9 电力电子器件的驱动汇总
- 格式:ppt
- 大小:2.13 MB
- 文档页数:7
电力电子器件的驱动与缓冲吸收电路概述
三端功率开关器件的导通与否是通过门极控制的。
不同的电力电子器件对门极驱动信号有不同的要求。
通常,普通晶闸管要求门极胜发信号要有一定的幅度、宽度和陡度。
大功率晶体管的基极驱动要求提供足够的基极驱动电流,导通时能保证器件工作于饱和状态。
关断时要给基极施加一定的反向电压,以提高关断速度和提高承受集射极间电座的能力。
GTO晶闸管对门极驱动信号提出了更严格的要求,GTO晶闸管与普通晶闸管一祥靠合适的门极触发脉冲电流使其导通,因GTO晶闸管的维持电流较普通晶闸管的大,在负载电流变化较大的情况下,需要在导通期间连续地供给门极电流。
GTO晶闸管的门极关断电路应能供给为了切断值可关断电流所需要的门极关断电流,在关断期间要设置反偏电压以提高抗干扰能力。
IG-BT和功率MOSFET的驱动是最容易的,由于这两种功率器件的门极与阴极之间是绝缘的,所以是电压控制器件,驱动功率小,其门极可用一个电容与一个电阻的串联来等效。
所以这两种器件的门极驱动电路应能提供容性负载下的脉冲电流,频率愈高,容量愈大,需要的驱动电流愈大。
器件关断时,门极一般需要施加一个合适的反向电压,以提高关断速度和增强抗干扰能力。
电力电子器件大全及使用方法详解一、二极管二极管是一种常见的电力电子器件,它可以实现电流的整流功能。
二极管具有单向导电性,即只有当正向电压施加在二极管上时,电流才能够流过二极管。
二极管常用于交流电转直流电的整流电路中。
使用方法:将二极管的正极连接到正电压,负极连接到负电压即可。
需要注意的是,二极管具有正向电压降(Vf),在正向导通状态下会有一定的电压降,需要根据实际需求选择合适的二极管。
二、晶闸管晶闸管是一种可控硅器件,具有正向导通和反向封锁两种状态。
晶闸管通过控制门极电流来实现正向导通状态,控制门极电流为零时处于反向封锁状态。
晶闸管常用于高功率电流的开关和整流电路中。
使用方法:将晶闸管的端子正确连接,再通过控制晶闸管的门极电流来控制其导通和封锁状态。
在选择晶闸管时,需要考虑其额定电压和额定电流是否满足实际需求。
三、功率场效应管(MOSFET)功率场效应管是一种电压控制的开关器件,具有低导通电阻、快速开关速度和高电压容忍等优点。
功率MOSFET广泛应用于直流-直流转换器、交流-直流变换器和电源开关等电力电子领域。
使用方法:将功率MOSFET的源极与负极连接,漏极与负载连接,控制其栅极电压来控制其导通和截止状态。
在选择功率MOSFET时,需要考虑其额定电压、额定电流和导通电阻等参数是否满足实际需求。
四、IGBTIGBT(Insulated Gate Bipolar Transistor)是一种中压、大功率的开关器件,它具有MOSFET和晶闸管的优点。
IGBT可以实现高压和高电流的控制,广泛应用于电力电子变换器、交流调速器和逆变器等领域。
使用方法:将IGBT的集电极与源极连接,发射极与负载连接,通过控制栅极电压来控制IGBT的导通和截止状态。
在选择IGBT时,需要考虑其额定电压、额定电流和导通电阻等参数是否满足实际需求。
总结:电力电子器件包括二极管、晶闸管、功率MOSFET和IGBT等,它们在电力电子领域中具有重要的应用。
2023-11-02•电力电子器件概述•电力电子器件的驱动电路•电力电子器件的驱动方案•电力电子器件的驱动技术•电力电子器件驱动的可靠性问题目•电力电子器件驱动的应用案例录01电力电子器件概述电力电子器件定义电力电子器件是用于控制和转换电能的装置。
电力电子器件分类按照功能,电力电子器件可分为开关、变流器、电源等。
电力电子器件的定义与分类电力系统的组成电力系统由发电、输电、变电、配电和用电等环节组成。
电力电子器件在电力系统中的应用电力电子器件在电力系统中的应用包括改善电能质量、节能降耗、提高输电容量等。
电力电子器件在电力系统中的应用电力电子器件的高频化可以提高电力系统的响应速度和效率。
高频化集成化智能化电力电子器件的集成化可以降低成本,提高可靠性。
电力电子器件的智能化可以实现对电力系统的实时监控和优化控制。
03电力电子器件的发展趋势020102电力电子器件的驱动电路电力电子器件的驱动电路通常由输入级、控制级和输出级三部分组成。
输入级接收来自控制系统或其它电路的控制信号;控制级根据输入信号的状态,通过驱动电路对电力电子器件进行开通或关断控制;输出级为电力电子器件提供所需的电压和电流。
驱动电路的基本结构驱动电路的分类与特点根据驱动电路所驱动的电力电子器件的不同,可分为二极管驱动、晶闸管驱动、IGBT驱动等。
