海洋平台腐蚀与防护1
- 格式:wps
- 大小:110.00 KB
- 文档页数:13
48海上石油平台作为全球能源供应的关键基础设施,常年受到海水、湿气、温度变化以及生物侵蚀的影响。
这种特殊的环境使得金属腐蚀成为一个不可忽视的问题,直接关系到平台的安全运营和使用寿命。
海水中的盐分、湿气和氧气是金属腐蚀的主要诱因,而温度的波动和生物活动则加速了腐蚀过程。
这种腐蚀不仅危及结构安全,还可能导致重大的环境污染事件,如石油泄漏等。
高质量的金属防腐蚀技术不仅可以提高平台的安全性和可靠性,减少事故和损失的风险,而且可以降低运营成本,提高经济效益。
1 腐蚀分类1.1 均匀腐蚀均匀腐蚀是常见的腐蚀形式,表现为金属表面均匀地失去材料,这种腐蚀通常导致金属表面出现均匀的锈蚀或蚀刻,但不会形成孔洞或裂缝。
在海洋环境中,由于海水中含有大量的氯化物,铁及其合金容易发生均匀腐蚀。
此类腐蚀通常与金属表面与腐蚀介质(如海水中的盐分和氧气)的直接接触有关。
不同类型的金属和合金对均匀腐蚀的抵抗力不同。
例如,铁和钢在海水中更容易均匀腐蚀,而某些不锈钢和合金显示出更好的抗腐蚀性能。
1.2 局部腐蚀局部腐蚀是指金属材料在特定部位集中发生的腐蚀现象,与均匀腐蚀不同,它通常在金属表面的局部区域内快速进行,导致材料性能的严重下降。
在海上平台的应用环境中,局部腐蚀尤为关键,因为它直接影响到平台的结构完整性和安全运行,尤其是在管道上局部腐蚀可导致整条管道失效。
局部腐蚀主要可以分为以下几种类型。
1.2.1 点蚀点蚀是局部腐蚀的一种常见形式,表现为金属表面出现微小但深入的坑洞。
这种腐蚀通常发生在被局部化学或电化学环境破坏的区域,如金属表面的缺陷或污染物聚集处。
在海上平台中,点蚀通常发生在管道和阀门等部件上,尤其是那些接触海水的部分,因为海水中的盐分和氧化剂可以加剧点蚀的发展。
1.2.2 缝隙腐蚀缝隙腐蚀发生在金属的缝隙或接合处,如螺栓连接、焊缝和覆层边缘。
这种腐蚀形成的原因通常是由于缝隙区域中腐蚀介质的积聚或流动性差,造成局部化学环境的变化。
海洋石油平台的防腐蚀一、海洋石油平台的腐蚀状况海洋石油平台的绝大多数是用钢铁建造的。
随着海洋石油工业的发展,用于开发海洋石油的平台有多种多样,既有简易的单柱平台,也有用钢量达万吨以上的巨型平台。
大型平台的构造相当复杂,具有多种作业功能,造价也十分昂贵。
这些平台一般都放置在离岸较远的海域里,而且多数是固定安装的。
因此,它们不能像船舶那样进行坞修,维修十分困难。
为了确保石油开采作业的顺利进行,保证作业人员的安全和保护环境,进行海洋石油开发的国家政府和油公司,都付出了巨大的努力来防止平台破坏。
导致平台破坏的原因有各种各样,但大多数来自海洋环境对平台的作用。
这此作用可以归纳为作用力和腐蚀。
腐蚀除了直接使平台构件壁厚减薄和局部出现深坑乃至穿孔,大大地降低平台的强度储备以外,它还会和交变的外力共同作用,造成平台构件的腐蚀疲劳,引发平台构件开裂,招致严重事故。
设计平台时,对可能遇到的环境作用力极值都作了充分的考虑。
在建造和安装中,对材料和施工质量有严格的检验。
因此,防止平台破坏的重要责任,便落在了防腐蚀工作者的肩上。
海洋石油平台钢铁设施的腐蚀机理与状况和其他海洋钢结构大致相同。
但远离海岸的石油平台遭受的腐蚀环境更恶劣,而且各区域间的构件由于环境条件的不同,会形式宏观腐蚀电池,使得平台整体所受到的腐蚀和单独处于各区域钢铁的腐蚀,有明显的不同,设施的维护和修复也更困难。
下面对石油平台金属在海洋环境中腐蚀情况作一些补充说明。
1、海洋大气区海洋大气中钢铁的腐蚀速度比内陆大气中要高4~5倍。
在天津塘沽岸边的大气挂片表明,碳钢的年腐蚀量为0.04咂。
渤海海中平台的实测腐蚀量超过0.1 mm/a, 有的达0.2~0.3 m/a。
2、飞溅区不少资料都指出,碳钢在飞测区的腐蚀量达到甚至超过0.5 m/a。
