第四讲:行列式的展开及性质
- 格式:ppt
- 大小:2.71 MB
- 文档页数:36
行列式的性质及求解方法行列式是线性代数中的一个重要概念,具有广泛的应用领域,例如矩阵求逆、线性方程组的解法、空间向量的叉积等。
在本文中,我们将探讨行列式的性质及其求解方法。
一、行列式的定义及性质1.1 行列式的定义对于一个$n$阶方阵$A=[a_{ij}]$,定义它的行列式为:$$\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn}\\\end{vmatrix}=\sum_{\sigma \in S_n}(-1)^{\mathrm{sgn}(\sigma)}a_{1\sigma(1)}a_{2\sigma(2)}\cdotsa_{n\sigma(n)}$$其中,$\sigma$是$n$个元素的全排列,$S_n$表示$n$个元素的置换群,$\mathrm{sgn}(\sigma)$表示$\sigma$的符号,即$(-1)^k$,其中$k$为$\sigma$的逆序数。
1.2 行列式的性质- 行列式的值不变性行列式的值只与矩阵的元素有关,而与矩阵的行列变换或线性组合无关。
- 互换矩阵的两行或两列,行列式变号将矩阵的两行(列)互换,则该行列式的值取相反数。
- 矩阵的某一行(列)乘以一个数$k$,行列式的值乘以$k$将矩阵的某一行(列)乘以一个数$k$,则该行列式的值乘以$k$。
- 矩阵的某一行(列)加上另一行(列)的k倍,行列式不变将矩阵的某一行(列)加上另一行(列)的k倍,行列式的值不变。
- 方阵的行列式等于其转置矩阵的行列式$$\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn}\\\end{vmatrix}=\begin{vmatrix}a_{11} & a_{21} & \cdots & a_{n1} \\a_{12} & a_{22} & \cdots & a_{n2} \\\vdots & \vdots & \ddots & \vdots \\a_{1n} & a_{2n} & \cdots & a_{nn}\\\end{vmatrix}$$二、行列式的求解方法2.1 按定义计算法按照上述定义,计算行列式涉及到全排列的遍历与逆序数的计算,这种方法虽然理论上可行,但计算量较大,不适用于较大的矩阵。
【DOC】行列式的展开法则行列式是线性代数中的重要概念之一,它可以用于求解线性方程组、矩阵的逆、矩阵的秩等问题。
展开法则是求解行列式的一种方法,其基本思想是利用行列式的性质,在行(或列)上进行化简,直到得到一个简单的行列式,然后根据行列式的性质进行计算。
本文将介绍行列式的展开法则及其相关性质。
一、定义行列式是一个由数构成的方阵,其计算方式如下:$$ \begin{vmatrix}a_{11}& a_{12}& \cdots&a_{1n}\\ a_{21}& a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}& \cdots&a_{nn}\end{vmatrix}=\sum_{\sigma}\operatorname{sgn}(\sigma)a_{1\sigma(1)}a_{2\sigma( 2)}\cdots a_{n\sigma(n)} $$其中,$\sigma$ 是从 $n$ 个数 $1,2,\cdots,n$ 中选取 $n$ 个数的一个排列,$\operatorname{sgn}(\sigma)$ 是排列 $\sigma$ 的逆序数,$a_{i\sigma(i)}$ 是第$i$ 行 $\sigma(i)$ 列的元素。
例如,当 $n=2$ 时,行列式为:$$ \begin{vmatrix}a_{11}& a_{12}\\ a_{21}& a_{22}\\\end{vmatrix}=a_{11}a_{22}-a_{12}a_{21} $$二、展开法则1. 拉普拉斯展开法则拉普拉斯展开法则是行列式展开法则中最基本的一种。
它的基本思想是:对于一个$n$ 阶行列式 $D$,选取其中任意一行(或一列)进行展开,得到 $n-1$ 阶行列式,然后递归地对 $n-1$ 阶行列式进行展开,直到得到 $2$ 阶行列式为止,在计算过程中交替改变符号。
行列式的行(列)展开定理
行(列)展开定理用于分析行列式的结构,它表明行列式的值可以从各行(列)中求出。
行展开定理的证明以行列式的一行为基础,将该行中的元素看作常数,把它们乘以该行中的未知数,然后做加法运算,得出了行列式的值。
公式表示为a(1,1)x(1)+a(1,2)x(2)+...+a(1,n)x(n)=|A|,其中a(1,1)~a(1,n)表示第一行的元素,x(1)~x(n)表示第一行未知数,|A|表示行列式A的值。
同样,列展开定理用列来求出行列式的值,其公式为
a(1,1)x(1)+a(2,1)x(2)+...+a(n,1)x(n)=|A|,其中a(1,1)~a(n,1)表示第一列的元素,x(1)~x(n)表示第一列未知数,|A|表示行列式A的值。
相比于行展开定理,列展开定理更容易理解,理论上它们是均有用的,但由于行列式结构的不规则性,有时列展开定理比行展开定理更加有效,避免了因展开完毕后加法操作量过大而需要累加回路的结果。
总之,行(列)展开定理是一种分析行列式结构的基本方法,它既可以用来求出行列式的值,也可以用来求出未知数。
它丰富了行列式计算的方法,被广泛用于各种电子计算机的程序设计和机器算法中,为工程实际应用和科学研究提供了有力帮助。