地震勘探原理 第4章地震波速度
- 格式:ppt
- 大小:1.87 MB
- 文档页数:87
第四章地震速度-岩性分析地震波的速度是地震勘探中最重要的一个参数,同时也是地震地层解释中最重要的一个参数。
从实质上讲,各种(大多数)地震技术的核心任务(主要目标),在诞生初期,几乎都是围绕着地层速度的勘测在进行。
从另一方面看,地震反射资料无非是地层界面之间波阻抗差的反映。
第一节地震波传播速度的影响因素一、岩石弹性常数的影响根据“均匀的完全弹性介质中弹性波的波动方程”可以知道,地震纵波与横波在介质中传播的速度与介质的弹性常数之间存在下述关系:V==(4-1)pV==(4-2)s式中λ、μ是拉梅系数;ρ是介质的密度;E是杨氏模量;δ是泊松比。
它们都是说明介质的弹性性质的参数。
E比ρ相对于密度增加了,增加的级次较高。
二、岩性的影响表一、表二、沉积岩的波速三、密度的影响除了波动方程导出的严格公式外,已经可以肯定,速度与密度的关系近似为线性关系,随着密度的增加,速度也会增加。
另外,国外对大量岩石样品做了物性研究后,提出了下列经验公式:4Va ρ= (4-3)140.31V ρ= (4-4) 但是,速度与密度的关系随地区的不同而有差异,在每个地区应该存在一定的关系。
四、与埋深的关系大量实际资料表明,在岩石性质和地质年代相同的条件下,地震波的速度随岩石埋藏深度的增加而增大,其原因主要是埋深控制地层压实程度的高低。
一般地,存在如下公式:0()CZ V Z V e = (4-5)五、与地质年代的关系在相同埋深条件下,地质年代增加时,塑性介质的蠕变,造成压实程度增高,进而速度降低。
六、与孔隙度和流体成分的关系 1、时间平均方程11f mV V V Φ-Φ=+ (4-6) 2、油、气、水等流体的速度很小,尤其是气。
5000/m V m s =,(1600/f V m s =盐水), (1300/fV m s =油),(300~400/f V m s =气)。
七、温度压力的影响温度升高,速度减小;压力增大,速度减小。
第三章地震资料采集方法与技术一.野外工作概述1.陆地石工基本情况介绍试验工作内容:①干扰波调查,了解工区内干扰波类型与特性。
②地震地质条件调查,了解低速带的特点、潜水面的位置、地震界面的存在与否、地震界面的质量如何(是否存在地震标志层)、速度剖面特点等。
③选择激发地震波的最佳条件,如激发岩性、激发药量、激发方式等。
④选择接收和记录地震波的最佳条件,包括最合适的观测系统、组合形式和仪器因素的选择等。
生产工作过程:地震队的组成(1)地震测量:把设计中的测线布置到工作地区,在地面上定出各激发点和接收排列上各检波点的位置(2)地震波的激发陆上地震勘探的震源类型:炸药震源和可控震源。
激发方式:炸药震源的井中激发、土坑等。
激发井深:潜水面以下1-3m,(6-7m)。
(3)地震波的接收实现方式:检波器、排列和地震仪器2.调查干扰波的方法(1)小排列(最常用)3-5m道距、连续观测目的:连续记录、追踪各种规则干扰波,分析研究干扰波的类型和分布规律。
从地震记录中可以得到干扰波的视周期和视速度等基本特征参数(2)直角排列适用于不知道干扰波传播方向的情况Δt1和Δt2的合矢量的方向近似于干扰波的传播方向(3)三分量检波器观测法(4)环境噪声调查信噪比:有效波的振幅/干扰波的振幅(规则)信号的能量/噪声的能量3.各种干扰波的类型和特点(1)规则干扰指具有一定主频和一定视速度的干扰波,如面波、声波、浅层折射波、侧面波等。
面波(地滚波):在地震勘探中也称为地滚波,存在于地表附近,振幅随深度增加呈指数衰减。
其主要特点:①低频:几Hz~20Hz;②频散(Dispersion):速度随频率而变化;③低速:100m/s ~1000m/s,通常为200m/s~500m/s;④质点的振动轨迹为逆时针方向的椭圆。
面波时距曲线是直线,记录呈现“扫帚状”,面波能量的强弱与激发岩性、激发深度以及表层地震地质条件有关。
(能量较强)声波:速度为340m/s左右,比较稳定,频率较高,延续时间较短,呈窄带出现。