渤海使用10 年的钢质平台,曾测得飞溅区的腐蚀速度约0.45咂&并且有不少深度2 m以上的蚀坑。
当海浪拍击平台构件表面时,混在海水中的气泡冲击构件表面,对它们的保护层有很大的破坏力。
海洋平台结构的防腐措施与维护策略研究在当今时代,随着信息技术的飞速发展,海洋平台已经成为我国沿海城市发展的重要支撑。
然而,由于海洋平台长时间的暴露于恶劣的海洋环境中,其结构往往容易受到腐蚀侵蚀,导致安全隐患。
因此,研究海洋平台结构的防腐措施和维护策略,成为保障海洋平台安全运行的重要课题。
首先,海洋平台结构的防腐措施是确保海洋平台长期使用的关键。
防腐措施的选择应根据具体情况进行,既要考虑腐蚀环境的特点,又要考虑平台结构材料的性能。
目前,常见的防腐措施包括喷涂防腐、镀锌、电镀、涂层等,这些方法可以在一定程度上提高海洋平台的耐腐蚀性能。
喷涂防腐是最常用的一种防腐方法。
通过将特定的防腐涂料喷涂在海洋平台的表面,形成一层防护膜,以阻隔海水中的氧气和盐分对平台结构材料的腐蚀。
同时,喷涂防腐还能提高平台结构的耐磨性和耐候性,有效延长平台的使用寿命。
镀锌是一种将锌层镀在平台结构表面的防腐方法。
由于锌在大气中具有良好的耐腐蚀性能,镀锌能够有效抵御海洋中的腐蚀因素。
此外,镀锌层还能通过阻断海水与平台结构材料的直接接触,进一步防止腐蚀的扩散。
电镀是一种通过电化学方法将金属离子沉积在平台结构表面的防腐方法。
常用的电镀方法包括镍基电镀、铬基电镀等。
这些金属电镀层能够提供一个坚硬、光滑的表面,进一步增加平台结构的耐腐蚀性能。
除了上述传统的防腐方法外,近年来,涂层技术也在海洋平台结构的防腐领域得到广泛应用。
涂层是将一层特殊的材料涂覆在平台表面,形成一个坚硬、致密的保护层,起到防腐的作用。
特殊涂层(如陶瓷涂层、聚合物涂层等)能够提供更好的防护效果,有效减少平台结构的腐蚀速率。
除了防腐措施外,海洋平台结构的维护策略同样重要。
定期的维护保养工作可以延长平台的使用寿命,降低维修成本,并且最大限度地减少事故的发生。
首先,定期巡检是海洋平台维护的基础。
通过定期巡检,可以发现平台结构中的潜在故障,及时采取措施进行修复,避免事故的发生。
同时,做好防腐层的保护工作也是维护海洋平台的重要一环。
海洋平台设施的安全与防护措施海洋平台作为在海洋中建设的重要设施,其安全与防护措施备受关注。
海洋平台的安全与防护措施不仅涉及到工作人员的安全,也关系到海洋生态环境的保护以及设施本身的长期可持续发展。
为了保障海洋平台的安全,可采取多种措施,如建设牢固的基础设施、监控系统的应用、紧急救援机制的建立等。
首先,为了确保海洋平台的安全与稳定,必须建设牢固的基础设施。
海洋平台的基础设施包括钢筋混凝土结构、支撑桩以及其他支撑设施。
这些基础设施必须经过严格的设计和施工标准,以确保其在恶劣的海洋环境中具备足够的强度和稳定性。
同时,对于现有的海洋平台,定期检测和维护工作也是非常必要的,以防止基础设施出现破损或腐蚀等问题。
其次,在海洋平台上安装监控系统是一种有效的防护措施。
监控系统可以通过视频监控、声音检测以及传感器等技术手段对海洋平台周围的状态进行实时监测和记录。
一旦有异常情况发生,监控系统可以及时发出警报,并通知相关人员进行处理。
此外,监控系统还可以提供数据支持,用于分析和预测海洋平台可能遇到的安全风险,从而采取相应的预防措施。
另外,建立紧急救援机制是确保海洋平台安全的重要举措。
在海洋平台上必须配备专业的紧急救援团队,并制定完善的应急预案。
这些预案包括应急演练、救援设备的配备以及相关人员的培训等。
一旦发生火灾、泄漏、海洋灾害等紧急情况,紧急救援团队可以迅速响应,采取有效的措施进行救援和处置,最大限度地减少人员伤害和环境破坏。
此外,海洋平台的安全还需考虑到海洋生态环境的保护。
