数据结构课程设计汇本:拓扑排序和关键路径
- 格式:doc
- 大小:721.50 KB
- 文档页数:28
数据结构的应用的拓扑排序与关键路径算法拓扑排序与关键路径算法是数据结构中重要的应用之一。
拓扑排序通过对有向图的节点进行排序,使得对于任意一条有向边(u,v),节点 u 在排序中都出现在节点 v 之前。
关键路径算法则是用来确定一个项目的关键活动和最短完成时间。
拓扑排序的实现可以通过深度优先搜索或者广度优先搜索来完成。
深度优先搜索是递归地访问节点的所有未访问过的邻居节点,直到没有未访问过的邻居节点为止,然后将该节点添加到拓扑排序的结果中。
广度优先搜索则是通过使用队列来实现的,将节点的邻居节点逐个入队并进行访问,直到队列为空为止。
无论使用哪种方法,拓扑排序都可以通过判断节点的入度来进行。
拓扑排序在很多实际问题中都有广泛应用。
比如在任务调度中,拓扑排序可以用来确定任务间的依赖关系和执行顺序;在编译原理中,拓扑排序可以用来确定程序中变量的定义和使用顺序。
关键路径算法用于确定项目中的关键活动和最短完成时间。
它通过计算每个活动的最早开始时间和最晚开始时间,以及每个活动的最早完成时间和最晚完成时间来实现。
具体步骤如下:1. 构建有向加权图,其中节点表示项目的活动,有向边表示活动间的先后关系,边的权重表示活动的持续时间。
2. 进行拓扑排序,确定活动的执行顺序。
3. 计算每个活动的最早开始时间,即从起始节点到该节点的最长路径。
4. 计算每个活动的最晚开始时间,即从终止节点到该节点的最长路径。
5. 根据每个活动的最早开始时间和最晚开始时间,可以确定关键活动,即最早开始时间与最晚开始时间相等的活动。
6. 计算整个项目的最短完成时间,即从起始节点到终止节点的最长路径。
拓扑排序与关键路径算法在工程管理、任务调度、生产流程优化等领域都有重要应用。
它们能够帮助我们有效地组织和管理复杂的项目,提高工作效率和资源利用率。
在实际应用中,我们可以借助计算机编程以及各种图算法库来实现这些算法,从而更快速、准确地解决实际问题。
综上所述,拓扑排序与关键路径算法是数据结构的重要应用之一。
数据结构课设——有向图的深度、⼴度优先遍历及拓扑排序任务:给定⼀个有向图,实现图的深度优先, ⼴度优先遍历算法,拓扑有序序列,并输出相关结果。
功能要求:输⼊图的基本信息,并建⽴图存储结构(有相应提⽰),输出遍历序列,然后进⾏拓扑排序,并测试该图是否为有向⽆环图,并输出拓扑序列。
按照惯例,先上代码,注释超详细:#include<stdio.h>#include<stdlib.h>#include<malloc.h>#pragma warning(disable:4996)#define Max 20//定义数组元素最⼤个数(顶点最⼤个数)typedef struct node//边表结点{int adjvex;//该边所指向结点对应的下标struct node* next;//该边所指向下⼀个结点的指针}eNode;typedef struct headnode//顶点表结点{int in;//顶点⼊度char vertex;//顶点数据eNode* firstedge;//指向第⼀条边的指针,边表头指针}hNode;typedef struct//邻接表(图){hNode adjlist[Max];//以数组的形式存储int n, e;//顶点数,边数}linkG;//以邻接表的存储结构创建图linkG* creat(linkG* g){int i, k;eNode* s;//边表结点int n1, e1;char ch;g = (linkG*)malloc(sizeof(linkG));//申请结点空间printf("请输⼊顶点数和边数:");scanf("%d%d", &n1, &e1);g->n = n1;g->e = e1;printf("顶点数:%d 边数:%d\n", g->n, g->e);printf("请输⼊顶点信息(字母):");getchar();//因为接下来要输⼊字符串,所以getchar⽤于承接上⼀条命令的结束符for (i = 0; i < n1; i++){scanf("%c", &ch);g->adjlist[i].vertex = ch;//获得该顶点数据g->adjlist[i].firstedge = NULL;//第⼀条边设为空}printf("\n打印顶点下标及顶点数据:\n");for (i = 0; i < g->n; i++)//循环打印顶点下标及顶点数据{printf("顶点下标:%d 顶点数据:%c\n", i, g->adjlist[i].vertex);}getchar();int i1, j1;//相连接的两个顶点序号for (k = 0; k < e1; k++)//建⽴边表{printf("请输⼊对<i,j>(空格分隔):");scanf("%d%d", &i1, &j1);s = (eNode*)malloc(sizeof(eNode));//申请边结点空间s->adjvex = j1;//边所指向结点的位置,下标为j1s->next = g->adjlist[i1].firstedge;//将当前s的指针指向当前顶点上指向的结点g->adjlist[i1].firstedge = s;//将当前顶点的指针指向s}return g;//返回指针g}int visited[Max];//标记是否访问void DFS(linkG* g, int i)//深度优先遍历{eNode* p;printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已访问过的顶点visited值改为1p = g->adjlist[i].firstedge;//p指向顶点i的第⼀条边while (p)//p不为NULL时(边存在){if (visited[p->adjvex] != 1)//如果没有被访问DFS(g, p->adjvex);//递归}p = p->next;//p指向下⼀个结点}}void DFSTravel(linkG* g)//遍历⾮连通图{int i;printf("深度优先遍历;\n");//printf("%d\n",g->n);for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问{DFS(g, i);//调⽤DFS函数}}}void BFS(linkG* g, int i)//⼴度优先遍历{int j;eNode* p;int q[Max], front = 0, rear = 0;//建⽴顺序队列⽤来存储,并初始化printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已经访问过的改成1rear = (rear + 1) % Max;//普通顺序队列的话,这⾥是rear++q[rear] = i;//当前顶点(下标)队尾进队while (front != rear)//队列⾮空{front = (front + 1) % Max;//循环队列,顶点出队j = q[front];p = g->adjlist[j].firstedge;//p指向出队顶点j的第⼀条边while (p != NULL){if (visited[p->adjvex] == 0)//如果未被访问{printf("%c ", g->adjlist[p->adjvex].vertex);visited[p->adjvex] = 1;//将该顶点标记数组值改为1rear = (rear + 1) % Max;//循环队列q[rear] = p->adjvex;//该顶点进队}p = p->next;//指向下⼀个结点}}}void BFSTravel(linkG* g)//遍历⾮连通图{int i;printf("⼴度优先遍历:\n");for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问过{BFS(g, i);//调⽤BFS函数}}}//因为拓扑排序要求⼊度为0,所以需要先求出每个顶点的⼊度void inDegree(linkG* g)//求图顶点⼊度{eNode* p;int i;for (i = 0; i < g->n; i++)//循环将顶点⼊度初始化为0{g->adjlist[i].in = 0;}for (i = 0; i < g->n; i++)//循环每个顶点{p = g->adjlist[i].firstedge;//获取第i个链表第1个边结点指针while (p != NULL)///当p不为空(边存在){g->adjlist[p->adjvex].in++;//该边终点结点⼊度+1p = p->next;//p指向下⼀个边结点}printf("顶点%c的⼊度为:%d\n", g->adjlist[i].vertex, g->adjlist[i].in);}void topo_sort(linkG *g)//拓扑排序{eNode* p;int i, k, gettop;int top = 0;//⽤于栈指针的下标索引int count = 0;//⽤于统计输出顶点的个数int* stack=(int *)malloc(g->n*sizeof(int));//⽤于存储⼊度为0的顶点for (i=0;i<g->n;i++)//第⼀次搜索⼊度为0的顶点{if (g->adjlist[i].in==0){stack[++top] = i;//将⼊度为0的顶点进栈}}while (top!