统计与统计案例
- 格式:docx
- 大小:100.16 KB
- 文档页数:9
高中数学:统计与统计案例练习一、选择题1.某校为了解学生平均每周的上网时间(单位:h),从高一年级1 000名学生中随机抽取100 名进行了调查,将所得数据整理后,画出频率分布直方图(如图),其中频率分布直方图从左到右前3个小矩形的面积之比为1 : 3 : 5,据此估计该校高一年级学生中平均每周上网时间少于4 h的学生人数为()领率组距A. 200 C. 400 0.0350.015B. 240D. 48010平均每周上网时间(h)解析:选C 设频率分布直方图中从左到右前3个小矩形的面积分别为A3K5P.由频率分布直方图可知,最后2个小矩形的面积之和为(0.015+0.035)X2 = 0.1.由于频率分布直方图中各个小矩形的面积之和为1,所以P+3P+5P=0.9,即尸=0.1.所以平均每周上网时间少于4h的学生所占比例为尸+3P=0.4,由此估计学生人数为0.4X1 000 =400.2. AQI(Air Quality Index,空气质量指数)是报告每日空气质量的参数,描述了空气清洁或污染的程度.AQI共分六级,一级优(0〜50),二级良(51〜100),三级轻度污染(101〜150),四级中度污染(151〜200),五级重度污染(201〜300),六级严重污染(大于300).如图是昆明市2021年4月份随机抽取的10天的AQI茎叶图,利用该样本估计昆明市2021年4月份空气质量优的天数为 ()A. 3B. 4C. 12D. 2142解析:选c 从茎叶图知,10天中有4天空气质量为优,所以空气质量为优的频率为 1 V.Z 22所以估计昆明市2021年4月份空气质量为优的天数为30X5=12,应选C.3.〔成都模拟〕某城市收集并整理了该市2021年1月份至10月份各月最低气温与最高气 温〔单位:C 〕的数据,绘制了下面的折线图.该城市各月的最低气温与最高气温具有较好的线性关系,那么根据折线图,以下结论错误 的是〔〕A.最低气温与最高气温为正相关B. 10月的最高气温不低于5月的最高气温C.月温差〔最高气温减最低气温〕的最大值出现在1月D.最低气温低于0C 的月份有4个解析:选D 在A 中,最低气温与最高气温为正相关,故A 正确;在B 中,10月的最高气温 不低于5月的最高气温,故B 正确;在C 中,月温差〔最高气温减最低气温〕的最大值出现在1月, 故C 正确:在D 中,最低气温低于0℃的月份有3个,故D 错误.应选D.4 .〔承德模拟〕为了解户籍、性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取 了容量为100的样本,其中城镇户籍与农村户籍各50人;男性60人,女性40人,绘制不同群体 中倾向选择生育二胎与倾向选择不生育二胎的人数比例图〔如下图〕,其中阴影局部表示倾向 选择生育二胎的对应比例,那么以下表达中错误的选项是〔〕A.是否倾向选择生育二胎与户籍有关B.是否倾向选择生育二胎与性别无关♦最高气温 ♦最低气温C.倾向选择生育二胎的人员中,男性人数与女性人数相同D.倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数解析:选C 由题图,可得是否倾向选择生育二胎与户籍有关、与性别无关;倾向选择不 生育二胎的人员中,农村户籍人数少于城镇户籍人数;倾向选择生育二胎的人员中,男性人数为 60X60% =36,女性人数为40X60%=24,不相同.应选C.5 .(石家庄模拟)某学校48两个班的兴趣小组在一次对抗赛中的成绩如茎叶图所示,通过 茎叶图比拟两个班兴趣小组成绩的平均值及标准差.3 4 28 8 4 6 8 65152①A 班兴趣小组的平均成绩高于B 班兴趣小组的平均成绩; ②B 班兴趣小组的平均成绩高于A 班兴趣小组的平均成绩; ③A 班兴趣小组成绩的标准差大于B 班兴趣小组成绩的标准差;@B 班兴趣小组成绩的标准差大于A 班兴趣小组成绩的标准差. 其中正确结论的编号为()A.①④C. ®®其方差为白义[(53—78尸+(62—78/ +…+ (95—78)2]=121.6, 那么其标准差为'121.6%11.03;45+48+5H -------- F91B 班兴趣小组的平均成成为'」=66,其方差为表义[(45—66)2+(48 - 66)2 + ... + (91-66)2] =169.2, 那么其标准差为1169.2%13.01.应选A.6 .某商场对某一商品搞活动,该商品每一个的进价为3元,销售价为8元,每天售出的 第20个及之后的半价出售.该商场统计了近10天这种商品的销量,如下图,设M 个)为每天商 品的销量,M 元)为该商场每天箱售这种商品的利润.从日利润不少于96元的几天里任选2天, 那么选出的这2天日利润都是97元的概率为()4 5 5 1 6 2 7 38班8 3 6 4 5 3 4 02B.②③D.①③解析:选A A 班兴趣小组的平均成绩为 53+62+64+…+92+95--------------- ---------------- =785x, x=18, 19, y =<l95+(x-19)(4-3), x=20, 21, J5x, x=18, 19, 即 L176+x, x=20, 21.当日销量不少于20个时,日利泗不少于96元, 当日销量为20个时,日利润为96元, 当日销量为21个时,日利润为97元,日利泗为96元的有3天,记为日利泗为97元的有2天,记为人丛从中任选2天有 (.4),(〃石),(.力),(.1),3/),(48),3«),(c4),(.,8),(48),共 10 种情况.其中选出的这2天日利泗都是97元的有(A,8)1种情况. 故所求概率为关.应选B. 二、填空题7 .某小卖部销售某品牌饮料的零售价与销量间的关系统计如下:单价x/元 3.0 3.2 3.4 3.6 3.8 4.0 销量w 瓶504443403528x,y 的关系符合回归方程£=£+2其中分=-20.假设该品牌饮料的进价为2元,为使利润 最大,零售价应定为 元.解析:依题意得:x =3.5, y =40,A所以.=40—(- 20)X3.5=110,所以回归直线方程为f=-20x+110,利润 L = (A —2)(-20A + 110)= -201+ 150x-220,B 选• •1 - 9 1 - 5 A.C 解BioD.g由题意知频数(天)0 18 19 20 2 俏量〔个〕所以x=* = 3.75元时,利润最大.答案:3.758.某高校调查了200名学生每周的自习时间(单位:小时),制成了如下图的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是.解析:设所求的人数为〃,由频率分布直方图,自习时间不少于22.5小时的频率为(0.04+0.08 +0.16) X 2.5=0.7, n=0.7 X 200=140.答案:1409.为比拟甲乙两地某月11时的气温情况,随机选取该月5天11时的气温数据(单位:C) 制成如下图的茎叶图,甲地该月11时的平均气温比乙地该月11时的平均气温高1 ℃,那么甲地该月11时的平均气温的标准差为.甲9 8 2 62 m 03 I解析:甲地该月11时的气温数据(单位:℃)为28,29,30,30+〃?,32;乙地该月11时的气温数据(单位:℃)为26,28,29,31,31,那么乙地该月11时的平均气温为(26+28+29+31+31计5 = 29(℃),所以甲地该月11时的平均气温为30 ℃,故(28+29+30+30+m + 32)+5 = 30,解得〃?=1,那么甲地该月11时的平均气温的标准差为嗝义[(28 - 30产+(29 - 30)2+(30 - 30/+(31 - 30/+(32 - 30户]=\(2.答案:^2三、解做题10.某篮球运发动的投篮命中率为50%,他想提升自己的投篮水平,制定了一个夏季练习计划,为了了解练习效果,执行练习前他统计了10场比赛的得分,计算出得分的中位数为15,平均得分为15,得分的方差为463执行练习后也统计了10场比赛的得分,茎叶图如下图:0 8 91 2 4 4 5 6 82 1 3(1)请计算该篮球运发动执行练习后统计的10场比赛得分的中位数、平均得分与方差;⑵如果仅从执行练习前后统计的各10场比赛得分数据分析,你认为练习方案对该运发动的投篮水平的提升是否有帮助?为什么?解:(1)练习后得分的中位数为上芋=14.5;平均得分为8+9+12+14+14+15+16+18 + 21+23= 15:10方差为击义[(8—15)2 + (9 — 15>+(12 —15>+(14 — 15)2+(14 — 15> + (15 —15>+(16 — 15产+(18-15)2+(21-15)2+(23 —15)2]=20.6.(2)尽管中位数练习后比练习前稍小,但平均得分一样,练习前方差20.6小于练习前方差46.3, 说明练习后得分稳定性提升了(阐述观点合理即可),这是投篮水平提升的表现.故此练习方案对该篮球运发动的投篮水平的提升有帮助.11.(西安八校联考)在2021年俄罗斯世界杯期间,莫斯科的局部餐厅销售了来自中国的小龙虾,这些小龙虾均标有等级代码.为得到小龙虾等级代码数值x与销售单价y(单位:元)之间的关系,经统计得到如下数据:⑴销售单价),与等级代码数值x之间存在线性相关关系,求),关于x的线性回归方程(系数精确到0.1);(2)假设莫斯科某餐厅销售的中国小龙虾的等级代码数值为98,请估计该等级的中国小龙虾销售单价为多少元?参考公式:对于一组数据(xi1 ),3,光),…其回归直线f=源+2的斜率和截距的最小2Xyi一〃x y八 '। A — A——二乘估计分别为Z? = ----------------- a= y —b x .n _Xxr-n x 26 6参考数据:2>»=8 440, 2e = 25 564.—38+48 + 58 + 68 + 78 + 88解:(1)由题意,得x -■= 63,- 16.8+18.8+20.8 + 22.8 + 24+25.8 _y = 6 =21.5,yA_8 440 - 6X63X21.5〜h = ~~6Z—=25 564—6X63X63「026 A 2A — A 一a= y -bx =21.5-0.2X63 = 8.9.故所求线性回归方程为f=0.2x+8.9.⑵由(1)知,当%=98 时,>=0.2X98+8.9=28.5.・•・估计该等级的中国小龙虾销售单价为28.5元.12.(长沙模拟)某职称晋级评定机构对参加某次专业技术测试的100人的成绩进行了统计, 绘制的频率分布直方图如下图.规定80分以上者晋级成功,否那么晋级失败(总分值为100分).(1)求图中.的值;(2)估计该次测试的平均分不(同一组中的数据用该组的区间中点值代表);(3)根据条件完成下面2X2列联表,并判断能否有85%的把握认为“晋级成功〞与性别有关.P(K?2k)0.40 0.25 0.15 0.1()0.050.025k0.708 1.323 2.072 2.706 3.841 5.024解:(1)由频率分布直方图中各小长方形面积总和为1,得(2.+ 0.020+0.03.+0.040)义10=1,解得〃=0...5.⑵由频率分布直方图知洛小组的中点值依次是55,65,75,85,95, 对应的频率分别为0.05.30,0.40,0.20.05,那么估计该次测试的平均分为 x = 55X0.05 + 65X0.30 + 75X0.40 + 85X0.20 + 95X0.05 = 74(分). ⑶由频率分布直方图知,晋级成功的频率为0.20+0.05=0.25, 故晋级成功的人数为100X0.25 = 25,填写2X2列联表如下:晋级成功 晋级失败合计男 16 34 50 女 9 41 50 合计2575100100X(16X41 ——25X75X50X50^2,613>2.072,所以有85%的把握认为“晋级成功〞与性别有关.1 .