海洋平台的建设和运营可能会对海洋生态系统造成一定程度的影响,如水质污染、噪音扰动等。
因此,在设计和选择海洋平台设施时,应充分考虑生态因素,采取相应的环境保护措施。
例如,海洋平台的废水排放必须符合环保标准,噪音源需采取隔音措施,以减少对海洋生态的影响。
综上所述,海洋平台设施的安全与防护措施应该包括建设牢固的基础设施、应用监控系统、建立紧急救援机制以及考虑生态环境保护等方面。
海洋平台腐蚀特点及防腐分析海洋平台防腐措施可以有效延长使用寿命,为海上安全运行提供有力保障。
通过分析海洋平台腐蚀特点及相应的防腐措施,旨在为防腐技术在平台防腐工程中的应用提供参考。
标签:海洋;平台;防腐1 海洋平台腐蚀特点海洋平台处于严酷的工作环境中,长期面临腐蚀危害。
海洋平台的主要结构材料为钢铁,海洋大气中水分含量较大,氯化钠微粒会在钢铁表面形成有强腐蚀性的水膜。
空气中的某些强腐蚀性介质如二氧化硫,溶于钢铁表面的水膜中,加大了水膜的腐蚀性。
海洋平台的飞溅区是一个特殊的腐蚀环境,在这一区域,平台表面会受到海水的周期冲击润湿[1]。
这种干湿变换的情况,加重了该区域的腐蚀状况。
海洋平台的水下部分,焊缝部位容易出现电化学腐蚀。
2 涂层防腐涂层防腐措施是海洋平台防腐技术中比较常见的方式之一,主要通过隔断平台钢结构与腐蚀介质实现防腐工作。
涂层的防腐蚀作用可归纳为以下几点:第一,性能优良的涂料可抑制水、氧、二氧化碳等物质透过涂层接触钢结构,并可以抑制微生物活动,减少微生物的附着污损。
第二,由于钢结构在海水中会出现电化学腐蚀,而涂层可通过抑制阳极金属离子在腐蚀介质中的溶解和阴极的放电现象,起到保护作用。
为了实现较好的涂装效果,在喷涂之前,应该对平台表面进行洁净度检查,并将表面残留物及杂质清除。
可以采用喷砂除锈,不方便喷砂的区域,可进行刮刀手动除锈,然后用压缩空气吹扫,并需要涂抹防护底漆。
如对旧涂层进行修缮涂装,则要根据旧涂层的状态,确定表面处理的方法。
轻度缺陷用刮刀和砂纸等打磨处理即可,中等缺陷要采用动力工具打磨光滑,而情况严重的区域,则要采用喷砂处理方式。
高性能涂料对表面光滑度的要求,要高于普通的油性涂料。
防锈漆的附着性能及渗水性能是关键参数,所含成分应避免电化学腐蚀,并且干燥后弹性良好,保证不开裂,不剥落。
采用上述处理,可以保证涂装的质量,减少平台表面腐蚀性。
海洋平台的使用时限及其特殊的作业环境,会对涂装的整理质量要求产生影响。
1241 海洋平台飞溅区的腐蚀规律根据海洋环境的钢结构相关腐蚀特点,可以把海洋平台的结构分为海洋的飞溅区、大气区、海泥区、全浸区及潮差区等。
其中飞溅区是腐蚀最严重的区域,飞溅区的特殊位置是造成这种状况出现的诱因。
通过对某海洋平台的调查发现,海洋平台的飞溅区其腐蚀的速率超过0.6mm/a,大约是大气区的5倍左右,并且有相当严重的蚀坑出现,给海洋平台带来了巨大的安全隐患。
飞溅区的位置在海水的平均高潮位之上,海洋平台在全浸区与大气区间,在潮差与波浪的作用下,海水充分接触空气,使其含氧量急速增高。
与此同时,湿润部分长期受到日光照射,导致钢体表面电解质浓度增大。
另外,飞溅区还常常遭到一些富氧浪花的冲击、海水气泡破碎时的巨大冲击以及海上漂浮物的撞击等,这些都会使海洋平台加速腐蚀速度。
同时,海水冲刷掉保护层之后会出现更为严重的腐蚀现象,造成基体直接腐蚀,出现严重的蚀坑。
2 海洋平台防护的防腐涂料2.1 底漆富锌的底漆一般可分为有机与无机两种,有机富锌是环氧的富锌底漆,而无机的富锌是把硅酸乙酯作为成膜的基质。
这两种底漆都有良好的抗腐蚀作用。
在富锌的底漆中加入高比例锌粉,确保了底漆与基体的附着力。
并且锌可以起到阴极的保护作用。
一旦涂层变得不连续或者产生破坏时,锌粉就起到了牺牲阳极的作用,从而对钢材的腐蚀速度进行有效减缓。
2.2 中间漆中间漆不但要求有相应的防腐能力,还要具有高效的防渗透与防锈能力。