地震波速度资料的解释论文提要地震波速度是地震勘探中最重要的一个参数,是地震波运动学特征之一。
在资料处理和解释过程中,速度资料均十分重要。
例如在计算动校正时需要叠加速度,绘制构造图进行时深转换时需要平均速度。
近年来,速度资料在地震解释中应用得越来越广泛,概括起来有以下几方面:(1)进行时深转换、绘制深度剖面和构造图。
(2)根据速度资料识别波的性质,如多次波、绕射波和声波等。
(3)利用速度资料制作合成地震记录和理论地震模型,对地震记录作模拟解释。
(4)利用速度纵横向变化规律,研究地层沉积特征和相态展布。
(5)利用层速度资料,预测岩性分布和砂泥岩横向变化。
(6)利用速度资料计算反射系数图板,进行烃类检测,判别含气亮点。
(7)利用合成声波测井,进行砂体横向追踪和对比。
(8)利用速度资料预测地层异常压力。
由此可见,提取和分析速度资料是地震地质解释的一项重要的工作,熟悉各种有关的速度概念、速度资料的求取方法和影响速度的各种地质因素对于应用速度资料解决地质问题是很重要的。
正文一、理论研究和实际资料证实,地震波在岩层中的传播速度与岩层的性质、岩石的成分、密度、埋藏深度、地质时代、孔隙度、流体性质等因素有关,下面分别分析各种因素对速度的影响。
(一)影响速度的一般因素1.岩性由于各种岩石类型的成分不同,其传播地震波的速度是不同的(图5—1);有时即使是同一种岩石类型,由于结构不同其波速也在一定围变化。
地震波传播速度主要取决于构成这些岩石矿物的弹性性质,一般来说,火成岩孔隙很少或没有孔隙,地震波速度比变质岩和沉积岩的都高,且变化围小;变质岩的波速变化围较大,沉积岩波速最低,变化围大,这主要与沉积岩成分和结构复杂,受孔隙度和流体性质的影响较大有关。
表(5—1)是几种类型岩石与介质的波传播速度和波阻抗资料。
2.密度通过大量岩石样品物性研究和数据分析整理,发现地震波速度与岩石体积密度之间(图5—1(a)、(b)),存在着一种令人满意的近似关系。
地震勘探中常用速度的概念和特点地震勘探是一种通过分析地震波在地下传播的方式来获取地下结构信息的方法。
在地震勘探中,速度是一个重要的参数,它描述了地震波在地下传播的速度。
常用的速度包括纵波速度(P波速度)、横波速度(S波速度)和层速度。
纵波速度(P波速度)是地震波中传播速度最快的一种。
它是指地震波在介质中传播时,颗粒沿着波的传播方向做压缩和膨胀运动的速度。
纵波速度通常比横波速度大,因为介质对压缩力的响应比对剪切力的响应更快。
纵波速度可以用来计算地震波在地下的传播时间,从而确定地下结构的深度。
横波速度(S波速度)是地震波中传播速度较慢的一种。
它是指地震波在介质中传播时,颗粒沿着波的传播方向做剪切运动的速度。
横波速度通常比纵波速度小,因为介质对剪切力的响应比对压缩力的响应更慢。
横波速度可以用来计算地震波在地下的传播时间,从而确定地下结构的深度。
层速度是地震波在地下不同介质中传播的平均速度。
地下介质的速度通常是不均匀的,因为地下结构的密度和弹性模量会随深度变化。
为了更准确地描述地下结构,地震勘探中常用层速度来表示地下介质的速度。
层速度可以通过分析地震波在地下的传播时间和路径来计算得到。
在地震勘探中,速度的特点有以下几个方面:1. 方向性:地震波的传播速度通常与传播方向有关。
纵波速度通常比横波速度大,而且在同一介质中,纵波速度的方向性比横波速度更强。
这是因为介质对压缩力的响应比对剪切力的响应更快。
2. 受介质性质影响:速度的大小和方向受地下介质的性质影响。
不同类型的岩石和土壤具有不同的密度和弹性模量,从而导致不同的速度。
因此,在地震勘探中,需要对地下介质的性质进行准确的分析和判断,以获得准确的速度信息。
3. 变化性:地下介质的速度通常是不均匀的,因为地下结构的密度和弹性模量会随深度变化。
因此,在地震勘探中,需要通过分析地震波在地下的传播时间和路径来计算层速度,以更准确地描述地下结构。
总结起来,地震勘探中常用速度包括纵波速度、横波速度和层速度。
第四章地震波的速度
第1节地震波在岩层中的速度及与各种因素的关系
第2节几种速度的概念