=0)//当栈不为空时{gettop = stack[top--];//出栈,并保存栈顶元素(下标)printf("%c ",g->adjlist[gettop].vertex);count++;//统计顶点//接下来是将邻接点的⼊度减⼀,并判断该点⼊度是否为0p = g->adjlist[gettop].firstedge;//p指向该顶点的第⼀条边的指针while (p)//当p不为空时{k = p->adjvex;//相连接的顶点(下标)g->adjlist[k].in--;//该顶点⼊度减⼀if (g->adjlist[k].in==0){stack[++top] = k;//如果⼊度为0,则进栈}p = p->next;//指向下⼀条边}}if (count<g->n)//如果输出的顶点数少于总顶点数,则表⽰有环{printf("\n有回路!\n");}free(stack);//释放空间}void menu()//菜单{system("cls");//清屏函数printf("************************************************\n");printf("* 1.建⽴图 *\n");printf("* 2.深度优先遍历 *\n");printf("* 3.⼴度优先遍历 *\n");printf("* 4.求出顶点⼊度 *\n");printf("* 5.拓扑排序 *\n");printf("* 6.退出 *\n");printf("************************************************\n");}int main(){linkG* g = NULL;int c;while (1){menu();printf("请选择:");scanf("%d", &c);switch (c){case1:g = creat(g); system("pause");break;case2:DFSTravel(g); system("pause");break;case3:BFSTravel(g); system("pause");break;case4:inDegree(g); system("pause");break;case5:topo_sort(g); system("pause");break;case6:exit(0);break;}}return0;}实验⽤图:运⾏结果:关于深度优先遍历 a.从图中某个顶点v 出发,访问v 。
数据结构关键路径 如果在有向⽆环图中⽤有向边表⽰⼀个⼯程中的各项活动(Activity),⽤有向边上的权值表⽰活动的持续时间(duration),⽤顶点表⽰事件(Event),则这种有向图叫做⽤边表⽰活动的⽹络(activity on edges),简称AOE⽹络。
例如: 其中,E i表⽰事件,a k表⽰活动。
E0是源点,E8是汇点。
完成整个⼯程所需的时间等于从源点到汇点的最长路径长度,即该路径中所有活动的持续时间之和最⼤。
这条路径称为关键路径(critical path)。
关键路径上所有活动都是关键活动。
所谓关键活动(critical activity),是不按期完成会影响整个⼯程进度的活动。
只要找到关键活动,就可以找到关键路径。
与计算关键活动有关的量: 1 事件E i的最早可能开始时间:Ee[i]—从源点E0到顶点E i的最长路径长度。
在上图中,Ee[4]=7。
2 事件E i的最迟允许开始时间:El(⼩写L)[i]—在保证汇点E n-1最迟允许开始时间El[n-1]等于整个⼯程所需时间的前提下,等于El[n-1]减去从E i到E n-1的最长路径长度。
3 活动a k的最早可能开始时间:e[k]—设该活动在有向边<E i,E j>上,从源点E0到顶点E i的最长路径长度,即等于Ee[i]。
4 活动a k的最迟允许开始时间:l(⼩写L)[k]—设该活动在有向边<E i,E j>上,在不会引起时间延误的前提下,允许的最迟开始时间。
l[k]=El[j]-dur(<E i,E j>),其中dur(<E i,E j>)是完成该活动所需的时间,即有向边<E i,E j>的权值。
l[k]-e[k]表⽰活动a k的最早可能开始时间和最迟允许开始时间的时间余量,也叫做松弛时间(slack time)。
没有时间余量的活动是关键活动。
算法步骤: 1 输⼊顶点数和边数,再输⼊每条边的起点编号、终点编号和权值。
数据结构教案第七章图第7章图【学习目标】1.领会图的类型定义。
2.熟悉图的各种存储结构及其构造算法,了解各种存储结构的特点及其选用原则。
3.熟练掌握图的两种遍历算法。
4.理解各种图的应用问题的算法.【重点和难点】图的应用极为广泛,而且图的各种应用问题的算法都比较经典,因此本章重点在于理解各种图的算法及其应用场合。
【知识点】图的类型定义、图的存储表示、图的深度优先搜索遍历和图的广度优先搜索遍历、无向网的最小生成树、最短路径、拓扑排序、关键路径【学习指南】离散数学中的图论是专门研究图性质的一个数学分支,但图论注重研究图的纯数学性质,而数据结构中对图的讨论则侧重于在计算机中如何表示图以及如何实现图的操作和应用等.图是较线性表和树更为复杂的数据结构,因此和线性表、树不同,虽然在遍历图的同时可以对顶点或弧进行各种操作,但更多图的应用问题如求最小生成树和最短路径等在图论的研究中都早已有了特定算法,在本章中主要是介绍它们在计算机中的具体实现。