为检查某工厂所生产的8万台电风扇的质量,抽查了其中20台的无故障连续使用时限(单 位:小时)如下:248 256 232 243 188 268 278 266 289 312 274296 288 302 295 228 287 217 329 283K 2=n(acl-bc)2(1)完成下面的频率分布表,并作出频率分布直方图;(2)估计8万台电风扇中有多少台无故障连续使用时限不低于280小时;(3)用组中值(同一组中的数据在该组区间的中点值)估计样本的平均无故障连续使用时限.解:(1)频率分布表及频率分布直方图如下所示:0.0100 ——⑵由题意可得8乂(0.30+0.10+0.05) = 3.6,所以估计8万台电风扇中有3.6万台无故障连续使用时限不低于280小时.(3)由频率分布直方图可知x =190X0.05 + 210X0.05 + 230X0.10 + 250X0.15 + 270X0.20 + 290X0.30 + 310X0.10 + 330X0.05 = 269(小时),所以样本的平均无故障连续使用时限为269小时.2 .海水养殖场进行某水产品的新、旧网箱养殖方法的产量比照,收获时各随机抽取了 100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg 〞,估计A 的概率;⑵填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量V50 kg箱产量250 kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比拟. 附:P (心2)0.050 0.010 0.001 k3.841 6.635 10.8280.01500.0125频率 仇距0.0075 0.0050 0.0025.厂工丁丁丁丁厂!无故障连续使用时用/小时新养殖法、n(ad-bc)1 _ .K-= . , , ,,其中〃=a+/?+c+d.(a+Z?)(c 十d)(a十c)(Z?+d)解:⑴旧养殖法的箱产量低于50 kg的频率为(0.012+0.014+0.024+0.034+0.040)X5=0.62.因此,事件A的概率估计值为0.62.⑵根据箱产量的频率分布直方图得到联表:K2=---------- -------------------- 15 705100X100 X 96X104由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图说明:新养殖法的箱产量平均值(或中位数)在50 kg到55 kg 之间,旧养殖法的箱产量平均值(或中位数)在45 kg到50 kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.3.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得x =+£即=9.97,5=、*ZG L x )21 /=1 \ / 1O/=1/ 1 16 _ / 16 16 _=、/讳16 X 2比0.212, / L G-8.5)2^ 18.439,Z (x,- x )(L8.5)=—2.78,其中为为抽取的第i个零件的尺寸,i= 1,2, (16)(1)求⑶,i)(i= 12…,16)的相关系数二并答复是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(假设加V0.25,那么可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在(刀-35,7 +3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①从这一天抽检的结果看,是否需对当天的生产过程进行检查?②在(7 -35,7 +3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(H,v)(i = 12…4的相关系数£(X,-7)(57-7)r=I ______/ / ・、/(),008公丫0・09・、/ £ d )2、/ £ 8 - 5 )216 _Z (XL x )(/—8.5)尸1解:(1)由样本数据得8,i)(i= 1,2,…,16)的相关系数为r= --------- /--- 1/16 _ / 16、/ Z (即- X C-8.5)2 -2.78剔除第13个数据,剩下数据的样本方差为aX 〔1 591.134 —9.22?—15X 10.022〕=0.008,A Q 这条生产线当天生产的零件尺寸的标准差的估计值为廊而比0.09.4.〔昆明模拟〕〞工资条里显红利,个税新政入民心〞.随着2021年新年钟声的敲响,我国 自1980年以来,力度最大的一次个人所得税〔简称个税〕改革迎来了全面实施的阶段.某IT 从业 者为了解自己在个税新政下能享受多少税收红利,绘制了他在26〜35岁〔2021〜2021年〕之间各 年的月平均收入〕,〔单位:千元〕的散点图:20・・・・ 16- ・ , 12- ., 8 ■ •4°123456789 io"年龄代码工注:年龄代码1~10分别对应年的26〜35岁⑴由散点图知,可用回归模型y=h\n x+a 拟合〕,与x 的关系,试根据有关数据建立〕,关于x 的回归方程;〔2〕如果该IT 从业者在个税新政下的专项附加扣除为3 000元/月,试利用〔1〕的结果,将月平 均收入视为月收入,根据新旧个税政策,估计他36岁时每个月少缴纳的个人所得税.1010 10 _10_ _ 10附注:参考数据:= 55,2〕〉= 155.5,N 〔即一x 〕2 =82.5,2 — x〕〔F — y 〕 = 94.9,26= i=li=li=lJ =1io _ io _ _15.1,2 缶- 1〕2=4.84,£〔力一 t 〕〔yi- y 〕 =242其中"=ln 为;取 In 11 =24,In 36=361=1 /=1参考公式:回归方程.=筋+味中斜率和截距的最小二乘估计分别为公= n ______ _X 〔出一〃〕〔.- V 〕 曰 A - A — -------------------------- \a= v —b u .Z 〔3一 〃 〕2月平均收入y千元解:(1)令 f=lnx,那么 y=bf+a10__Z & -,)()L y)24.2, b ~ ~__Z _痴_5ze —)2r=l10Zu-_2__155.5-_2_=而=-^-=15.55, t =苗A — A —a= y —b t = 15.55 —5X 1.51=8,所以〕,关于/的回归方程为〕,=5/+8.1015.1 lo"=L51由于/=lnx,所以y关于x的回归方程为y=51nx+8.⑵由⑴得,该IT从业者36岁时月平均收入为y=51n 11+8 = 5X2.4+8 = 20〔千元〕.旧个税政策下每个月应缴纳的个人所得税为1 500X3%+3 000X10%+4 500X20%+〔20 000-3 500-9 000〕X25% = 3 120〔元〕.新个税政策下每个月应缴纳的个人所得税为3 000X3%+〔20 000-5 OOO-3OOO-3 000〕X 10%=990〔元〕.故根据新旧个税政策,该IT从业者36岁时每个月少缴纳的个人所得税为3 120-990=2 130(70).I— 0 180.212X716X18.439 ',由于lrlV0.25,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)①由于7 =9.97,产0.212,由样本数据可以看出抽取的第13个零件的尺寸在(T—3s,7 + 3s)以外,因此需对当天的生产过程进行检查.②剔除离群值,即第13个数据,剩下数据的平均数为右义(16义9.97—9.22)=10.02,这条生产线当天生产的零件尺寸的均值的估计值为10.02.162X?=16X0.212I2+16X9.972^1 591.134,。
统计与统计案例(文科)统计与统计案例第一节随机抽样1.下面的抽样方法是简单随机抽样的是( )A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D.用抽签方法从10件产品中选取3件进行质量检验答案:D2.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )答案:D3.为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50 B.40 C.25 D.20答案: C4.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ) A.11 B.12 C.13 D.14答案:B5.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.答案:46.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )A.90 B.100C.180 D.300答案:C7.某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________.答案:58.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n的样本,其中甲种产品有18件,则样本容量n=()A.54 B.90 C.45 D.126答案:B9.某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人).个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a的值为________.答案:3010.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.答案:180011.某市有A、B、C三所学校,共有高三文科学生1 500人,且A、B、C三所学校的高三文科学生人数成等差数列,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,进行成绩分析,则应从B校学生中抽取________人.答案:40第二节用样本估计总体12.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关答案: D13.某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.①直方图中的a=________;②在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.答案:①3 ②6 00014.某地政府调查了工薪阶层1 000人的月工资收入,并根据调查结果画出如图所示的频率分布直方图,为了了解工薪阶层对月工资收入的满意程度,要用分层抽样的方法从调查的1 000人中抽出100人做电话询访,则(30,35](百元)月工资收入段应抽出________人.答案:1515.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )答案:A16.某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:①分别估计该市的市民对甲、乙两部门评分的中位数; ②分别估计该市的市民对甲、乙两部门的评分高于90的概率; ③根据茎叶图分析该市的市民对甲、乙两部门的评价.答案:①由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67. ②由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.③由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大. 17.某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?答案:(1)由(0.002+0.009 5+0.011+0.012 5+x +0.005+0.002 5)×20=1得x =0.007 5,∴直方图中x 的值为0.007 5.