大系数β及I E 有关,其关系为 {}S mA I r g E e b e b β261''== (1-6) b b r /——基极体电阻,一般为几十欧姆;c b C /——集电极电容,一般为几皮法;e b C /——发射结电容,一般为几十皮法至几百皮法。
实验一三极管交流小信号放大器仿真实验一、实验目的(1)掌握放大器静态工作点的调整与测量方法(2)掌握放大器的电压放大倍数的测量方法(3)观察和研究静态工作点的选择,对输出波形及电压放大倍数的影响(4)通过实验熟悉和掌握EWB仿真软件的使用方法。
二、实验原理晶体三极管具有电流放大作用,用它可以构成共射,共集,共基三种组态的电路。
如图所示的放大器为分压式偏压共射放大电路,其静态工作点主要由U B电位决定,由于调节电位器R W可以调节U B电位,从而改变放大器的静态工作点。
当信号输入电路后,相当于在晶体三极管的发射结上加了变化的电压,于是使晶体管的基极电流发生变化,通过晶体管的电流放大做用,基极电流被放大了β倍后成为集电极电流的变化,集电极电流流过负载电阻,就能得到比输入大得多的输出电压。
如果静态工作点调的太高或太底,当输入端加入了交流信号又超过了工作点电压时,则输出电压将会产生饱和或截止失真。
三、实验电路EWB实验电路如图所示。
分压式偏置共射放大电路实验电路四、实验内容与步骤(1)静态工作点的测试与调整进入仿真电路,依次调节Rw的百分比,记录各电压、电流表的值,对应填入表1中。
表1(2)测试电压放大倍数进入仿真电路,设置输入信号的幅度为Ui=100mV,频率为f =1000Hz。
双击打开仿真示波器,调试好示波器。
打开仿真开关,在输出波形不失真的情况下,按表2所列测试条件测试Ui和Uo的值。
并计算Au。
表2(3)静态工作点对输出波形的影响。
进入仿真电路,设置Us=100mV,f =1000Hz。
调节Rw分别为3%.10%.70%,打开示波器显示输出波形。
观察Rw分别为3%.10%.70%时,放大电路的工作状态,即放大电路输出波形的失真情况。
利用EWB的图形复制功能记录下以上(产生饱和或截止失真)实验波形,并将失真情况记录在表3中。
表3(4)测量输入电阻。
(5)测量输出电阻。
(6)改变三极管工作温度,观察对放大电路工作状态的影响,写出重作上述实验,写出结论。
小信号调谐(单调谐)放大器实验
小信号调谐放大器实验是一种常见的实验,用于分析和研究放大器的频率响应特性。
在这个实验中,我们会使用一个单调谐放大器电路,通过调节电路参数来实现对特定频率信号的放大。
下面是一种常见的实验步骤:
材料准备:
1. 信号发生器:用于产生待放大的输入信号。
2. 单调谐放大器电路:由电容、电感和电阻等元件组成的并联谐振电路。
3. 可变电阻:用于调节电路的谐振频率。
实验步骤:
1. 创建实验电路:根据实验要求,根据所给的电路图,建立单调谐放大器电路。
2. 连接信号发生器和电路:使用信号发生器将待放大的输入信号接入电路的输入端。
3. 设置信号发生器:调节信号发生器的频率和幅度,使其产生待放大的输入信号。
4. 测量输出信号:使用示波器或其他合适的仪器,测量电路的输出信号。
5. 调节电路参数:根据实验需要,逐步调节电路的元件参数,如可变电阻,以使电路在特定频率上获得最大增益。
6. 记录实验数据:在每次调节电路参数后,记录输出信号的幅度和频率。
7. 分析实验数据:根据记录的数据,绘制输出信号的幅度和频率之间的关系曲线。
8. 总结实验结论:根据实验数据的分析结果,对放大器的频率响应特性进行总结,并根据需要进行进一步的讨论和研究。
这个实验可以帮助我们理解放大器的频率响应特性,并且可以通过调节电路参数来实现对特定频率信号的放大,这在实际电子电路设计和应用中非常重要。