中间漆材料较多,比如:不锈钢的鳞片、玻璃鳞片、锌粉(鳞片状)以及纳米材料的钛颗粒、钛粉等,都是主要的防腐材料。
玻璃鳞片的效果比较显著,这种材质的环氧涂料有良好的硬度,并且具有耐磨性、耐阴极剥离性及耐化学性等。
相关研究发现,这种玻璃鳞片结合了优异的树脂,具有很强的抗渗透性能。
许多国家在海洋平台与钢桩中都会运用这种优质的防腐材料。
2.3 面漆面漆是和阳光、冰雪、海水及大气等直接接触的一部分,需要对中间漆与底漆具有良好的保护作用,因此面漆一定要具有耐化学性、耐腐蚀性、耐气候性以及抗溶性、抗冲击性与抗老化等。
海洋平台的腐蚀及防腐技术化学化工学院装控131 杨哲 1304310125摘要:概括了海洋平台不同区域的腐蚀环境和腐蚀规律,对海洋平台重防腐涂料的选择要求及配套体系进行简要叙述。
针对海洋平台的长效防腐防护要求,介绍了几种具有长效的防腐材料和防腐技术特点,包括海洋平台热喷涂长效防腐蚀技术、锌加保护技术、海洋平台桩腿防腐套包缚技术等,为我国对海洋平台长效防腐防护技术的研究提供参考。
关键词:海洋平台;防腐;热喷涂;锌加技术;防腐套Abstract:This paper summarizes the corrosion environment and rules of the differentzones in offshore platforms, also briefly introduces the requirements and systems of the anticorrosion coating .According to the long-term anticorrosion requirements in offshore platforms, the paper introduces several long-term anticorrosion technology, including thermal spraying, adding zinc protection and anticorrosion technology with platform legs wrapped etc,which will provide some references to the research of the long-term anticorrosion technology in offshore platforms.Key words:Offshore platform;anticorrosion; Thermal spraying; Adding zinc technology; Anticorrosion wrap海洋平台是一种海上大型工程结构物。
海洋钻井平台防腐技术的研究作者:杨文灯来源:《中国化工贸易·中旬刊》2018年第04期摘要:随着我国海上石油气开发在生产及新建的海上石油设施日益增多,海洋石油平台腐蚀的腐蚀问题已成为制约海上石油平台生产的主要因素之一,由此产生的维修作业成本居高不下,我国在加大海上石油设施腐蚀研究的同时先后从国外引进了先进的防腐技术和工艺设备,海洋石油平台防腐技术也得到了十分广泛的发展。
关键词:海洋;钻井平台;防腐技术1 海洋平台的腐蚀机理1.1 可溶性盐对涂层的破坏破坏机理:涂层的稳定性是指不与腐蚀性物质发生物理或化学反应的能力,但目前所有的涂层都无法做到百分之百的防护,尤其在可溶性盐的作用下。
湿度大是海洋环境最主要的特点,可溶性盐极易吸水,若钢材表面有盐残留就会导致刚喷砂过的表面迅速反锈,给后续喷涂造成损伤。
1.2 H2S对管道的腐蚀腐蚀机理:H2S溶于水形成酸性溶液会对管道产生腐蚀作用,主要有电化学腐蚀和应力腐蚀两种。
①电化学失重腐蚀。
H2S在水中会发生电离反应:H2S→H S-+H+HS-→S2-+H+会与钢材反应,阳极反应:Fe-2e→Fe2+Fe2+S2-→FeS↓阴极反应:2H+-2e→H2↑;②应力腐蚀。