这些算法乍一看都比较难,应多对照具体图例的存储结构进行学习。
而图遍历的两种搜索路径和树遍历的两种搜索路径极为相似,应将两者的算法对照学习以便提高学习的效益。
【课前思考】1。
你有没有发现现在的十字路口的交通灯已从过去的一对改为三对,即每个方向的直行、左拐和右拐能否通行都有相应的交通灯指明。
你能否对某个丁字路口的6条通路画出和第一章绪论中介绍的”五叉路口交通管理示意图”相类似的图?2。
如果每次让三条路同时通行,那么从图看出哪些路可以同时通行?同时可通行的路为:(AB,BC,CA),(AB,BC,BA),(AB,AC,CA),(CB,CA,BC)目录第7章图 (1)7.1图的定义和基本术语 (1)7.2图的存储和创建 (2)7.2.1 图的存储表示 (2)7。
2.2 图的创建 (5)7。
3图的遍历 (5)7。
3.1 深度优先搜索 (5)7.3.2 广度优先搜索 (6)7。
4遍历算法的应用 (8)7.4。
1 ABSTRACT1.1图和栈的结构定义struct SqStack////栈部分{SElemType *base;//栈底指针SElemType *top;//栈顶指针int stacksize;//栈的大小int element_count;//栈中元素个素};/////////AOE网的存储结构struct ArcNode //表结点{int lastcompletetime;//活动最晚开始时间int adjvex; //点结点位置int info; //所对应的弧的权值struct ArcNode *next;//指向下一个表结点指针};struct VNode //点结点{VertexType data; //结点标志int indegree; //该结点入度数int ve; //记录结点的最早开始时间int vl; //记录结点的最晚开始时间struct ArcNode *first_out_arc; //存储下一个出度的表结点struct ArcNode *first_in_arc;//存储下一个入度的表结点};struct ALGraph{ VNode *vertices; //结点数组int vexnum; //结点数int arcnum; //弧数int kind; //该图的类型 };2系统总分析2.1关键路径概念分析2.1.1什么是关键路径关键路径法(Critical Path Method, CPM)最早出现于20世纪50年代,它是通过分析项目过程中哪个活动序列进度安排的总时差最少来预测项目工期的网络分析。
这种方法产生的背景是,在当时出现了许多庞大而复杂的科研和工程项目,这些项目常常需要运用大量的人力、物力和财力,因此如何合理而有效地对这些项目进行组织,在有限资源下以最短的时间和最低的成本费用下完成整个项目就成为一个突出的问题,这样CPM就应运而生了。
对于一个项目而言,只有项目网络中最长的或耗时最多的活动完成之后,项目才能结束,这条最长的活动路线就叫关键路径(Critical Path),组成关键路径的活动称为关键活动。
2.1.2关键路径特点关键路径上的活动持续时间决定了项目的工期,关键路径上所有活动的持续时间总和就是项目的工期。
关键路径上的任何一个活动都是关键活动,其中任何一个活动的延迟都会导致整个项目完工时间的延迟。
关键路径上的耗时是可以完工的最短时间量,若缩短关键路径的总耗时,会缩短项目工期;反之,则会延长整个项目的总工期。
但是如果缩短非关键路径上的各个活动所需要的时间,也不至于影响工程的完工时间。
关键路径上活动是总时差最小的活动,改变其中某个活动的耗时,可能使关键路径发生变化。
可以存在多条关键路径,它们各自的时间总量肯定相等,即可完工的总工期。
关键路径是相对的,也可以是变化的。
在采取一定的技术组织措施之后,关键路径有可能变为非关键路径,而非关键路径也有可能变为关键路径。
2.2关键路径实现过程2.2.1结构选取首先要选取建图的一种算法建立图,有邻接矩阵,邻接表,十字链表,邻接多重表等多种方法,要选取一种适当的方法建立图,才能提高算法效率,降低时间复杂度和空间复杂度。
两个相邻顶点与它们之间的边表示活动,边上的数字表示活动延续的时间。
对于给出的事件AOE网络,要求求出从起点到终点的所有路径,经分析、比较后找出长读最大的路径,从而得出求关键路径的算法,并给出计算机上机实现的源程序。
完成不同路径的活动所需的时间虽然不同,但只有各条路径上所有活动都完成了,这个工程才算完成。
2.2.2具体要解决的问题(1)将项目中的各项活动视为有一个时间属性的结点,从项目起点到终点进行排列;(2)用有方向的线段标出各结点的紧前活动和紧后活动的关系,使之成为一个有方向的网络图;(3)用正推法和逆推法计算出各个活动的最早开始时间,最晚开始时间,最早完工时间和最迟完工时间,并计算出各个活动的时差;(4)找出所有时差为零的活动所组成的路线,即为关键路径;(5)识别出准关键路径,为网络优化提供约束条件;2.2.3算法分析(1)求关键路径必须在拓扑排序的前提下进行,有环图不能求关键路径;(2)只有缩短关键活动的工期才有可能缩短工期;(3)若一个关键活动不在所有的关键路径上,减少它并不能减少工期;(4)只有在不改变关键路径的前提下,缩短关键活动才能缩短整个工期。