(2)月平均用电量的众数是220+2402=230.∵(0.002+0.009 5+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a ,则(0.002+0.009 5+0.011)×20+0.012 5×(a -220)=0.5,解得a =224,即中位数为224.(3)月平均用电量在[220,240)的用户有0.012 5×20×100=25(户),同理可求月平均用电量为[240,260),[260,280),[280,300)的用户分别有15户、10户、5户,故抽取比例为1125+15+10+5=15,∴从月平均用电量在[220,240)的用户中应抽取25×1=5(户).518.重庆市2013年各月的平均气温(℃)数据的茎叶图如下图,则这组数据的中位数是( )A.19 B.20 C.21.5 D.23答案:B19.为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为( )A.①③ B.①④ C.②③ D.②④答案:B20.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲乙丙丁平均环数x8.38.88.88.7方差s2 3.5 3.6 2.2 5.4A.甲 B.乙 C.丙 D.丁答案:C第三节变量间的相关关系、统计案例1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)相关关系与函数关系都是一种确定性的关系,也是一种因果关系.( )(2)利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系去表示.( )(3)通过回归方程y ^=b ^x +a ^可以估计和观测变量的取值和变化趋势.( ) (4)任何一组数据都对应着一个回归直线方程.( )(5)事件X ,Y 关系越密切,则由观测数据计算得到的K 2的观测值越大.( ) 答案:(1)× (2)√ (3)√ (4)× (5)√ 2.观察下列各图:其中两个变量x ,y 具有相关关系的图是( ) A .①② B .①④ C .③④ D .②③ 解析:选C 由散点图知③④具有相关关系.3.已知x ,y 的取值如下表,从散点图可以看出y 与x 线性相关,且回归方程为y ^=0.95x +a ,则a =( )x 0 1 3 4 y2.24.34.86.7A.3.25 B .2.6 C .解析:选B 由已知得x =2,y =4.5,因为回归方程经过点(x ,y ),所以a =4.5-0.95×2=2.6.4.若回归直线方程为y ^=2-1.5x ,则变量x 增加一个单位,y ( )A .平均增加1.5个单位B .平均增加2个单位C .平均减少1.5个单位D .平均减少2个单位解析:选 C 因为回归直线方程为y ^=2-1.5x ,所以b ^=-1.5,则变量x 增加一个单位,y 平均减少1.5个单位.5.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )A .若K 2的观测值为k =6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病B .从独立性检验可知,有99%的把握认为吸烟与患肺病有关时,我们说某人吸烟,那么他有99%的可能患有肺病C .若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误D .以上三种说法都不正确解析:选C 根据独立性检验的思想知C 项正确.6.下列四个散点图中,变量x 与y 之间具有负的线性相关关系的是( )答案:D7.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计某班学生的两科成绩得到如图所示的散点图(x 轴、y 轴的单位长度相同),用回归直线方程y ^=bx +a 近似地刻画其相关关系,根据图形,以下结论最有可能成立的是( )A .线性相关关系较强,b 的值为1.25B .线性相关关系较强,b 的值为0.83C .线性相关关系较强,b 的值为-0.87D .线性相关关系较弱,无研究价值 答案:B8.已知变量x 和y 满足关系y =-0.1x +1,变量y 与z 正相关.下列结论中正确的是( )A .x 与y 正相关,x 与z 负相关B .x 与y 正相关,x 与z 正相关C .x 与y 负相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关 答案: C9.某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求出的回归直线方程预测该地2016年的粮食需求量.解:(1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来配回归直线方程,为此对数据预处理如下:x =0,y =3.2,b ^=(-4)×(-21)+(-2)×(-11)+2×19+4×29-5×0×3.2(-4)2+(-2)2+22+42-5×02=26040=6.5, a ^=y -b ^x =3.2.由上述计算结果,知所求回归直线方程为 y ^-257=b ^(x -2010)+a ^=6.5(x -2010)+3.2, 即y ^=6.5(x -2010)+260.2.(*)(2)利用回归直线方程(*),可预测2016年的粮食需求量为6.5(2016-2010)+260.2=6.5×6+260.2=299.2(万吨).10.某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在40分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.精品资料仅供学习与交流,如有侵权请联系网站删除 谢谢11看,数学成绩与性别是否有关;(2)规定80分以上为优分(含80分),请你根据已知条件作出2×2列联表,并判断是否有90%以上的把握认为“数学成绩与性别有关”.附表及公式K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )[听前试做](1)x 男=45×0.05+55×0.15+65×0.3+75×0.25+85×0.1+95×0.15=71.5,x女=45×0.15+55×0.1+65×0.125+75×0.25+85×0.325+95×0.05=71.5,从男、女生各自的平均分来看,并不能判断数学成绩与性别有关.(2)由频数分布表可知:在抽取的100名学生中,“男生组”中的优分有15人,“女生组”中的优分有15人,据此可得2×2列联表如下:可得K 2=100×(15×25-15×45)260×40×30×70≈1.79,因为1.79<2.706,所以没有90%以上的把握认为“数学成绩与性别有关”.。
专题8 第1讲统计与统计案例一、选择题1.(2011·湛江测试)某学校进行问卷调查,将全校4200名同学分为100组,每组42人按1~42随机编号,每组的第34号同学参与调查,这种抽样方法是() A.简单随机抽样B.分层抽样C.系统抽样D.分组抽样[答案] C[解析]一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.2.(文)(2011·重庆文,4)从一堆苹果中任取10只,称得它们的质量如下(单位:克):12512012210513011411695120134则样本数据落在[114.5,124.5)内的频率为()A.0.2 B.0.3C.0.4 D.0.5[答案] C[解析]在[114.5,124.5]范围内的频数m=4,样本容量n=10,∴所求频率410=0.4. (理)(2011·四川理,1)有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5)2[15.5,19.5) 4[19.5,23.5)9[23.5,27.5)18[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5) 3根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是()A.16B.13C.12D.23[答案] B[解析]因为[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3故[31.5,43.5)的概率为12+7+366=13,故选B.3.(2011·山东理,7)某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额大约为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元[答案] B[解析] 依题意:x =3.5,y =42, 又b ^=9.4,∴42=9.4×3.5+a ^. 而a ^=9.1,∴y ^=9.4x +9.1, 当x =6时,y ^=65.5,故选B.4.(2011·大连模拟)某养兔场引进了一批新品种,严格按照科学配方进行喂养,四个月后管理员称其体重(单位:kg),将有关数据进行整理后分为五组,并绘制频率分布直方图(如图所示).根据标准,体重超过6kg 属于超重,低于5kg 的不够分量.已知图中从左到右第一、第三、第四、第五小组的频率分别为0.25,0.20,0.10,0.05,第二小组的频数为400,则该批兔子的总数和体重正常的频率分别为( )A .1000,0.50B .800,0.50C .800,0.60D .1000,0.60[答案] D[解析] 第二组的频率为1-0.25-0.20-0.10-0.05=0.40,所以兔子总数为4000.40=1000只,体重正常的频率为0.40+0.20=0.60.故选D.5.(文)(2011·江西文,7)为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e ,众数为m 0,平均值为x ,则( )A .m e =m 0=xB .m e =m 0<xC .m e <m 0<xD .m 0<m e <x[答案] D[解析] 由图可以不难发现众数为5.中位数为5+62=5.5,平均值x =2×3+4×3+5×10+6×6+7×3+8×2+9×2+10×230=17930(理)(2011·江西理,6)变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r 1表示变量Y 与X 之间的线性相关系数,r 2表示变量V 与U 之间的线性相关系数,则( )A .r 2<r 1<0 B. 0<r 2<r 1 C. r 2<0<r 1 D .r 2=r 1[答案] C[解析] 对于第一组数据x -=10+11.3+11.8+12.5+135=11.75,y -=1+2+3+4+55=3.∑i =15(x i -x -)(y i -y -)=(x 1-x -)(y 1-y -)+(x 2-x -)(y 2-y -)…(x 5-x -)(y 5-y -)=1.75×(-2)+(-0.45)×(-1)+0.05×0+0.75×1+1.25×2=0.2. ∑i =15(x i -x -)2=(x 1-x -)2+(x 2-x -)2+…+(x 5-x -)2=1.752+(-0.45)2+0.052+0.752+1.252=5.3925.∑i =15(y i -y -)2=(y 1-y -)2+(y 2-y -)2+…+(y 5-y -)2=(-2)2+(-1)2+02+12+22=10, 代入公式中有r 1=0.25.3925×10=0.27.09≈0.0282.同理r 2中∑i =15(x i -x -)(y i -y -)=-4.36<0,故r 2<0,∴r 2<0<r 1,故选C.6.