数据结构第28讲--关键路径--2018
- 格式:pptx
- 大小:264.49 KB
- 文档页数:35
数据结构中的关键路径算法解析关键路径算法是一种用于确定项目关键路径的方法,它可以帮助我们找到项目中耗时最长的路径,从而可以合理地安排任务和资源,提高项目完成的效率。
在数据结构中,关键路径算法也有着重要的应用。
本文将对数据结构中的关键路径算法进行解析和讨论。
一、什么是关键路径算法?关键路径算法是一种基于网络图的分析工具,它通过构建工程项目的网络模型,确定项目中的关键路径,以便更好地控制和管理项目进度。
关键路径是指项目中最长时间的路径,这条路径上的每个任务都是不能延误的,否则将会对整个项目的完成时间产生直接影响。
二、关键路径算法的基本步骤1. 创建网络图:将项目的任务和其所需的时间以及任务之间的依赖关系表示为有向无环图(DAG),其中顶点表示任务,边表示任务之间的依赖关系。
2. 计算任务的最早开始时间(ES)和最迟开始时间(LS):从图的起点开始,依次计算每个任务的最早开始时间,即该任务能够开始执行的最早时间;然后从图的终点开始,逆序计算每个任务的最迟开始时间,即该任务必须在何时开始以保证项目能够按时完成。
3. 计算任务的最早完成时间(EF)和最迟完成时间(LF):根据任务的最早开始时间和所需时间计算出任务的最早完成时间,即该任务能够完成的最早时间;然后根据任务的最迟开始时间和所需时间计算出任务的最迟完成时间,即该任务必须在何时完成以保证项目能够按时完成。
4. 计算任务的总时差(TF):总时差等于任务的最迟完成时间减去最早完成时间,表示任务可以延误的时间。
5. 确定关键路径:根据任务的总时差,将总时差为零的任务连接起来,形成关键路径。
三、关键路径算法的实例为了更好地理解关键路径算法的应用,我们以一个简单的工程项目为例进行说明。
假设有以下任务需要完成:任务A:7天任务B:5天任务C:10天任务D:6天任务E:3天任务F:8天任务之间的依赖关系如下所示:A ->B -> D -> FA -> C -> E -> F首先,我们可以根据这些任务和依赖关系创建一个有向无环图(DAG),然后按照上述算法的步骤进行计算。
数据结构习题解答信息工程学院徐燕萍第1章绪论一、基本内容数据、数据元素、数据对象、数据结构、存储结构和数据类型等概念术语的确定含义;抽象数据类型的定义、表示和实现方法;描述算法的类C语言;算法设计的基本要求以及从时间和空间角度分析算法的方法。
二、学习要点1.熟悉各名词、术语的含义,掌握基本概念,特别是数据的逻辑结构和存储结构之间的关系。
分清哪些是逻辑结构的性质,哪些是存储结构的性质。
2.了解抽象数据类型的定义、表示和实现方法。
3.熟悉类C语言的书写规范,特别要注意值调用和引用调用的区别,输入、输出的方式以及错误处理方式。
4.理解算法五个要素的确切含义:①动态有穷性(能执行结束);②确定性(对于相同的输入执行相同的路径);③有输入;④有输出;⑤可行性(用以描述算法的操作都是足够基本的)。
5.掌握计算语句频度和估算算法时间复杂度的方法。
三、基础知识题1.1简述下列术语:数据、数据元素、数据对象、数据结构、存储结构、数据类型和抽象数据类型。
答:数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称。
数据元素是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。
数据对象是性质相同的数据元素的集合,是数据的一个子集。
数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
存储结构是数据结构在计算机中的表示(又称映像)。
数据类型是一个值的集合和定义在这个值集上的一组操作的总称。
抽象数据类型是指一个数学模型以及定义在该模型上的一组操作。
1.2试描述数据结构和抽象数据类型的概念与程序设计语言中数据类型概念的区别。
答:简单地说,数据结构定义了一组按某些关系结合在一起的数组元素。
数据类型不仅定义了一组带结构的数据元素,而且还在其上定义了一组操作。
程序设计语言中的数据类型是一个值的集合和定义在这个值集上的一组操作的总称。
而抽象数据类型是指一个数学模型以及定义在该模型上的一组操作。
考研数据结构图的必背算法及知识点Prepared on 22 November 20201.最小生成树:无向连通图的所有生成树中有一棵边的权值总和最小的生成树问题背景:假设要在n个城市之间建立通信联络网,则连通n个城市只需要n—1条线路。
这时,自然会考虑这样一个问题,如何在最节省经费的前提下建立这个通信网。
在每两个城市之间都可以设置一条线路,相应地都要付出一定的经济代价。