氢原子在钢材表面凹陷处聚集,在特定条件下结合为H2,缺陷处的压力会升高,钢材脆化并产生裂纹、裂缝。
1.3 海洋大气区的腐蚀海洋大气环境特殊,海洋大气区金属表面上附着大量含盐粒子,且大气湿度大,积聚在钢铁表面形成大量电介质,两者构成电化学腐蚀的条件,使得海洋平台腐蚀速度加快。
1.4 海洋平台飞溅区的腐蚀飞溅区的海水在海浪和潮差的作用下,与空气充分接触,含氧量升高,同时浸湿部分受到阳光长时间照射,使得钢表面电解质浓度升高,易发生电化学腐蚀。
飞溅区经常会遭受富氧浪花冲击,容易使保护层脱落,加剧腐蚀的情况。
1.5 潮差区的腐蚀潮差区常年处于潮汐运动中,干湿交替明显,与富氧海浪的接触十分频繁,是非常有利于腐蚀的条件。
文章编号:1001-4500(2002)03-0044-02谈海上平台的腐蚀与防护任 强,王成良,张剑波(中国石化海上石油工程技术检验站,东营市257001) 摘 要:分析了海洋平台结构处于不同环境下的腐蚀机理,提出了相应的防护措施,以保证海洋平台的使用安全性和可靠性。
关键词:平台;腐蚀;防护;涂层;阴极保护 中图分类号:P 752 文献标识码:B 在海洋平台的设计和建造中,腐蚀是必须考虑的重要因素之一,了解海洋环境腐蚀的特点和采用有效的防护措施,并且通过日常的检验检查、维护,确保防腐系统的有效性对海洋平台的使用安全性和可靠性是十分重要的。
1 腐蚀机理 在不同的环境条件下的平台结构会产生不同的腐蚀现象,对不同的腐蚀现象需要采取不同的防护措施,因此应了解各种环境条件下的腐蚀机理。
大气环境 在大气区域,腐蚀是由于空气中的水分和氧气引起的。
大气湿度大,长时间日照,而且大气中含盐粒和盐雾,这些物质积存在结构表面形成良好的液膜,构成了电化学腐蚀的好条件。
腐蚀过程中,最初是形成红锈,这种物质不能成为附着在表面的薄膜,很容易脱落。
这个过程随大气的湿度、温度、盐含度等条件的变化不断循环进行,造成平台结构的连续腐蚀。
飞溅区环境 飞溅区是在潮汐和波浪作用下干湿交替的区域,是腐蚀最严重的区域,经常受到波浪溅泼和冲击,因此构件表面几乎接连不断为充气的海水所润湿。
风和海水同时作用造成严重腐蚀。
进入海水的气泡还使海水去除保护膜,加速腐蚀的速度。
全浸区 钢质平台在全浸区的腐蚀主要是溶解氧的影响,形成电化学腐蚀,像在电解中的两块不同金属的原生电池,使结构某些部位处于电位较高的阳极受到腐蚀,而某些部位电位较低的阴极区得到保护。
海水的温度、盐度、流速、海生物等因素影响腐蚀速度。
2 防腐措施 防腐系统应根据平台的环境条件、结构部位、使用年限、施工和维护的可能性等因素确定。
2.1 大气区结构防腐蚀措施大气区结构防腐只能用涂层予以保护。
海洋平台的腐蚀现状和防护措施摘要:海洋平台是海上采油的重要设施,其造价昂贵,日常维护困难。
在海洋平台的设计和建造中,腐蚀是必须考虑的重要因素之一。
为了保证海洋平台使用的安全性和可靠性,了解海洋环境腐蚀的特点和采用有效的防护措施是十分必要的。
本文主要就是针对海洋平台的腐蚀现状和防护措施来进行分析。
关键词:海洋平台;腐蚀现状;防护措施引言当前,海洋石油勘探开发已进入到一个新的时代,世界各国对海洋油气资源勘探开发的力度不断加大。
近年来我国虽然在海工产品建造及技术研究方面做了大量工作,并取得了可喜的成绩,但就海洋平台装备科研实力和技术水平而言,我们仍处于一个比较落后的位置。
因此,我们必须加快海洋平台科研步伐,奋力追赶世界先进技术水平,为我国早日迈入世界一流海洋工程装备建造国家而奋斗。
1、海洋平台的腐蚀特点1.1、平台腐蚀分区勘探钻井平台和石油生产平台,两者所受腐蚀环境基本相同。
如导管架式石油生产平台,为固定式,其结构从上到下可分为井架、甲板及甲板组件、甲板腿、导管架、钢桩等5个部分,见图1。