二极管驱动结构简单,一般不需要控制信号,通过二极管的单向导电性实现开关作用;晶闸管驱动需要控制信号来控制晶闸管的导通和关断;IGBT驱动需要高电压和大电流的控制信号,同时还需要进行过流保护和过压保护。
驱动电路的性能指标主要包括:输出电压和电流、开关速度、功耗、体积和重量等。
输出电压和电流决定了驱动电路的驱动能力,开关速度决定了电力电子器件的开关速度,功耗和体积重量等指标则关系到整个电力电子装置的效率、可靠性和体积重量等。
驱动电路的性能指标VS03电力电子器件的驱动方案MOSFET介绍MOSFET,全称金属氧化物半导体场效应管,是一种常见的电力电子器件,广泛应用于电力电子设备中。
1.5 电力电子器件的驱动可控型电力电子器件(包括全控和半控)多为三端器件,其中有两个电极接主电路,如晶闸管的阳极和阴极、GTR的集电极和发射极。
工作时可承受很高的电压和通过很大的电流。
另一个电极起控制作用,如晶闸管的门极,MOSFET的栅极,在其上面施加一定的电压或通以适当的电流可以控制器件的通断。
较之主电路的电压或电流,这个起控制作用的电压或电流都很小,这种“以弱控强”的作用称之为驱动,与之相关的电路叫做驱动电路。
电力电子器件的结构和性能各不相同,对驱动信号的要求也不一样,这使得各种器件的驱动电路存在着很大的差异。
1.5.1 晶闸管驱动电路晶闸管为半控型电力电子器件,只能控制开通不能控制关断,因此在设计驱动电路时只考虑开通控制。
如前所述,晶闸管开通的条件是:(1)阳极与阴极之间加正向电压,阳极为正,阴极为负(这个电压一般很高);(2)门极与阴极之间加一定数量的正向电压,门极为正,阴极为负(同时形成一定的门极电流)。
另外,晶闸管一旦导通,门极则失去控制能力,所以晶闸管的驱动信号只需一个电压和电流脉冲即可,但是脉冲的宽度要大于晶闸管的开通时间。
因此常把晶闸管的导通驱动叫做“触发”。
由图1-2可看出,晶闸管的门极和阴极之间为一PN结,控制信号相当于给这个PN结施加正向电压,那么电压U GK和电流I G之间就应表现出PN结正向特性的关系,但是,由于晶闸管的特殊要求导致设计和工艺上的差异,上述PN结和一般作为二极管使用的PN结的特性有很大的不同,主要表现在后者的正向伏安特性曲线基本上是一条斜率很大的指数曲线,并且同一型号产品基本都符合同一条曲线;而前者曲线的斜率有时会很小,且即使同一型号同一批量的产品,个别器件之间特性也存在着很大的离散性。
因此把某种型号的晶闸管门极伏安特性曲线中斜率最大的和最小的两条曲线标在UGK-IG平面,作为其门极伏安特性。
图1-20为晶闸管的门极特性,其中曲线AB为斜率最大的门极特性曲线,曲线FE为斜率最小的门极特性曲线,两线之间的扇型区域为可能出现的门极特性曲线的范围。
驱动电路要提供控制电路与主电路之间的电气隔离环节,一般采用光隔离或磁隔离。
光隔离一般采用光耦合器,有普通、高速和高传输比三种类型。
磁隔离的元件通常是脉冲变压器.驱动电路的分类:分为电流驱动型和电压驱动型两类。
驱动电路具体形式可为分立元件的,但目前的趋势是采用专用集成驱动电路。
晶闸管的触发电路:过电流分过载和短路两种情况过电流保护措施及其配置位置:快速熔断器、直流快速断路器和过电流继电器是较为常用的措施.缓冲电路又称为吸收电路,其作用是抑制电力电子器件的内因过电压、d u/d t或者过电流和d i/d t,减小器件的开关损耗。
分类1:关断缓冲电路和开通缓冲电路分类2:耗能式缓冲电路和馈能式缓冲电路晶闸管的串联:静态不均压问题由于器件静态特性不同而造成的均压问题。
为达到静态均压,首先应选用参数和特性尽量一致的器件,此外可以采用电阻均压。
动态不均压问题由于器件动态参数和特性的差异造成的不均压问题。
为达到动态均压,首先应选择动态参数和特性尽量一致的器件,另外还可以用RC并联支路作动态均压;对于晶闸管来讲,采用门极强脉冲触发可以显著减小器件开通时间上的差异。
晶闸管的并联:均流的首要措施是挑选特性参数尽量一致的器件,此外还可以采用均流电抗器;同样,用门极强脉冲触发也有助于动态均流。
电力MOSFET的并联R on具有正温度系数,具有电流自动均衡能力,容易并联。
选用R on、U T、G fs和C iss尽量相近的器件并联。
电路走线和布局应尽量对称。
可在源极电路中串入小电感起到均流电抗器的作用。
IGBT的并联:在1/2或1/3额定电流以下的区段,通态压降具有负温度系数;在以上的区段则具有正温度系数;也具有一定的电流自动均衡能力,易于并联使用。
在器件参数和特性选择、电路布局和走线、散热条件等方面也应尽量一致。
9-2为什么要对电力电子主电路和控制电路进行电气隔离?其基本方法有哪些?一是安全,因为主回路和控制回路工作电压等级不一样、电流大小也不一样,各有各的过流保护系统。