两轮机器人自平衡研究(优质参照)
- 格式:ppt
- 大小:815.85 KB
- 文档页数:14
用以在线学习两足机器人的平衡控制的CTRNN和BPTT算法的即时实现:站立姿态实验摘要:为了学习机器人控制规则,本文描述了CTRNN算法和BPTT算法的即时实现实验的结果。
实验的目的是为了控制一个两足步行机器人模型在站立姿态下保持平衡。
机器人通过神经控制器控制其关节运动来补偿外界扰动的影响。
在机器人的即时电子单元中嵌入程序算法。
同时,文中详细介绍了在线学习的实现。
最后,实验结果的学习行为和控制性能证明了所提方法的可行性和效率。
1、介绍随着技术的发展,人们得以将来自人体或动物形体的启发应用于机器人制作。
因此,最新的仿人机器人是一种集成了高端机械技术与电子技术的复杂系统。
这些机器人具有完整的感知系统,能够进行人机交互,且能够在人们的日常生活环境中运动。
如何控制机器人在行走或站立时的平衡是控制仿人机器人的一大难题。
解决这一问题的一种方法是根据零力矩点理论设计控制器;另一种方法是利用仿生控制器,即具备适应能力,且能够通过训练获得所需反应的方法。
为了能够了解如何“正确”控制机器人保持平衡,利用诸如神经网络等仿生架构是一个很有希望的途径。
为此,人们在过去提出了几个基于神经元控制器的设想。
其中,Albus(1975)在1975年提出的小脑模型关节控制器(CMAC)设想在控制腿式机器人领域仍为人们所研究。
近期的研究主要涉及CMAC的建模及其泛化性能(Horvath&Szabo,2007),或是CMAC与其他诸如模糊逻辑(Su,Lee&Wang,2006),计算力矩控制(Lin&Chen,2007)等的联系。
CMAC 已被应用于控制两足步行机器人的平衡(Kun&Miller,1996)、鲁棒动态行走仿真(Lin&Chen,2007)及两足步行机器人实验(Sabourin&Bruneau,2005)等领域。
多年以来,循环神经网络(即动态神经网络)在复杂系统的控制领域被广泛研究(Marcua,Köppen-Seligerb,&Stücher,2008;Song&Tahk,2001)。
两轮小车自平衡控制系统的研究与设计
随着传统交通工具带来的能源危机、交通拥堵、环境污染等问题日益凸显,人们对新型交通工具的需求日益迫切。
两轮自平衡小车体积小、方便携带,并且采用电池供电不会产生尾气,是现今交通运输领域研究的重点。
同时,两轮自平衡小车是动态稳定的系统,它有着强耦合、非线性、欠驱动、多变量的特点。
因此可以在两轮自平衡小车这个平台上对各种控制算法进行验证,具有一定的理论研究意义。
在两轮自平衡小车领域国内外研究现状的基础上,本文对小车的姿态角检测和自平衡控制进行了研究。
首先,采用牛顿力学原理对小车的车轮、车身和电机分别建立数学模型,并根据三者之间的关系建立小车整体系统的模型。
然后,对小车模型在平衡位置进行线性化,得到简化模型。
对简化的模型进行能观性和能控性分析并采用PID控制理论对小车系统设计平衡控制器。
小车的姿态角包括车身倾角和偏航角,它是小车控制器设计的重要变量,因此姿态角的准确性显得尤为重要。
在本文中使用四元数来描述姿态角,并且对微机电系统(MEMS)采集到的数据利用扩展卡尔曼滤波(EKF)原理进行融合,得到更为准确的姿态角。
最后,对小车各个模块选择相应的芯片,组装小车实体模型。
对两轮自平衡小车的驱动电路、主控电路、检测电路、无线通信电路进行设计,并对各部分编写程序,使小车能够正常工作。
在Matlab中对小车PID控制以及EKF数据融合进行了仿真分析,结果表明小车的PID控制器能够很好的对小车稳定控制,而利用EKF融合使得小车姿态角则更加准确。
在搭建的两轮自平衡小车实物展示中,小车能够保持良好平衡控制效
果。
两轮自平衡小车的设计与实现一、本文概述随着科技的飞速发展,智能化、自主化已经成为现代机器人技术的重要发展方向。
两轮自平衡小车作为一种典型的动态稳定控制机器人,其设计与实现技术对于推动机器人技术的进步具有重要意义。
本文旨在深入探讨两轮自平衡小车的设计理念、实现方法以及关键技术,为相关领域的研究者和爱好者提供有益的参考。
本文将首先介绍两轮自平衡小车的基本概念和原理,阐述其动态稳定控制的基本思想。
随后,将详细介绍两轮自平衡小车的硬件设计,包括电机驱动、传感器选型、控制器设计等关键部分,并阐述各部件之间的协同工作原理。
在此基础上,本文将重点探讨两轮自平衡小车的软件实现,包括平衡控制算法、运动控制算法以及人机交互界面设计等。
本文还将对两轮自平衡小车的性能优化和实际应用进行深入分析,探讨如何提高其稳定性、响应速度以及续航能力等问题。
本文将对两轮自平衡小车的发展趋势和前景进行展望,为相关领域的研究和发展提供有益的参考。
通过本文的阐述,读者可以全面了解两轮自平衡小车的设计与实现过程,掌握其关键技术和应用方法,为推动机器人技术的发展做出贡献。
二、两轮自平衡小车的基本原理两轮自平衡小车,又称作双轮自稳车或双轮倒立摆,是一种基于动态稳定技术设计的个人交通工具。
其基本原理主要涉及到力学、控制理论以及传感器技术。
两轮自平衡小车的稳定性主要依赖于其独特的力学结构。
与传统三轮或四轮的设计不同,双轮自平衡小车只有两个支撑点,这意味着它必须通过动态调整自身姿态来维持稳定。
这种动态调整的过程类似于杂技演员走钢丝,需要精确的平衡和快速的反应。
实现自平衡的关键在于控制理论的应用。
两轮自平衡小车通常搭载有先进的控制系统,该系统通过传感器实时监测小车的姿态(如倾斜角度、加速度等),并根据这些信息计算出必要的调整量。
控制系统随后会向电机发送指令,调整小车的运动状态,以保持平衡。
传感器在两轮自平衡小车中扮演着至关重要的角色。
常见的传感器包括陀螺仪、加速度计和角度传感器等。