将平台结构各部分所处腐蚀环境分为5个区:海洋大气区、海水飞溅区、潮差区、全浸区和海泥区。
所处腐蚀环境不同,腐蚀程度和保护方法有差异。
(1)甲板腿以上构件主要在海洋大气中工作,长期遭受风吹、雨淋、日晒、海水盐雾的作用。
直接在海洋大气中的腐蚀要比滨海陆地海洋大气腐蚀强烈得多。
尤其是甲板下部,因长期处于潮湿状态,氧气供应充分,是该区腐蚀最严重的部位.(2)甲板腿下部和导管架上部在海水飞溅区和海水干湿交替的潮差区工作。
在高潮线以上的飞溅区,由于结构表面长期遭受飞溅海水的不断冲击,表面始终被海水周期性润湿,氧气供应充分,盐分不断浓缩,缺少完全可靠的保护方法,有时还受狂风巨浪和浮冰的冲击。
(3)导管架中下部长年浸泡在海水里,海水中的腐蚀因素主要是海水温度、含氧量、含盐量、pH值、电阻率、流动速度。
随着地理位置、季节、深度等不同,有些因素会发生变化。
第一章前言1.1 国内外海洋平台事故近30年来,海洋腐蚀向人类敲响的警钟。
1980年3月,在北海艾克菲斯油田上作业的“亚历山大·基定德”号钻井平台,在8级大风掀起的高6∽8m的海浪的反复冲击下,5根巨大的桩腿中的D号桩腿因6根主撑管先后断裂而发生剪切断裂,万余吨重的平台在25min 内倾倒,使123人遇难,造成近海石油钻探史上罕见的灾难。
挪威事故调查委员会检查报告表明,D号桩腿上的D-6主撑管首先断裂。
该主撑管曾经开过一个直径325mm的孔,并焊上一个法兰,准备安装平台定位声纳装置,实际上后来并未安装,开裂就是从这个法兰角的6mm焊缝处开始的,裂纹在海浪与荷载的反复作用下不断扩展,最后导致平台沉没。
2010年9月7日23时,山东东营胜利油田位于渤海的作业3号修井作业平台受玛瑙台风影响(风力最大时阵风9级,浪高近4米)平台发生倾斜发生倾斜45度事故。
平台上4人落水,32人被困平台。
目前已有34人获救。
平台设计通常都考虑台风的影响,况且又是在中国的内海-渤海,我觉得平台倒塌与海洋腐蚀应有一定的关联。
1.2 腐蚀工程腐蚀工程包括腐蚀原理和防护技术两部分。
腐蚀原理是从热力学和动力学方面解释和论述腐蚀的原因、过程和控制。
防护技术泛指防止或延缓腐蚀损害所采用的有效措施。
大体上有以下几种:①选择材料,根据使用环境合理选用各类金属材料或非金属材料;②电化学保护技术,主要是阴极保护技术、阳极保护技术与排流技术;③表面处理技术,如磷化、氧化、钝化及表面转化膜;④涂层、镀层技术,主要有涂料、油脂、镀层、衬里与包覆层等;⑤调节环境,即改善环境介质条件,如封闭式循环体系中使用缓蚀剂、调节pH值,以及脱气、除氧和脱盐等;⑥正确设计与施工,从工程与产品设计时就应考虑腐蚀问题,如正确选材与配合,合理设计表面与几何形状,严格施工工艺,采取保护措施,特别是防止接触腐蚀、应力腐蚀、缝隙腐蚀及焊接腐蚀等。
由此可见,腐蚀工程涉及的专业知识领域很广,主要有冶金、材料、机械、表面处理、化学、化工、电子、生物和环境科学等。
第二章 海洋腐蚀2.1 海水性质海水中是最丰富的天然电解质溶液,通常海水中的含盐量为3.2~3.75%(港口因有淡水稀释,盐度可能低达1.0%),海水中的pH 值为8~8.2之间。
在海水中影响金属腐蚀的因素可分为化学因素、物理因素和生物因素三大类,这些因素是互相关联且互相有影响的。
在海水中影响腐蚀的因素2.2 腐蚀环境分区海洋环境的腐蚀情况可分五大区,即海上大气区、飞溅区(或飞沫区)、潮差区、全浸区和海底土壤区五部分。
图2.1 海上腐蚀环境的分区化学因素物理因素 生物因素溶解的气体 氧气 二氧化碳 化学平衡 盐含量(氯离子,溴离子和碘离子,硫酸根离子,镁离子等) pH 值碳酸盐溶解状况流动速度 气泡海水中悬浮物 冲击和划伤 温度压力 风力污损生物 藻类藤壶等附着动物 海中植物的生活 产生氧气 消耗二氧化碳 海中动物的生活 消耗氧气 发生二氧化碳 海中微生物的生活 产生硫化氢 产生有机酸1)海上大气区:指高出海平面2米以上的部分,波浪打不到,潮水不能淹没的地方。