(2011·湖南理,4)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )算得,K 2=110×(40×30-20×20)260×50×60×50≈7.8.附表:A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关” [答案] C[解析] ∵6.635<K 2=7.8<10.828,∴我们有99%的把握认为二者有关,或者说在犯错的概率不超过1%的前提下二者有关. 7.(2011·合肥二检)甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分比乙同学的平均分高; ③甲同学的平均分比乙同学的平均分低;④甲同学成绩的方差小于乙同学成绩的方差. 上面说法正确的是( ) A .③④ B .①②④ C .②④ D .①③④[答案] A[解析] 由茎叶图知甲同学的成绩为72,76,80,82,86,90;乙同学的成绩为69,78,87,88,92,96.故甲同学成绩的中位数小于乙同学成绩的中位数,①错;计算得甲同学的平均分为81,乙同学的平均分为85,故甲同学的平均分比乙同学的平均分低,因此②错、③对;计算得甲同学成绩的方差小于乙同学成绩的方差,故④对.所以说法正确的是③④,选A.8.(2011·东北四市联考)在2011年5月1日,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示:y ^=-3.2x +a (参考公式:回归方程y ^=bx +a ,a =y --b x -),则a =( )A .-24B .35.6C .40.5D .40[答案] D[解析] 价格的平均数是x -=9+9.5+10+10.5+115=10,销售量的平均数是y -=11+10+8+6+55=8,由y ^=-3.2x +a 知b =-3.2,所以a =y --b x -=8+3.2×10=40,故选D.二、填空题9.(2011·湖北文,11)某市有大型超市200家、中型超市400家、小型超市1400家.为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市________家.[答案] 20[解析] 属简单题,关键是清楚每一层的抽取比例都一样是n N.由于所有超市共计200+400+1400=2000家,需抽取100家,则抽取比例为1002000所以中型超市抽取400×1002000=20家.10.(文)(2011·广东文,13)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:小李这56号打6小时篮球的投篮命中率为________.[答案] 0.5 0.53[解析] 小李这5天的平均投篮命中率y =0.4+0.5+0.6+0.6+0.45=0.5,可求得小李这5天的平均打篮球时间x =3.根据表中数据可求得b ^=0.01,a ^=0.47,故回归直线方程为y ^=0.47+0.01x ,将x =6代入得6号打6小时篮球的投篮命中率约为0.53.(理)(2011·广东理,13)某数学老师身高176cm ,他爷爷、父亲和儿子的身高分别是173cm 、170cm 和182cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm.[答案] 185[解析] 设儿子身高y 与父亲身高x 有关系,列表如下:∵x =13(173+170+176)=173,y =13+176+182)=176,∑i =13x i y i =173×170+170×176+176×182=91362,∑i =13x 2i =1732+1702+1762=89805, ∴b ^=91362-3×173×17689805-3×1732=1,a ^=y -b ^x =176-173=3 ∴回归直线方程为y ^=x +3, ∴x =182时,y ^=182+3=185(cm).11.(文)(2011·西城抽样)某区高二年级的一次数学统考中,随机抽取200名同学的成绩,成绩全部在50分至100分之间,将成绩按如下方式分成5组:第一组,成绩大于等于50分且小于60分;第二组,成绩大于等于60分且小于70分;……第五组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.则这200名同学中成绩大于等于80分且小于90分的学生有________名.[答案] 40[解析] 由题知,成绩大于等于80分且小于90分的学生所占的频率为1-(0.005×2+0.025+0.045)×10=0.2,所以这200名同学中成绩大于等于80分且小于90分的学生有200×0.2=40名.(理)(2011·福州二检)若样本a 1,a 2,a 3,a 4,a 5的方差是3,则样本2a 1+3,2a 2+3,2a 3+3,2a 4+3,2a 5+3的方差是________.[答案] 12[解析] 若a -表示样本a 1,a 2,a 3,a 4,a 5的均值,则样本2a 1+3,2a 2+3,2a 3+3,2a 4+3,2a 5+3的均值为2a -+3.又15∑i =15 (a i -a -)2=3,∴15∑i =15[(2a i +3)-(2a -+3)]2=15∑i =15 (2a i -2a -)2=12. 12.把容量为1000的某个样本数据分为10组,并填写频率分布表.若前3组的频率依次构成公差为0.05的等差数列,且后7组的频率之和是0.79.则前3组中频率最小的一组的频数是________.[答案] 20[解析] 设前3组中频率最小的一组的频率是x .由题意得前3组的频率之和是1-0.79=0.21,则x +(x +0.05)+(x +0.05×2)=0.21,由此解得x =0.02,即前3组中频率最小的一组的频率是0.02,相应的频数是0.02×1000=20.三、解答题13.(2010·广东文,17)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(1)(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.[解析](1)由于大于40岁的42人中有27人收看新闻节目,而20至40岁的58人中,只有18人收看新闻节目,故收看新闻节目的观众与年龄有关.(2)27×545=3,∴大于40岁的观众应抽取3名.(3)由题意知,设抽取的5名观众中,年龄在20岁至40岁的为a1,a2,大于40岁的为b1,b2,b3,从中随机取2名,基本事件有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3)共十个,设恰有一名观众年龄在20至40岁为事件A,则A中含有基本事件6个:(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),∴P(A)=610=3 5.14.(文)(2011·郑州二次质检)某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解’训练对提高‘数学应用题’得分率作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:(1)试分析估计两个班级的优秀率;(2)由以上统计数据填写下面2×2列联表,并问是否有75%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助.参考公式及数据:K2=(a+b)(c+d)(a+c)(b+d),[解析] 甲班优秀人数为30人,优秀率为3050=60%,乙班优秀人数为25人,优秀率为2550=50%,所以甲、乙两班的优秀率分别为60%和50%. (2)因为K 2=100×(50×50×55×45=99≈1.010,所以由参考数据知,没有75%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助.(理)(2011·广东广州)某校高三(1)班的一次数学测试成绩的茎叶图如图所示和频率分布直方图如图所示,都受到不同程度的破坏,但可见部分如下,据此回答如下问题:(1)求全班人数;(2)求分数在[80,90)之间的人数;并计算频率分布直方图中[80,90)间的矩形的高; (3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.[解析] (1)由茎叶图知,分数在[50,60)之间的频数为2,由频率分布直方图知,分数在[50,60)之间的频率为0.008×10=0.08,所以,全班人数为20.08=25(人).(2)分数在[80,90)之间的人数为25-2-7-10-2=4人,分数在[80,90)之间的频率为425=0.16,所以频率分布直方图中[80,90)间的矩形的高为0.1610=0.016.(3)将[80,90)之间的4个分数编号为1,2,3,4;[90,100]之间的2个分数编号为5,6. 则在[80,100)之间的试卷中任取两份的基本事件为:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个,其中至少有一个在[90,100]之间的基本事件有(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)共9个,故至少有一份分数在[90,100]之间的概率是915=35.15.(2011·安徽文,20)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求的直线方程预测该地2012年的粮食需求量.[解析] 由所给数据分析,年需求量与年份之间近似直线上升,可对数据进行预处理如下表对预处理后的数据,容易算出x =0,y =3.2∑i =15x i y i =-4×(-21)+(-2)×(-11)+2×19+4×29=260∑i =15x 2i =16+4+0+4+16=40∴b ^=∑i =15x i y i -5x y∑i =15x 2i -5x 2=26040=6.5,∴a ^=y -b ^x =3.2 ∴所求回归直线方程y -257=6.5(x -2006)+3.2即y =6.5(x -2006)+260.2(2)当x =2012时,y =6.5(2012-2006)+260.2=299.2万吨=300万吨 故预测2012年粮食需求量约为300万吨.。