n个城市之间,最多可能设置n(n-1)/2条线路,那么,如何在这些可能的线路中选择n-1条,以使总的耗费最少呢分析问题(建立模型):可以用连通网来表示n个城市以及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价。
对于n个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网。
即无向连通图的生成树不是唯一的。
连通图的一次遍历所经过的边的集合及图中所有顶点的集合就构成了该图的一棵生成树,对连通图的不同遍历,就可能得到不同的生成树。
图G5无向连通图的生成树为(a)、(b)和(c)图所示:G5G5的三棵生成树:可以证明,对于有n个顶点的无向连通图,无论其生成树的形态如何,所有生成树中都有且仅有n-1条边。
最小生成树的定义:如果无向连通图是一个网,那么,它的所有生成树中必有一棵边的权值总和最小的生成树,我们称这棵生成树为最小生成树,简称为最小生成树。
最小生成树的性质:假设N=(V,{E})是个连通网,U是顶点集合V的一个非空子集,若(u,v)是个一条具有最小权值(代价)的边,其中,则必存在一棵包含边(u,v)的最小生成树。
解决方案:两种常用的构造最小生成树的算法:普里姆(Prim)和克鲁斯卡尔(Kruskal)。
他们都利用了最小生成树的性质1.普里姆(Prim)算法:有线到点,适合边稠密。
时间复杂度O(N^2)假设G=(V,E)为连通图,其中V为网图中所有顶点的集合,E为网图中所有带权边的集合。
数据结构关键路径 如果在有向⽆环图中⽤有向边表⽰⼀个⼯程中的各项活动(Activity),⽤有向边上的权值表⽰活动的持续时间(duration),⽤顶点表⽰事件(Event),则这种有向图叫做⽤边表⽰活动的⽹络(activity on edges),简称AOE⽹络。
例如: 其中,E i表⽰事件,a k表⽰活动。
E0是源点,E8是汇点。
完成整个⼯程所需的时间等于从源点到汇点的最长路径长度,即该路径中所有活动的持续时间之和最⼤。
这条路径称为关键路径(critical path)。
关键路径上所有活动都是关键活动。
所谓关键活动(critical activity),是不按期完成会影响整个⼯程进度的活动。
只要找到关键活动,就可以找到关键路径。
与计算关键活动有关的量: 1 事件E i的最早可能开始时间:Ee[i]—从源点E0到顶点E i的最长路径长度。
在上图中,Ee[4]=7。
2 事件E i的最迟允许开始时间:El(⼩写L)[i]—在保证汇点E n-1最迟允许开始时间El[n-1]等于整个⼯程所需时间的前提下,等于El[n-1]减去从E i到E n-1的最长路径长度。
3 活动a k的最早可能开始时间:e[k]—设该活动在有向边<E i,E j>上,从源点E0到顶点E i的最长路径长度,即等于Ee[i]。
4 活动a k的最迟允许开始时间:l(⼩写L)[k]—设该活动在有向边<E i,E j>上,在不会引起时间延误的前提下,允许的最迟开始时间。
l[k]=El[j]-dur(<E i,E j>),其中dur(<E i,E j>)是完成该活动所需的时间,即有向边<E i,E j>的权值。
l[k]-e[k]表⽰活动a k的最早可能开始时间和最迟允许开始时间的时间余量,也叫做松弛时间(slack time)。
没有时间余量的活动是关键活动。
算法步骤: 1 输⼊顶点数和边数,再输⼊每条边的起点编号、终点编号和权值。
数据结构关键路径数据结构是计算机科学中非常重要的一门学科,它主要研究数据之间的组织方式和操作方法。
在计算机程序中,数据结构的选择和设计对程序的性能和效率有着重要的影响。
在数据结构中,关键路径是一个关键概念,它指的是一个任务完成所需要的最长时间。
1. 什么是关键路径在项目管理中,关键路径是指在一个项目的所有任务中,完成项目所需要的最长时间路径。
这条路径上的任务是项目完成的关键,如果其中任何一个任务延迟,整个项目的进度都会受到影响。
在数据结构中,关键路径指的是在一个算法或操作中,完成所需的最长时间。
它是算法或操作的瓶颈,决定了整个操作的效率。
2. 关键路径的计算方法计算关键路径的方法主要有两种:事件法和任务法。
事件法是一种图论的方法,通过绘制和分析项目的网络图来确定关键路径。
任务法是一种优化方法,通过对任务进行排序和计算来确定关键路径。
在数据结构中,计算关键路径通常是通过分析算法的复杂度来完成的。
算法的复杂度可以分为时间复杂度和空间复杂度,其中时间复杂度是计算算法执行所需的时间,空间复杂度是计算算法执行所需的空间。
通过分析算法的复杂度,可以确定算法的关键路径。
3. 关键路径的应用关键路径在数据结构中有着广泛的应用。
在算法设计中,关键路径可以帮助程序员找到算法的瓶颈并进行优化。