第3节各种速度之间的关系
第4节平均速度的测定
第5节叠加速度谱的制作与解释
主讲教师:刘洋
第1节地震波在岩层中的速度及与
各种因素的关系
)速度比值(或泊松比)
112111212222−−=−⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛r r V V V V S P S P
对数-对数坐标0.25
0.31V ρ=)
、温度、压力
)随着温度的升高,速度降低
)随着压力的升高,速度增加
第2节几种速度的概念。
需总时间之比是平均速度。
第3节各种速度之间的关系
第4节平均速度的测定
第5节叠加速度谱的制作与解释
道集动校正速度:
3500m/s 动校正速度:
4400m/s 动校正速度:4150m/s
CMP。
地震波速度变化规律
地震波速度变化规律是指地震波在地壳中传播时速度的变化规律。
地震波分为两类: 纵波和横波。
纵波在地壳中传播时速度较慢,而横波速度较快。
在地壳中,纵波速度随着深度的增加而减小,在地壳的表层速度较快,而在地壳的深部速度较慢。
这是因为地壳的表层较软,纵波可以较快地传播,而地壳的深部则较硬,纵波传播较慢。
横波速度则随着深度的增加而增加,在地壳的表层速度较慢,而在地壳的深部速度较快。
这是因为地壳的表层较软,横波可以较慢地传播,而地壳的深部则较硬,横波传播较快。
总之,地震波的速度在地壳中的变化规律是不同的,纵波的速度随着深度的增加而减小,而横波的速度则随着深度的增加而增加。
这种速度变化规律在研究地震学中有重要意义。
地震波速度变化规律的研究主要用于地震深度和地壳结构的研究。
通过观测纵波和横波的速度变化,可以推测出地震发生的深度。
此外,地震波速度变化规律还可以用于地壳结构的研究。
通过观测地震波速度的变化,可以推断出地壳结构的性质,如地壳的密度和弹性模量等。
地震波速度变化规律的研究也有助于地震预测和地震灾害
防御。
通过对地震波速度变化规律的研究,可以提高地震预测的准确性,并为地震灾害防御提供有力的技术支持。
总之,地震波速度变化规律的研究对地震学、地质学和工程领域都有重要的意义。
《地震勘探原理》各章节的复习要点第一章绪论(不作为考试内容)第二章地震波运动学理论§2.1 几何地震学基本概念1、基本概念,如地震子波:具有多个相位、延续60~100毫秒的稳定波形称为地震子波。
几何地震学:地震波的运动学是研究地震波,波前的空间位置与传播时间的关系,他与几何光学相似,也是引用波前,射线等几何图形来描述波的运动过程和规律,因此又叫几何地震学.地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法.波面:介质中每一个同时开始振动的曲面。
射线:在几何地震学中,通常认为波及其能量是沿着一条“路径”从波源传到所考虑的一点P,然后又沿着那条“路径”从P点传向其他位置。
这样的假想路径称为通过P点的波线或射线。
振动图:在地震勘探中,每个检波器所记录的,便是那个检波器所在点处的地面振动,它的振动曲线习惯上叫做该点的振动图。
波剖面:在地震勘探中,通常把沿着测线画出的波形曲线叫做“波剖面”。
视速度和视波长:如果不是沿着波的传播方向而是沿着别的方向来确定波速和波长,得到的结果就不是波速和波长的真实值。
这样的结果叫做简谐波的视速度和视波长。
全反射:如果V2>V1,则有sinθ2>sinθ1,即θ2>θ1;当θ1增大到一定程度但还没到90°时,θ2已经增大到90°,这时透射波在第二种介质中沿界面“滑行”,出现了“全反射”现象,因为θ1再增大就不能出现透射波了。
雷克子波:2、基本原理反射定律:反射线位于入射平面内,反射角等于入射角,即。
透射定律:透射线也位于入射面内,入射角的正弦与透射角的正弦之比等于第一、第二两种介质中的波速之比,即Snell定律:惠更斯原理:在已知波前面(等时面)上的每一个点都可视为独立的、新的子波源,每个子波源都向各方发出新的波,称其为子波,子波以所在处的波速传播,最近的下一时刻的这些子波的包络面或线便是该时刻的波前面。