第九章 多元线性回归-异方差问题
- 格式:pptx
- 大小:568.44 KB
- 文档页数:20
§5.1 多元线性回归模型及其假设条件 1.多元线性回归模型 多元线性回归模型:εi pi p iiix b xb x b b y +++++= 2211,n i ,,2,1 =2.多元线性回归模型的方程组形式 3.多元线性回归模型的矩阵形式4.回归模型必须满足如下的假设条件:第一、有正确的期望函数。
即在线性回归模型中没有遗漏任何重要的解释变量,也没有包含任何多余的解释变量。
第二、被解释变量等于期望函数与随机干扰项之和。
第三、随机干扰项独立于期望函数。
即回归模型中的所有解释变量Xj与随机干扰项u 不相关。
第四、解释变量矩阵X 是非随机矩阵,且其秩为列满秩的,即:n k k X rank 〈=,)(。
式中k 是解释变量的个数,n 为观测次数。
第五、随机干扰项服从正态分布。
第六、随机干扰项的期望值为零。
()0=u E 第七、随机干扰项具有方差齐性。
()σσ22=u i(常数)第八、随机干扰项相互独立,即无序列相关。
()()u u u u jiji,cov ,=σ=0§5.2 多元回归模型参数的估计建立回归模型的基本任务是:求出参数bb b p,,,,1σ的估计值,并进行统计检验。
残差:yy e iiiˆ-=;残差平方和:Q=()∑-∑==y y e i i ni iˆ212矩阵求解:X=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡x xxx x x x x x pn nnp p212221212111111,⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=b b b b p B ˆˆˆˆ210ˆ ,⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=-y y y y n n Y 121 ,()YB X X X ττ1ˆ-=1ˆ2--=p n Qσ要通过四个检验:经济意义检验、统计检验、计量经济学检验、模型预测检验。
§5.4 多元线性回归模型的检验一、R2检验1.R2检验定义R2检验又称复相关系数检验法。
是通过复相关系数检验一组自变量xx x m,,,21与因变量y 之间的线性相关程度的方法。