它的腐蚀因素虽然和内陆的大气腐蚀相类似(如空气中的氧气和日光等),但海上的湿度通常高于大陆,还存在着“气溶胶”形式的盐雾(见上节),故其腐蚀环境比一般的大气腐蚀要严重些。
钢铁腐蚀速度约为20~70微米/年(荷兰)。
2)飞溅区(飞沫区):指高出海平面0~2米的部分,经常受海水波浪飞沫冲击的地区。
由于在飞溅区,氧气的供应十分充足,氧气的去极化作用促进了钢的腐蚀,同时,浪花的冲击有力地破坏了保护膜(干湿交替),故此处是腐蚀最严重的部分(图中的第一最大值)。
碳钢的平均腐蚀速度可达500微米/年,约为全浸区的5倍。
3)潮差区:即在涨潮时浸在水下,在落潮时在水线上的地区。
从理论上说,海水平面由于氧气的供应不均匀,在水面上下造成了氧气浓差,水线上下形成大型的氧气浓差电池。
空气中部分氧气供应最充分,故为阴极,受到保护,腐蚀较小(曲线中的极小值);恰好浸在海水线下的部分为阳极,腐蚀极其严重(图中的第二极大值)。
但因海浪和风的冲击,干湿边界瞬即变化,故总的来说,这部分(从海平面到海平面下约1米的地方)也是腐蚀比较严重的地区之一。
钢铁腐蚀速度可达120~270微米/年(荷兰)。
4)全浸区:这部分的腐蚀受到海中溶解氧气,盐浓度,流速,水温,海生物,pH值和流砂的影响,它又可分为三个区域:①浅海区。
为自海面至海平面下50米处,因溶解氧气浓度较高,故腐蚀较严重。
②中等深度区。
为海平面下50~200米处,腐蚀程度中等。
③深海区。
为海平面下200米以上,因溶解氧气浓度较低,故程度较小。
此三区的钢材平均腐蚀速度为26~90微米/年。
5)海底土壤区:受到细菌腐蚀及污染的土壤堆积腐蚀,腐蚀情况比较和缓。
钢材腐蚀速度为15微米/年。
2.3 腐蚀类型2.3.1 海洋环境中金属的局部腐蚀2.3.1.1 点蚀点蚀又称孔蚀,是在金属表面产生小孔的一种局部腐蚀形态。
点蚀的形成可以被划分为三阶段:①可溶性杂质的溶解,而留下微型空腔;②氯离子在择优的几何条件下(例如空腔有足够的深度),在微型空腔中聚集(点蚀酝酿阶段);③点蚀的引发和生长阶段。
2.3.1.2 缝隙腐蚀浸在海水中(或其他腐蚀介质中)的金属表面上,在缝隙和其他隐蔽的区域内常常发生强烈的局部腐蚀,称为缝隙腐蚀缝隙腐蚀和点蚀的相互关系:通常,缝隙腐蚀所引起的危害比点蚀更大。
与点蚀相比较,在同样条件下,缝隙腐蚀可能有更大的腐蚀电位差,或者有更强的腐蚀电流密度。
2.3.1.3 流动腐蚀、冲刷腐蚀和空蚀海水流动一方面使溶存氧含量增高,另一方面能冲刷损伤金属的保护膜。
因此,在流动的方向和速度不变时,管道腐蚀不大,而在水流被迫改变方向时(如弯头或三通处)则因受到冲击,故腐蚀也比较严重。
在湍流状态,腐蚀也比层流区严重。
空蚀是空泡腐蚀的简称,有时也称泡蚀。
2.3.1.4 电偶腐蚀当两种不同金属浸在腐蚀性溶液中,两种金属之间通常存在着电位差(又称电压),若这两种金属互相接触(或用导线接通),这种电位差就会驱动电子在它们之间流动。
此种耐蚀性较差的(贱金属),在接触后的腐蚀速度增加(此金属成为阳极);耐蚀性较强的金属(贵金属),则腐蚀速度下降(此金属成为阴极)。
因这类腐蚀形态涉及到电流和不同的金属,故称为电偶腐蚀,又称双金属腐蚀。
2.3.1.5 电解腐蚀(电蚀)电蚀和电偶腐蚀的区别:电解腐蚀通常被简称为电腐蚀或电蚀,它和电偶腐蚀不同,是外来电源供应的电流引起的腐蚀。
这种腐蚀的驱动力——电流——通常是无意中形成的,是安装不正确的电路中发散出来的(例如,接地不正确),通常称为杂散电流。
故电蚀又可称为杂散电流腐蚀。
不管同种金属还是异种金属,都可以发生电蚀,而且,这种杂散电流还可能克服电偶腐蚀电流,从而迫使在正常条件下不会发生腐蚀的贵金属也会发生腐蚀。