高中数学【统计与统计案例】专题练习1.(多选)下列统计量中,能度量样本x 1,x 2,…,x n 的离散程度的是( ) A.样本x 1,x 2,…,x n 的标准差 B.样本x 1,x 2,…,x n 的中位数 C.样本x 1,x 2,…,x n 的极差 D.样本x 1,x 2,…,x n 的平均数 答案 AC解析 由标准差的定义可知,标准差考查的是数据的离散程度;由中位数的定义可知,中位数考查的是数据的集中趋势;由极差的定义可知,极差考查的是数据的离散程度;由平均数的定义可知,平均数考查的是数据的集中趋势;故选AC.2.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备 9.8 10.3 10.0 10.2 9.9 9.8 10.0 10.1 10.2 9.7 新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x -和y -,样本方差分别记为s 21和s 22. (1)求x -,y -,s 21,s 22;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y --x -≥2s 21+s 2210,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).解 (1)x -=9.8+10.3+10.0+10.2+9.9+9.8+10.0+10.1+10.2+9.710=10,y -=10.1+10.4+10.1+10.0+10.1+10.3+10.6+10.5+10.4+10.510=10.3,s 21=0.22+0.32+0+0.22+0.12+0.22+0+0.12+0.22+0.3210=0.036,s 22=0.22+0.12+0.22+0.32+0.22+0+0.32+0.22+0.12+0.2210=0.04. (2)由(1)知,y --x -=0.3; 2s 21+s 2210=20.036+0.0410=20.007 6.又(y --x -)2=0.09>(20.007 6)2=0.030 4,则y --x ->2s 21+s 2210,所以新设备生产产品的该项指标的均值较旧设备有显著提高.3.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑20i =1x i =60,∑20i =1y i =1 200,∑20i =1(x i -x -)2=80,∑20i =1(y i-y -)2=9 000,∑20i =1(x i -x -)(y i -y -)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =∑ni =1 (x i -x -)(y i -y -)∑n i =1(x i -x -)2∑n i =1 (y i -y -)2,2≈1.414.解 (1)由已知得样本平均数y -=120∑20i =1y i =60,从而该地区这种野生动物数量的估计值为60×200=12 000.(2)样本(x i ,y i )(i =1,2,…,20)的相关系数r =∑20i =1 (x i -x -)(y i -y -)∑20i =1(x i -x -)2∑20i =1(y i -y -)2=80080×9 000=223≈0.94.(3)分层随机抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层随机抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关性.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层随机抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.1.抽样方法抽样方法包括简单随机抽样、分层随机抽样,两种抽样方法都是等概率抽样,体现了抽样的公平性,但又各有其特点和适用范围. 2.统计中的五个数据特征(1)众数:在样本数据中,出现次数最多的那个数据.(2)中位数:在样本数据中,将数据按大小顺序排列,位于最中间的数据.如果数据的个数为偶数,就取中间两个数据的平均数作为中位数. (3)平均数:样本数据的算术平均数,即x -=1n (x 1+x 2+…+x n ).(4)第p 百分位数:将一组数据(共n 个)按从小到大排列,计算i =n ×p %,若i 不是整数,而大于i 的比邻整数为j ,则第p 百分位数为第j 项数据;若i 是整数,则第p 百分位数为第i 项与第(i +1)项数据的平均数.(5)方差与标准差.s 2=1n [(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2],s =1n [(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2].3.频率分布直方图的两个结论 (1)小长方形的面积=组距×频率组距=频率. (2)各小长方形的面积之和等于1. 4.回归分析与独立性检验(1)回归直线y ^=b ^x +a ^经过样本点的中心(x -,y -),若x 取某一个值代入回归直线方程y ^=b ^x +a ^中,可求出y 的估计值. (2)独立性检验对于取值分别是{x 1,x 2}和{y 1,y 2}的分类变量X 和Y ,其样本频数列联表是:X Y 合计 y 1 y 2 x 1 a b a +b x 2 c d c +d 合计a +cb +dn则χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )(其中n =a +b +c +d 为样本容量).热点一 用样本估计总体考向1 数字特征与统计图表的应用【例1】 (1)空气质量指数分为六级,指数越大说明污染的情况越严重,对人体危害越大,其中指数范围[0,50],[51,100],[101,150],[151,200],[201,300]分别对应“优”“良”“轻度污染”“中度污染”“重度污染”五个等级.如图是某市连续14天的空气质量指数趋势图,下列说法不正确的是( )A.这14天中有4天空气质量为“良”B.这14天中空气质量指数的中位数是103C.从2日到5日空气质量越来越差D.连续三天中空气质量指数方差最小的是9日到11日(2)2020年我国突发新冠肺炎疫情,疫情期间中小学生“停课不停学”.已知某地区中小学生人数情况如甲图所示,各学段学生在疫情期间“家务劳动”的参与率如乙图所示.为了进一步了解该地区中小学生参与“家务劳动”的情况,现用分层随机抽样的方法抽取4%的学生进行调查,则抽取的样本容量、抽取的高中生中参与“家务劳动”的人数分别为()A.2 750,200B.2 750,110C.1 120,110D.1 120,200答案(1)B(2)C解析(1)在这14天中,1日、3日、12日、13日的空气质量为良,共4天,故A正确.14天中空气质量指数的中位数为86+1212=103.5,故B错误.从2日到5日,空气质量指数越来越高,故空气质量越来越差,C正确.观察题图可得,9日至11日空气质量指数偏差最小,因此方差最小,D正确.综上知,说法不正确的是B.(2)学生总数为15 500+5 000+7 500=28 000(人),由于抽取4%的学生进行调查,则抽取的样本容量为28 000×4%=1 120.故高中生应抽取的人数为5 000×4%=200,而抽取的高中生中参与“家务劳动”的比率为0.55,故抽取的高中生中参与“家务劳动”的人数为200×0.55=110.探究提高 1.解题的关键是理解统计图表的含义,从中提取数字信息,平均数、众数、中位数描述数据的集中趋势,方差与标准差描述数据的波动大小,标准差、方差越小,数据的离散程度越小,越稳定.2.进行分层随机抽样的相关计算时,常用到的两个关系:(1)样本容量n总体的个数N=该层抽取的个体数该层的个体数;(2)总体中某两层的个体数之比等于样本中这两层抽取的个体数之比.【训练1】(1)以下数据为参加数学竞赛决赛的15人的成绩:(单位:分)78,70,72,86,88,79,80,81,94,84,56,98,83,90,91,则这15人成绩的第80百分位数是()A.90B.90.5C.91D.91.5(2)(多选) 2020年上半年,中国养猪企业受猪价高位的利好影响,大多收获史上最佳半年报业绩,部分企业半年报营业收入同比增长超过1倍.某养猪场抓住机遇,加大了生猪养殖规模,为了检测生猪的养殖情况,该养猪场对2 000头生猪的体重(单位:kg)进行了统计,得到如图所示的频率分布直方图,则下列说法正确的是()A.这2 000头生猪体重的众数为160 kgB.这2 000头生猪中体重不低于200 kg的有80头C.这2 000头生猪体重的中位数落在区间[140,160)内D.这2 000头生猪体重的平均数为152.8 kg答案(1)B(2)BCD解析(1)把成绩按从小到大的顺序排列为:56,70,72,78,79,80,81,83,84,86,88,90,91,94,98,因为15×80%=12,所以这15人成绩的第80百分位数是90+912=90.5.(2)由频率分布直方图可知,[140,160)这一组的数据对应的小长方形最高,所以这2 000头生猪的体重的众数为150 kg,A错误;这2 000头生猪中体重不低于200 kg的有0.002×20×2 000=80(头),B正确;因为生猪的体重在[80,140)内的频率为(0.001+0.004+0.01)×20=0.3,在[140,160)内的频率为0.016×20=0.32,且0.3+0.32=0.62>0.5,所以这2 000头生猪体重的中位数落在区间[140,160)内,C正确;这2 000头生猪体重的平均数为(0.001×90+0.004×110+0.01×130+0.016×150+0.012×170+0.005×190+0.002×210)×20=152.8(kg),D正确.考向2用样本的频率分布估计总体分布【例2】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解(1)由已知得0.70=a+0.20+0.15,故a=0.35,b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.探究提高 1.平均数与方差都是重要的数字特征,是对数据的一种简明描述,它们所反映的情况有着重要的实际意义.2.在例2中,抓住频率分布直方图各小长方形的面积之和为1,这是求解的关键;本题易混淆频率分布条形图和频率分布直方图,误把频率分布直方图纵轴的几何意义当成频率,导致样本数据的频率求错.【训练2】(多选)为了更好地支持中小型企业的发展,某市决定对部分企业的税收进行适当的减免,现调查了当地100家中小型企业年收入(单位:万元)情况,并根据所得数据画出了如图所示的频率分布直方图,则下列结论正确的是()A.样本在区间[500,700]内的频数为18B.如果规定年收入在300万元以内的企业才能享受减免税收政策,估计有30%的当地中小型企业能享受到减免税收政策C.样本的中位数大于350万元D.可估计当地中小型企业年收入的平均数超过400万元(同一组中的数据用该组区间的中点值作代表)答案ABC解析依题意,(0.001+0.002+0.002 6×2+a+0.000 4)×100=1,所以a=0.001 4.对于A,样本在[500,700]内的频率为(0.001 4+0.000 4)×100=0.18,故频数为0.18×100=18,故A正确.对于B,年收入在300万元以内的频率为(0.001+0.002)×100=0.3,故B正确. 对于C,设样本的中位数为x,易知中位数位于[300,400]内,则0.3+(x-300)×0.002 6=0.5,解得x≈376.9,376.9>350,故C正确.因为样本的平均数为150×0.1+250×0.2+350×0.26+450×0.26+550×0.14+650×0.04=376<400,所以估计当地中小型企业年收入的平均数小于400万元,故D 错误. 热点二 回归分析【例3】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据进行了初步处理,得到如图所示散点图及一些统计量的值.x -y -w -∑8i =1(x i -x -)2∑8i =1(w i -w -)2∑8i =1(x i -x -)·(y i -y -) ∑8i =1(w i -w -)·(y i -y -) 46.65636.8289.8 1.61 469108.8表中w i =x i ,w -=18∑8i =1w i .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个更适宜作为年销售量y 关于年宣传费x 的回归方程?(给出判断即可,不必说明理由) (2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程.(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题:①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为:β^=∑ni =1(u i -u -)(v i -v -)∑n i =1(u i -u -)2,α^=v --β^u -.解 (1)由散点图可以判断,y =c +d x 更适宜作为年销售量y 关于年宣传费x 的回归方程.