(5)关键路径:从源点到汇点的路径长度最长的路径叫关键路径。
(6)活动的最早开始时间e(i);(7)活动的最晚开始时间l(i);(8)定义e(i)=l(i)的活动叫关键活动;(9)事件的最早开始时间ve(i);(10)事件的最晚开始时间vl(i)。
设活动ai由弧<j,k>(即从顶点j到k)表示,其持续时间记为dut(<j,k>),则:e(i)=ve(j)l(i)=vl(k)-dut(<j,k>)求ve(i)和vl(j)分两步:1.从ve(1)=0开始向前递推ve(j)=Max{ ve(i)+dut(<i,j>) }<i,j>T, 2<=j<=n其中,T是所有以j为弧头的弧的集合。
2.从vl(n)=ve(n)开始向后递推vl(i)=Min{ vl(j)-dut(<i,j>) }<i,j>S, 1<=i<=n-1其中,S是所有以i为弧尾的弧的集合。
两个公式是在拓扑有序和逆拓扑有序的前提下进行。
2.2.4 算法步骤(1)输入e条弧<j,k>,建立AOE网的存储结构。
(2)从源点v1出发,令ve(1)=0,求个点的最早开始时间ve(j)。
(3)从汇点vn出发,令vl(n)=最大值,求个点的最晚开始时间vl(j)。
(4)由于各结点的最早开始时间已求出来,所以各活动的最早开始时间即(每条弧s(活动)的最早开始时间)就等于该结点的最早开始时间,并由上可同时求出该活动的最晚开始时间l(j)。
(5)具体表达式为:e(i)=ve(j)l(i)=vl(k)-dut(<j,k>)(6)当结点的最早开始时间ve(j)=最晚开始时间时vl(j),则该结点为关键结点。
(7)当活动的最早开始时间e(j)=最晚开始时间时l(j),则该结点为关键活动。
3 主要功能模块设计3.1程序模块栈部分模块Status InitStack(SqStack &S) //初始化栈Status DestroyStack(SqStack &S)//销毁栈Status ClearStack(SqStack &S)//清空栈Status StackEmpty(SqStack S)//判断是否为空Status StackEmpty(SqStack S)//判断是否为空Status Pop(SqStack &S,SElemType &e) //弹出元素Status GetElement(SqStack &S,int position,SElemType &e) //取元素,非弹出,i为要去元素位置无向图(AOE网)部分模块void CreateALGraph(ALGraph &graph)//初始化AOE网Status TopologicalSort(ALGraph &graph,SqStack &ToPoReverseSort) //求拓扑排序Status PutInfoToPoSort(SqStack temp,ALGraph graph) //输出拓扑顺序排序(当拓扑序列存在时)Status GetVeAndVl(ALGraph &graph,SqStack OrderSort,SqStack RevSort) //求出结点和活动的最晚开始时间和最早开始时间Status CriticalPath(ALGraph &graph,SqStack RevSort) //求出关键活动和关键事件并输出4 系统详细设计4.1主函数模块main函数首先调用SqStack ToPoSort;SqStack ToPoReverseSort;函数来定义栈,调用InitStack(ToPoSort);来初始化存拓扑排序的栈和InitStack(ToPoReverseSort);来初始化逆拓扑排序的栈。
其次调用CreateALGraph(ALGraph &graph)函数定义和初始化AOE网,调用TopologicalSor t(ALGraph &graph,SqStack &ToPoReverseSort) 函数求拓扑序列和调用PutInfoToPoSort(ToPoSort,graph);函数来输出输出拓扑顺序排序。
然后调用GetVeAndVl(graph,ToPoSort,ToPoReverseSort) 函数求结点和活动的最晚开始时间、最早开始时间并输出。
最后调用Status CriticalPath(ALGraph &graph,SqStack RevSort)函数来求关键活动、关键事件并输出。
4.2初始化模块初始化模块用来初始化图,要求用户自己输入数据,并程序构造AOE网。
本程序是用自己改进的邻接表来构造AOE网。
见图2-4-2图2-4-2图2-4-34.3求拓扑序列模块利用栈来存储入度为零的结点,然后逐个弹出,来进行与该结点的出度结点来比较,是否符合拓扑排序的规则,最后用ToPoReverseSort存放拓扑逆序序列来完成整个拓扑排序。
见图2-4-3。