2.3.1.5 合金选择腐蚀合金选择腐蚀又称为选择性腐蚀或选择性浸出,它是由于腐蚀作用而从一种固体合金中只除去其中一种元素的过程。
2.3.1.6 应力腐蚀开裂稳态时的张应力和特种腐蚀介质的共同作用所引起的某些金属的开裂,叫做应力腐蚀开裂(简而言之,应力腐蚀开裂是应力和腐蚀的联合作用而引起的开裂)。
可能发生应力腐蚀开裂的应力总是低于这种金属在正常条件下发生断裂所需要的应力,就是低于金属的抗断强度。
点蚀或缝隙腐蚀是引起应力集中常见原因,锐角处也常成为开裂扩大的起点。
2.3.1.7 氢脆氢脆的原因是氢原子扩散进入金属结构,氢溶解在金属中而生成脆性的氢化物。
氢脆易于引起应力腐蚀开裂,也有人把它叫做氢脆开裂,以区别于阳极性应力腐蚀开裂。
2.3.1.8 晶间腐蚀晶间腐蚀是应力腐蚀开裂的原因之一,它还可以使合金碎裂、片状脱落或丧失强度。
晶间腐蚀不易察觉,所以它是许多灾难性事故的常见原因。
晶间腐蚀是由晶界的杂质,或晶界区某一合金元素增多或减少而引起的。
为防止晶间腐蚀,可以在使不锈钢中的碳含量降到0.03%以下(愈低愈好),或在不锈钢中添加易于和碳反应的稳定剂元素,如铌和钛等,或使用固溶淬火法,即加热到1066—1121℃,然后用水淬火,可减少晶间腐蚀的危险。
2.3.1.9 振磨腐蚀两固体材料之间互相接触的表面,由于振动和滑动使金属表面的保护膜损伤,所引起的腐蚀称为振磨腐蚀。
涂布防锈润滑油,提高光洁度和滑性,降低磨擦力,避免振动,提高金属的耐磨性、硬度和韧性等方法都能减少或避免振磨腐蚀。
2.3.2 海洋环境中金属的疲劳腐蚀金属在交变的循环应力(如拉伸应力和压缩应力的交替进行)作用下发生破裂的倾向,通常称为“疲劳”。
在存在腐蚀介质时,材料的抗疲劳性能就会下降,这就是腐蚀疲劳。
在海水或其他水溶液中,引发腐蚀疲劳开裂的起点大致上有4类:①点蚀。
点蚀孔易于成为开裂的核心部分。
②严重形变区的材料的择优溶解。
因为形变区可成为局部阳极,未形变区成为阴极。
③金属表面的氧化物保护膜的韧性通常不如金属本身的韧性好,在曲折时易于开裂,这种开裂的裂缝处金属的腐蚀速度快,引起金属腐蚀疲劳开裂。
铝即使在空气中也没有腐蚀疲劳极限,而铜在海水中却有良好的抗腐蚀疲劳性能,就可能是因为铝液依靠氧化物膜保护,而铜却不是。
④金属表面吸附了污物,引起了表面能量降低,使微小的裂缝得以加速扩展。
2.4 各种材料在海洋环境中的腐蚀及防护2.4.1 常用的耐腐蚀材料2.4.1.1 分类表 2-1 常用的耐腐蚀材料分类耐腐蚀材料金属材料黑色金属铸铁、碳钢、合金钢、不锈钢有色金属Al及其合金,Mg及其合金,Ag及其合金Ni及其合金,Ti及其合金,Ag及其合金稀贵金属Pt,Au,Ru,Rh,Pd,Zr,Hf,Ir及稀土等非金属材料无机非金属材料碳系:石墨、玻璃碳、碳纤维玻璃钢等硅酸盐体系:玻璃、陶瓷、水泥(混凝土)有机非金属材料塑料:热塑性塑料、热固性塑料橡胶:天然橡胶、合成橡胶涂料2.4.1.2 具有海洋抗腐蚀性能的材料1、碳钢碳钢是指含碳量低于1.7%的铁-碳合金,可分为4类:工业纯铁,含碳量小于0.04%;低碳钢,含碳量在0.04%~0.25%之间;中碳钢,含碳量在0.25%~0.6%之间;高碳钢,含碳量大于0.6%。
钢铁在海水中或在实际工作环境中的腐蚀行为受到很多因素的影响,同一种刚在不同的环境中的腐蚀速度可以差别很大。
同一地区的海水对插入钢桩不同部位的腐蚀也不同。
飞溅区腐蚀最严重,这一地区供养充分,氧去极化作用强烈,浪花又易冲击破坏保护膜。
钢材在海水中还易受到生物腐蚀作用。
在海底泥浆区或被污染的海域,危害最大的就是硫酸盐还原菌,它能够使硫酸盐还原成腐蚀性极强的硫化氢和其他硫化物,从而加速钢材的腐蚀。
由于水泥具有很高的碱性,故新鲜水泥和钢接触时有助于防蚀;在钢材中,添加少量的P,Cu,Cr,Al等元素,能明显提高其耐蚀性。