(2)易知w =x ,则y ^=d ^w +c ^.由题意得d ^=∑8i =1(w i -w -)(y i -y -)∑8i =1(w i -w -)2=108.81.6=68,所以c ^=y --d ^w -=563-68×6.8=100.6.所以y 关于w 的线性回归方程为y ^=100.6+68w , 所以y 关于x 的回归方程为y ^=100.6+68x .(3)①由(2)知,当x =49时,年销售量y 的预报值为y ^=100.6+6849=576.6,年利润z 的预报值为z ^=576.6×0.2-49=66.32.②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68x )-x =-x +13.6x +20.12,所以当x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大. 探究提高 1.求回归直线方程的关键及实际应用 (1)关键:正确理解b ^,a ^的计算公式并准确地计算.(2)实际应用:在分析实际中两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值. 2.相关系数(1)当r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关. (2)当|r |>0.75时,认为两个变量具有较强的线性相关关系.【训练3】 (多选)我国5G 技术研发试验在2016~2018年进行,分为5G 关键技术试验、5G 技术方案验证和5G 系统验证三个阶段.2020年初以来,5G 技术在我国已经进入高速发展的阶段,5G 手机的销量也逐渐上升.某手机商城统计了2021年5个月5G 手机的实际销量,如下表所示:若y 与x 线性相关,且求得线性回归方程为y ^=45x +5,则下列说法正确的是( ) A.a =142 B.y 与x 正相关C.y 与x 的相关系数为负数D.2021年7月该手机商城的5G 手机销量约为365部 答案 AB解析 x -=1+2+3+4+55=3,y -=50+96+a +185+2275=558+a 5,因为点(x -,y -)在回归直线上,所以558+a5=45×3+5,解得a =142,所以选项A 正确;从表格数据看,y 随x 的增大而增大,所以y 与x 正相关,所以选项B 正确;因为y 与x 正相关,所以y 与x 的相关系数为正数,所以选项C 错误;2021年7月对应的月份编号x =7,当x =7时,y ^=45×7+5=320,所以2021年7月该手机商城的5G 手机销量约为320部,所以选项D 错误.故选AB.热点三 独立性检验【例4】 为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO 2浓度(单位:μg/m 3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,依据小概率值α=0.01的χ2独立性检验,能否认为该市一天空气中PM2.5浓度与SO 2浓度有关? 附:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),解 (1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且SO 2浓度不超过150的天数为32+18+6+8=64,因此,该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过150的概率的估计值为64100=0.64. (2)根据抽查数据,可得2×2列联表:(3)零假设为H 0:该市一天空气中PM2.5浓度与SO 2浓度无关.根据(2)的列联表得χ2=100×(64×10-16×10)280×20×74×26≈7.484>6.635=x 0.01.根据小概率值α=0.01的χ2独立性检验,我们推断H 0不成立,即认为该市一天空气中PM2.5浓度与SO 2浓度有关,此推断犯错误的概率不超过0.01. 探究提高 1.独立性检验的一般步骤 (1)根据样本数据列成2×2列联表; (2)根据公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),计算χ2的值;(3)查表比较χ2与临界值的大小关系,作统计判断.2.χ2的值越大,对应假设事件H 0成立(两类变量相互独立)的概率越小,H 0不成立的概率越大.【训练4】 甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)依据小概率值α=0.01的χ2独立性检验,能否认为甲机床的产品质量与乙机床的产品质量有差异?附:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),α 0.050 0.010 0.001 x α3.8416.63510.828解 (1)根据2×2列联表知:甲机床生产的产品中一级品的频率为150200=75%, 乙机床生产的产品中一级品的频率为120200=60%.(2)零假设为H 0:甲机床的产品质量与乙机床的产品质量没有差异.由2×2列联表,得χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=400×(150×80-120×50)2270×130×200×200=40039≈10.256>6.635=x 0.01.根据小概率值α=0.01的χ2独立性检验,我们推断H 0不成立,即认为甲机床的产品质量与乙机床的产品质量有差异,此推断犯错误的概率不超过0.01.一、选择题1.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( ) A.0.01 B.0.1 C.1 D.10答案 C解析 10x 1,10x 2,…,10x n 的方差为102×0.01=1.2.为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为y ^=b ^x +a ^.已知∑10i =1x i =225,∑10i =1y i =1 600,b ^=4.该班某学生的脚长为24,据此估计其身高为( ) A.160 B.163 C.166 D.170答案 C解析 ∵x -=110∑10i =1x i =110×225=22.5,y -=110∑10i =1y i=160, ∴a ^=y --b ^x -=160-4×22.5=70, ∴回归直线方程为y ^=4x +70. 因此估计其身高y ^=4×24+70=166.3.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )A.10B.18C.20D.36答案 B解析 因为直径落在区间[5.43,5.47)内的频率为0.02×(6.25+5.00)=0.225,所以零件的个数为0.225×80=18.4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是()A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个答案 D解析由雷达图易知A,C正确;七月的平均最高气温超过20 ℃,平均最低气温约为12 ℃,一月的平均最高气温约为6 ℃,平均最低气温约为2 ℃,所以七月的平均温差比一月的平均温差大,B正确;由雷达图知平均最高气温超过20 ℃的月份有3个月,D错误.5.(多选) 5G时代已经到来,5G的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP增长产生直接贡献,并通过产业间的关联效应,间接带动国民经济各行业的发展,创造出更多的经济增加值.如图,某单位结合近年数据,对今后几年的5G经济产出作出预测.由上图提供的信息可知()A.运营商的经济产出逐年增加B.设备制造商的经济产出前期增长较快,后期放缓C.设备制造商在各年的总经济产出中一直处于领先地位D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势 答案 ABD解析 对于A ,由图知,运营商的经济产出逐年增加,故A 正确;对于B ,由图知,设备制造商的经济产出在2020~2023年间增长较快,后几年增长逐渐趋于平缓,故B 正确;对于C ,由图可知,设备制造商在各年的总经济产出中在前期处于领先地位,而后期是信息服务商处于领先地位,故C 错误;对于D ,由图知,在2020~2025年间信息服务商与运营商的经济产出的差距不大,后几年中信息服务商的经济产出增长速度明显高于运营商的经济产出增长速度,两者间的差距有逐步拉大的趋势,故D 正确.综上所述,选ABD.6.已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为x -,方差为s 2,则( )A.x -=4,s 2<2B.x -=4,s 2>2 C.x ->4,s 2<2 D.x ->4,s 2>2答案 A解析 ∵某7个数的平均数为4,∴这7个数的和为4×7=28.∵加入一个新数据4,∴x -=28+48=4.又∵这7个数的方差为2,且加入一个新数据4,∴这8个数的方差s 2=7×2+(4-4)28=74<2,故选A.二、填空题 7.给出如下列联表非 30 50 80 合计5060110根据独立性检验,__________在犯错误的概率不超过0.01的前提下认为“高血压与患心脏病有关”(填“能”或“不能”). 答案 能解析 零假设为H 0:高血压与患心脏病无关. 由列联表中的数据可得 χ2=110×(20×50-10×30)230×80×50×60≈7.486>6.635=x 0.01,根据小概率值α=0.01的χ2独立性检验,我们推断H 0不成立,即认为高血压与患心脏病有关,此推断犯错误的概率不超过0.01,即能在犯错误的概率不超过0.01的前提下,认为高血压与患心脏病有关.8.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,测试成绩(单位:分)如图所示,假设得分值的中位数为m e ,众数为m 0,平均值为x -,则m e ,m 0与x -的大小关系是________.答案 m 0<m e <x -解析 由图可知,30名学生的得分情况依次为得3分的有2人,得4分的有3人,得5分的有10人,得6分的有6人,得7分的有3人,得8分的有2人,得9分的有2人,得10分的有2人.中位数为第15、16个数(分别为5、6)的平均数,即m e =5.5.5出现的次数最多,故m 0=5,x -=2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×1030≈5.97.于是得m 0<m e <x -.9.下面的折线图给出的是甲、乙两只股票在某年中每月的收盘价格,已知股票甲的极差是6.88元,标准差为2.04元;股票乙的极差为27.47元,标准差为9.63元,根据这两只股票在这一年中的波动程度,给出下列结论:①股票甲在这一年中波动相对较小,表现的更加稳定;②购买股票乙风险高但可能获得高回报;③股票甲的走势相对平稳,股票乙的收盘价格波动较大;④两只股票在全年都处于上升趋势.其中正确的结论是________(填序号).答案 ①②③解析 由题意可知,甲的标准差为2.04元,乙的标准差为9.63元,可知股票甲在这一年中波动相对较小,表现的更加稳定,故①正确;甲的极差是6.88元,乙的极差为27.47元,可知购买股票乙风险高但可能获得高回报,故②正确;通过折线图可知股票甲的走势相对平稳,股票乙的收盘价格波动较大,故③正确;通过折线图可得乙在6月到8月明显是下降趋势,故④错误. 三、解答题10.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:性别对该商场的服务 合计满意不满意(1)分别估计男、女顾客对该商场服务满意的概率;(2)依据小概率值α=0.05的χ2独立性检验,能否认为男、女顾客对该商场服务的评价有差异?附:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).解 (1)由调查数据,男顾客中对该商场服务满意的比率为4050=0.8,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为3050=0.6,因此女顾客对该商场服务满意的概率的估计值为0.6. (2)零假设为H 0:男、女顾客对该商场服务的评价没有差异. 由列联表中的数据,得 χ2=100×(40×20-30×10)250×50×70×30≈4.762>3.841=x 0.05.根据小概率值α=0.05的χ2独立性检验,我们推 断H 0不成立,即认为男、女顾客对商场服务的评价有差异,此推断犯错误的概率不大于0.05.11.某互联网公司为了确定下季度的前期广告投入计划,收集了近6个月广告投入量x (单位:万元)和收益y (单位:万元)的数据如表:他们分别用两种模型①y =bx +a ,②y =a e bx 进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值.x -y -∑6i =1x i y i∑6i =1x 2i7301 464.24 364(1)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?并说明理由; (2)残差绝对值大于2的数据被认为是异常数据,需要剔除. (ⅰ)剔除异常数据后,求出(1)中所选模型的回归方程; (ⅱ)若广告投入量x =18,则该模型收益的预报值是多少?附:对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y ^=b ^x +a ^的斜率和截距的最小二乘估计分别为:b ^=∑n i =1(x i -x -)(y i -y -)∑n i =1(x i -x -)2=∑ni =1x i y i -nx -·y -∑n i =1x 2i -n ·x -2,a ^=y --b ^x -. 解 (1)由于模型①残差波动小,应该选择模型①. (2)(ⅰ)剔除异常数据,即3月份的数据, 剩下数据的平均数为x -=15×(7×6-6)=7.2,y -=15×(30×6-31.8)=29.64,∑5i =1x i y i -5x -·y -=206.4,∑5i =1x 2i -5·x -2=68.8. ∴b ^=206.468.8=3,a ^=y --b ^x -=29.64-3×7.2=8.04.∴所选模型的回归方程为y ^=3x +8.04. (ⅱ)若广告投入量x =18,则该模型收益的预报值是3×18+8.04=62.04(万元).12.(多选)2020年7月国家统计局发布了我国2020年上半年国内经济数据,图1为国内三大产业生产总值的比重,图2为第三产业中各行业生产总值的比重.以下关于我国2020年上半年经济数据的说法正确的是()A.在第三产业中,“批发和零售业”与“金融业”的生产总值之和同“其他服务业”的生产总值基本持平B.若“租赁和商务服务业”生产总值为15 000亿元,则“房地产业”生产总值为32 500亿元C.若“金融业”的生产总值为42 000亿元,则第三产业生产总值为262 500亿元D.若“金融业”的生产总值为42 000亿元,则第一产业生产总值为45 000亿元答案ABC解析对于选项A,在第三产业中,“批发和零售业”与“金融业”的生产总值之和占比为16%+16%=32%,“其他服务业”的生产总值占比为32%,所以“批发和零售业”与“金融业”的生产总值之和同“其他服务业”的生产总值基本持平,故选项A正确.对于选项B,若“租赁和商务服务业”生产总值为15 000亿元,在第三产业中,因为“租赁和商务服务业”生产总值占比为6%,所以第三产业生产总值为15 000=250 000(亿元),又“房地产业”生产总值占比为13%,所以“房地产6%业”生产总值为13%×250 000=32 500(亿元),故选项B正确.对于选项C ,在第三产业中,若“金融业”的生产总值为42 000亿元,因为“金融业”生产总值占比为16%,所以第三产业生产总值为42 00016%=262 500(亿元),故选项C 正确.对于选项D ,第三产业生产总值在三大产业中占比为57%,第一产业生产总值在三大产业中占比为6%,由C 选项知第三产业生产总值为262 500亿元,所以第一产业生产总值为262 50057%×6%≈27 632(亿元),所以选项D 错误.13.由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将A 地区200家实体店该品牌洗衣机的月经济损失统计如图所示,估算月经济损失的平均数为m ,中位数为n ,则m -n =________.答案 360解析 第一块小矩形的面积S 1=0.3,第二块小矩形的面积S 2=0.4,故n =2 000+0.5-0.30.000 2=3 000;又第四、五块小矩形的面积均为S =0.06,故a =12 000[1-(0.3+0.4+0.06×2)]=0.000 09,所以m =1 000×0.3+3 000×0.4+5 000×0.18+(7 000+9 000)×0.06=3 360,故m -n =360.14.某公司为了预测下月产品销售情况,找出了近7个月的产品销售量y (单位:万件)的统计表:月份代码t 1 2 3 4 5 6 7 销售量y (万件)y 1y 2y 3y 4y 5y 6y 7但其中数据污损不清,经查证∑7i =1y i =9.32,∑7i =1t i y i =40.17,∑7i =1(y i -y -)2=0.55.。
统计学案例数据分析—描述统计描述统计是统计学中的一个重要分支,主要研究如何对数据进行整理、总结、描述和展示。
它通过汇总和描述数据来揭示数据的特征和规律,从而从整体上了解数据集的信息。
下面将给出一个描述统计学案例,用于展示描述统计在实际问题中的应用。
假设我们收集到公司过去一年来的销售数据,该公司主要销售电器产品。
数据集包括每个月的销售额、销售量、销售地区和销售渠道等信息。
我们想要通过描述统计方法对这个数据集进行分析,以了解销售状况和销售趋势。
首先,我们可以对销售额进行描述统计分析。
我们可以计算销售额的平均值、中位数、最大值和最小值等,来描述销售额的整体水平和分布情况。
比如,平均销售额可以反映公司的整体销售水平,最大值和最小值可以告诉我们销售的波动范围,中位数可以反映销售额的中部位置。
接下来,我们可以对销售量进行描述统计分析。
类似地,我们可以计算销售量的平均值、中位数、最大值和最小值,来描述销售量的整体水平和分布情况。
这可以帮助我们了解公司的销售产品的数量和规模。
然后,我们可以对销售地区进行描述统计分析。
我们可以计算每个地区的销售额和销售量的总和,来了解各个地区的销售情况。
这可以帮助我们判断哪些地区是公司的主要销售市场,以及哪些地区的销售情况较差,可能需要加大市场开发力度。
最后,我们可以对销售渠道进行描述统计分析。
我们可以计算每个渠道的销售额和销售量的比例,来了解各个渠道的销售贡献程度。
这可以帮助我们判断哪些渠道是公司的主要销售渠道,以及哪些渠道可能需要调整或者优化。
除了上述的描述统计指标,我们还可以使用图表来展示数据的分布和趋势。
比如,我们可以使用直方图、饼图、折线图等来直观地呈现销售额和销售量的分布情况,以及不同地区和渠道的销售情况。
通过以上的描述统计分析,我们可以得到关于销售状况和销售趋势的详细信息。
这些信息可以帮助公司做出相应的决策和战略调整,以进一步提升销售业绩。
总之,描述统计是统计学中的一个重要工具,可以帮助我们对数据进行整理、总结、描述和展示。
趣味统计学经典案例1. 生日悖论生日悖论是指在一个房间里,只需要23个人,就有50%以上的概率至少有两个人生日相同。
这个案例经典的体现了概率论中的鸽巢原理和生日悖论的概率计算。
2. 蒙提霍尔问题蒙提霍尔问题是指一个选手会面对三扇门,其中一扇门后面有奖品,另外两扇门后面是空的。
选手先选择一扇门,然后主持人会打开剩下两扇门中的一扇门,露出一扇空门。
选手是否应该换门以增加获奖的概率,这个问题引发了很多争议和讨论。
3. 红绿灯问题红绿灯问题是指在一个红绿灯路口,红灯亮的时间为60秒,绿灯亮的时间为90秒。
假设一个人随机到达这个路口,他等待的时间有多长?这个问题可以用概率统计的方法来解答,并且可以拓展到更复杂的情况。
4. 奇偶校验奇偶校验是一种常用的错误检测方法,常用于计算机数据传输中。
它利用二进制数中1的个数的奇偶性来检测错误。
比如,一个字节中有奇数个1,则奇偶校验位为1,否则为0。
这个案例可以帮助我们理解错误检测的原理和应用。
5. 投掷硬币投掷硬币是统计学中最基础的实验之一。
通过投掷硬币的结果,我们可以计算出正面和反面出现的概率,进而进行概率分布的推断和假设检验。
6. 高尔夫球洞问题高尔夫球洞问题是指在一个高尔夫球场上,有一个球洞和一个标杆。
如果球员将球随机击打,求平均击打到球洞的距离。
这个问题可以通过统计模拟和概率分布计算来解答。
7. 疾病筛查疾病筛查是统计学在医学领域的重要应用之一。
通过对人群进行检测和筛查,可以计算出疾病的发病率、敏感性、特异性等指标,对疾病的预防和控制起到重要作用。
8. 艾滋病传播模型艾滋病传播模型是指通过数学模型和统计方法,研究艾滋病在人群中的传播规律和预测。
通过对不同人群的感染率、传播速度等指标的估计,可以制定有效的防控措施。
9. 电影评分电影评分是一种常见的统计学应用,通过对观众的评分和评论进行统计分析,可以计算出电影的平均评分、评分分布、观众对电影的满意度等指标,对电影的推广和市场研究具有重要意义。
统计与统计案例第一节 随机抽样一、基础知识1.简单随机抽样(1)定义:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.这样抽取的样本,叫做简单随机样本.(2)常用方法:抽签法和随机数法. 2.分层抽样(1)在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样. 3.系统抽样(1)定义:当总体中的个体数较多时,可以将总体分成均衡的几部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需的样本,这种抽样的方法叫做系统抽样.(2)系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本. ①先将总体的N 个个体编号;②确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =Nn ;当总体中的个体数不能被样本容量整除时,可先用简单随机抽样的方法从总体中剔除几个个体,使剩下的个体数能被样本容量整除,然后再按系统抽样进行.这时在整个抽样过程中每个个体被抽取的可能性仍然相等.③在第1段用简单随机抽样确定第一个个体编号l (l ≤k );④按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号l +k ,再加k 得到第3个个体编号l +2k ,依次进行下去,直到获取整个样本.二、常用结论(1)不论哪种抽样方法,总体中的每一个个体入样的概率都是相同的.(2)系统抽样一般也称为等距抽样,入样个体的编号相差分段间隔k的整数倍.(3)分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘抽样比.(4)三种抽样方法的特点、联系及适用范围考点一简单随机抽样[典例]下列抽取样本的方式属于简单随机抽样的个数有()①从无限多个个体中抽取100个个体作为样本;②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里;③用抽签方法从10件产品中选取3件进行质量检验;④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.A.0个B.1个C.2个D.3个[解析]①不是简单随机抽样,因为被抽取样本的总体的个数是无限的,而不是有限的;②不是简单随机抽样,因为它是有放回抽样;③明显为简单随机抽样;④不是简单随机抽样,因为不是等可能抽样.