通过优化关键路径上的操作,可以提高算法的效率和性能。
此外,关键路径还可以应用于网络流量分析、图像处理、数据压缩等领域。
在网络流量分析中,关键路径可以帮助分析网络中的瓶颈和拥堵点,从而优化网络结构和提高传输效率。
在图像处理中,关键路径可以帮助找到图像处理的关键步骤,从而提高图像处理的速度和质量。
在数据压缩中,关键路径可以帮助找到数据压缩的关键操作,从而提高数据的压缩比例。
4. 关键路径的挑战尽管关键路径在数据结构中有着广泛的应用,但它也面临一些挑战。
首先,计算关键路径的过程通常是复杂且耗时的,需要对算法进行详细的分析和计算。
其次,关键路径可能随着算法或操作的不同而变化,需要根据具体情况进行调整和优化。
数据结构课程设计——关键路径《数据结构》课程设计报告课程题目:关键路径学院:班级:学号:姓名:指导教师:完成日期:目录一、需求分析 (2)二、概要设计 (4)三、详细设计 (5)四、调试分析 (12)五、用户使用说明 (13)六、测试结果 (14)七、附录 (14)一、需求分析1、问题描述AOE网(即边表示活动的网络),在某些工程估算方面非常有用。
它可以使人们了解:(1)研究某个工程至少需要多少时间?(2)哪些活动是影响工程进度的关键? 在AOE网络中,从源点到汇点的有向路径可能不止一条,但只有各条路径上所有活动都完成了,这个工程才算完成。
因此,完成整个工程所需的时间取决于从源点到汇点的最长路径长度,即在这条路径上所有活动的持续时间之和,这条路径就叫做关键路径(critical path)。
2、设计步骤(1)、以某一工程为蓝本,采用图的结构表示实际的工程计划时间。
(2)、调查并分析和预测这个工程计划每个阶段的时间。
(3)、用调查的结果建立AOE网,并用图的形式表示。
(4 )、用CreateGraphic ()函数建立图的邻接表存储结构,能够输入图的顶点和边的信息,并存储到相应存储结构中。
(5)、用SearchMaxPath()函数求出最大路径,并打印出关键路径。
(6)、编写代码并调试、测试通过。
3、测试数据○v2○v5○v1○v4○○v36v1 v2 v3 v4 v5 v68v1 v2 a1 3v1 v3 a2 2v2 v4 a3 2v2 v5 a4 3 v3 v4 a5 4v3 v6 a6 3v4 v6 a7 2v5 v6 a8 1二、概要设计为了实现上述函数功能:1、抽象数据类型图的定义如下:ADT Graph {数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。
数据关系R:R={ VR };VR={<v,w>|v,w∈V,且P(v,w),<v,w>表示从v到w的弧,谓词P(v,w)定义了弧<v,w>的意义和信息 }基本操作:InitGraph(G);初始条件:图G存在。
数据结构课程设计报告题目:关键路径算法院(系):计算机工程学院专业:计算机科学与技术班级:嵌入式1091学生:吕帅指导教师:寇海洲孙成富邱军林殷路2010年12月目录一、设计目的 (3)二、设计内容 (3)三、程序设计步骤 (4)四、调试分析 (12)五、测试结果 (12)六、课程设计小结 (16)一、设计目的1、能根据实际问题的具体情况,结合数据结构课程中的基本理论和基本算法,分析并正确确定数据的逻辑结构,合理地选择相应的存储结构,并能设计出解决问题的有效算法。
2、提高程序设计和调试能力。
学生通过上机实习,验证自己设计的算法的正确性。
学会有效利用基本调试方法,迅速找出程序代码中的错误并且修改。
3、初步掌握软件开发过程中问题分析、系统设计、程序编码、测试等基本方法和技能。
4、训练用系统的观点和软件开发一般规范进行软件开发,培养软件工作者所应具备的科学的工作方法和作风。
5、培养根据选题需要选择学习书籍,查阅文献资料的自学能力。
二、设计内容1、系统名称:关键路径算法AOE网(即边表示活动的网络),在某些工程估算方面非常有用。
它可以使人们了解:(1)研究某个工程至少需要多少时间?(2)哪些活动是影响工程进度的关键? 在AOE网络中,从源点到汇点的有向路径可能不止一条,但只有各条路径上所有活动都完成了,这个工程才算完成。
因此,完成整个工程所需的时间取决于从源点到汇点的最长路径长度,即在这条路径上所有活动的持续时间之和,这条路径就叫做关键路径(critical path)。
2、要求:1 以某一工程为蓝本,采用图的结构表示实际的工程计划时间。
2 调查并分析和预测这个工程计划每个阶段的时间。
3 用调查的结果建立AOE网,并用图的形式表示。
4 用CreateGraphic ()函数建立图的邻接表存储结构,能够输入图的顶点和边的信息,并存储到相应存储结构中。
5 用SearchMaxPath()函数求出最大路径,并打印出关键路径。