[答案] B[解题技法] 应用简单随机抽样应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.[题组训练]1.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A.08 C .02D .01解析:选D 由随机数法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.2.利用简单随机抽样,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为( )A.14B.13 C.514D.1027解析:选C 根据题意,9n -1=13,解得n =28.故在整个抽样过程中每个个体被抽到的概率为1028=514.考点二 系统抽样[典例] (1)某校为了解1 000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1 000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为( )A .16B .17C .18D .19 (2)中央电视台为了解观众对某综艺节目的意见,准备从502名现场观众中抽取10%进行座谈,现用系统抽样的方法完成这一抽样,则在进行分组时,需剔除________个个体,抽样间隔为________.[解析] (1)因为从1 000名学生中抽取一个容量为40的样本,所以系统抽样的分段间隔为1 00040=25,设第一组随机抽取的号码为x ,则抽取的第18组编号为x +17×25=443,所以x =18.(2)把502名观众平均分成50组,由于502除以50的商是10,余数是2,所以每组有10名观众,还剩2名观众,采用系统抽样的方法抽样时,应先用简单随机抽样的方法从502名观众中抽取2名观众,这2名观众不参加座谈;再将剩下的500名观众编号为1,2,3,…,500,并均匀分成50段,每段含50050=10个个体.所以需剔除2个个体,抽样间隔为10.[答案] (1)C (2)2 10[变透练清]1.(变结论)若本例(1)的条件不变,则编号落入区间[501,750]的人数为________. 解析:从1 000名学生中抽取一个容量为40的样本,系统抽样分40组,每组1 00040=25个号码,每组抽取一个,从501到750恰好是第21组到第30组,共抽取10人.答案:102.(2018·南昌摸底调研)某校高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第1组中随机抽取的号码为5,则在第6组中抽取的号码为________.解析:由题知分组间隔为648=8,又第1组中抽取的号码为5,所以第6组中抽取的号码为5×8+5=45.答案:45[解题技法] 系统抽样中所抽取编号的特点系统抽样又称等距抽样,所以依次抽取的样本对应的号码就是一个等差数列,首项就是第1组所抽取样本的号码,公差为间隔数,根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码.[提醒] 系统抽样时,如果总体中的个数不能被样本容量整除时,可以先用简单随机抽样从总体中剔除几个个体,然后再按系统抽样进行.考点三 分层抽样[典例] 某电视台在网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有20 000人,其中各种态度对应的人数如下表所示:电视台为了了解观众的具体想法和意见,打算从中抽取100人进行详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中应抽取的人数分别为( )A .25,25,25,25B .48,72,64,16C .20,40,30,10D .24,36,32,8[解析] 法一:因为抽样比为10020 000=1200,所以每类人中应抽取的人数分别为 4 800×1200=24,7 200×1200=36,6 400×1200=32,1 600×1200=8.法二:最喜爱、喜爱、一般、不喜欢的比例为4 800∶7 200∶6 400∶1 600=6∶9∶8∶2,所以每类人中应抽取的人数分别为66+9+8+2×100=24,96+9+8+2×100=36,86+9+8+2×100=32,26+9+8+2×100=8.[答案] D[解题技法] 分层抽样问题的类型及解题思路 (1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之求解:根据分层抽样就是按比例抽样,列比例式进行计算.(3)分层抽样的计算应根据抽样比构造方程求解,其中“抽样比=样本容量总体容量=各层样本数量各层个体数量”.[题组训练]1.(2019·山西五校联考)某校为了解学生的学习情况,采用分层抽样的方法从高一1 000人、高二1 200人、高三n 人中抽取81人进行问卷调查,若高二被抽取的人数为30,则n =( )A .860B .720C .1 020D .1 040解析:选D 由已知条件知抽样比为301 200=140,从而811 000+1 200+n =140,解得n = 1 040,故选D.2.(2018·广州高中综合测试)已知某地区中小学学生人数如图所示.为了解该区学生参加某项社会实践活动的意向,拟采用分层抽样的方法来进行调查.若高中需抽取20名学生,则小学与初中共需抽取的学生人数为________.解析:设小学与初中共需抽取的学生人数为x ,依题意可得 1 2002 700+2 400+1 200=20x +20,解得x =85.答案:85[课时跟踪检测]1.从2 019名学生中选取50名学生参加全国数学联赛,若采用以下方法选取:先用简单随机抽样法从2 019名学生中剔除19名学生,剩下的2 000名学生再按系统抽样的方法抽取,则每名学生入选的概率( )A .不全相等B .均不相等C .都相等,且为502 019D .都相等,且为140解析:选C 从N 个个体中抽取M 个个体,则每个个体被抽到的概率都等于MN ,故每名学生入选的概率都相等,且为502 019.2.福利彩票“双色球”中红球的号码可以从01,02,03,…,32,33这33个两位号码中选取,小明利用如下所示的随机数表选取红色球的6个号码,选取方法是从第1行第9列的数字开始,从左到右依次读取数据,则第四个被选中的红色球的号码为( )C .06D .16解析:选C 被选中的红色球的号码依次为17,12,33,06,32,22,所以第四个被选中的红色球的号码为06.3.某班共有学生52人,现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知5号、18号、44号同学在样本中,那么样本中还有一个同学的座号是( )A .23B .27C .31D .33解析:选C 分段间隔为524=13,故样本中还有一个同学的座号为18+13=31.4.某工厂在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 构成等差数列,则第二车间生产的产品数为( )A .800双B .1 000双C .1 200双D .1 500双解析:选C 因为a ,b ,c 成等差数列,所以2b =a +c ,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占12月份生产总数的三分之一,即为1 200双皮靴.5.(2018·南宁摸底联考)已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .100,20B .200,20C .200,10D .100,10解析:选B 由题图甲可知学生总人数是10 000,样本容量为10 000×2%=200,抽取的高中生人数是2 000×2%=40,由题图乙可知高中生的近视率为50%,所以抽取高中生的近视人数为40×50%=20,故选B.6.一个总体中有100个个体,随机编号为0,1,2,…,99.依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,如果在第一组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同.若m =6,则在第7组中抽取的号码是( )A .63B .64C .65D .66解析:选A 若m =6,则在第7组中抽取的号码个位数字与13的个位数字相同,而第7组中的编号依次为60,61,62,63,…,69,故在第7组中抽取的号码是63.7.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间(450,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( )A .7B .9C .10D .15解析:选C 960÷32=30,故由题意可得抽到的号码构成以9为首项,以30为公差的等差数列,其通项公式为a n =9+30(n -1)=30n -21.由450<30n -21≤750,解得15.7<n ≤25.7.又n 为正整数,所以16≤n ≤25,故做问卷B 的人数为25-16+1=10.故选C.8.某企业三月中旬生产A ,B ,C 三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:统计员记得A 产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C 的产品数量是________件.解析:设样本容量为x ,则x 3 000×1 300=130,∴x =300.∴A 产品和C 产品在样本中共有300-130=170(件). 设C 产品的样本容量为y ,则y +y +10=170,∴y =80. ∴C 产品的数量为3 000300×80=800(件).答案:8009.某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件数为________;由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为________小时.解析:第一分厂应抽取的件数为100×50%=50;该产品的平均使用寿命为1 020×0.5+980×0.2+1 030×0.3=1 015.答案:50 1 01510.将参加冬季越野跑的600名选手编号为:001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,把编号分为50组后,在第一组的001到012这12个编号中随机抽得的号码为004,这600名选手穿着三种颜色的衣服,从001到301穿红色衣服,从302到496穿白色衣服,从497到600穿黄色衣服,则抽到穿白色衣服的选手人数为________.解析:由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是4+12(k -1).令302≤4+12(k -1)≤496,得2556≤k ≤42,因此抽到穿白色衣服的选手人数为42-25=17(人). 答案:1711.某初级中学共有学生2 000名,各年级男、女生人数如下表:(1)求x 的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? 解:(1)∵x2 000=0.19,∴x =380.(2)初三年级人数为y +z =2 000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为482 000×500=12(名).。