数学物理方法12格林函数
- 格式:ppt
- 大小:911.00 KB
- 文档页数:14
§2.4 格林函数法 解的积分公式在第七章至第十一章中主要介绍用分离变数法求解各类定解问题,本章将介绍另一种常用的方法——格林函数方法。
格林函数,又称点源影响函数,是数学物理中的一个重要概念。
格林函数代表一个点源在一定的边界条件和(或)初始条件下所产生的场。
知道了点源的场,就可以用迭加的方法计算出任意源所产生的场。
一、 泊松方程的格林函数法为了得到以格林函数表示的泊松方程解的积分表示式,需要用到格林公式,为此,我们首先介绍格林公式。
设u (r )和v (r )在区域 T 及其边界 ∑ 上具有连续一阶导数,而在 T 中具有连续二阶导数,应用矢量分析的高斯定理将曲面积分⎰⎰∑⋅∇Sd v u ϖ化成体积积分.)(⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∇⋅∇+∆=∇⋅∇=⋅∇∑TTTvdV u vdV u dV v u S d v u ϖ(12-1-1)这叫作第一格林公式。
同理,又有.⎰⎰⎰⎰⎰⎰⎰⎰∇⋅∇+∆=⋅∇∑TTvdV u udV v S d u v ϖ(12-1-2)(12-1-1)与(12-1-2)两式相减,得,)()(⎰⎰⎰⎰⎰∆-∆=⋅∇-∇∑TdV u v v u S d u v v u ϖ亦即.)(⎰⎰⎰⎰⎰∆-∆=⎪⎭⎫ ⎝⎛∂∂-∂∂∑T dV u v v u dS n u v n vu(12-1-3)n ∂∂表示沿边界 ∑ 的外法向求导数。
(12-1-3)叫作第二格林公式。
现在讨论带有一定边界条件的泊松方程的求解问题。
泊松方程是)( ),(T r r f u ∈=∆ϖϖ(12-1-4)第一、第二、第三类边界条件可统一地表为),( M u n u ϕβα=⎥⎦⎤⎢⎣⎡+∂∂∑(12-1-5)其中 ϕ(M )是区域边界 ∑ 上的给定函数。
α=0,β ≠0为第一类边界条件,α ≠0,β=0是第二类边界条件,α、β 都不等于零是第三类边界条件。
泊松方程与第一类边界条件构成的定解问题叫作第一边值问题或狄里希利问题,与第二类边界条件构成的定解问题叫作第二边值问题或诺依曼问题,与第三类边界条件构成的定解问题叫作第三边值问题。
格林函数法
若L 一个带平滑系数的线性微分算子,当求解形如()L u f =的微分方程时,若对于任意的向量y 都存在广义函数()G x,y ,使得
[]()()L G δ=x x,y x-y
(此处下标x 表示L 作用于()G x,y 时将其当做以x 为自变量的广义函数,而y 为参数) 若再令
()()()d u G f =⎰x x,y y y
将上式代入()L u f =则有
[]()()d ()()d ()()d ()L G f L G f f f δ⎡⎤===⎣⎦
⎰⎰⎰x x,y y y x,y y y x -y y y x 故此时()u x 是微分方程()L u f =的解。
采用上述方法求解微分方程的方法称为格林函数法,广义函数()G x,y 也称为格林函数。
数学物理方法知识体系
数学物理方法所要解决的问题:求解(偏)微分方程
本学期学过的求解方法:变量分离法、积分变换法、格林函数法
变量分离法涉及知识点:傅里叶级数、函数的正交系、贝塞尔函数(Chap.2~Chap.5) 积分变换法涉及知识点:傅里叶变换、拉普拉斯变换、广义函数(Chap.7~Chap.9) 格林函数法涉及知识点:格林函数(Chap.10)
例题数量统计。
格林函数格林函数这是⼀篇关于格林函数经典解法的⽂章。
从现代的讨论中寻求根本的解法。
在数学中,格林函数是⼀种⽤来解有边界条件的⾮齐次微分⽅程式的函数。
在多体理论中,这⼀术语也被应⽤于物理中,特别在量⼦场论,电动⼒学和统计领域的理论,尽管那些不适合数学定义。
格林函数的名称是来⾃于英国数学家乔治·格林(George Green ),早在1830年,他是第⼀个提出这个概念的⼈。
在线性偏微分⽅程的现代研究中,格林函数主要⽤于研究基本解。
内容1、定义及⽤法2、动机3、⾮齐次边值问题的求解3.1、研究框架3.2、定理4、寻求格林函数4.1、特征⽮量展开5、拉普拉斯算⼦的格林函数6、范例7、其他举例定义及⽤法技术上来说,格林函数),(s x G 伴随着⼀个在流形M 中作⽤的线性算⼦L ,为以下⽅程式的解:)(),(s x s x LG -=δ (1)其中δ为狄拉克δ函数。
此技巧可⽤来解下列形式的微分⽅程: )()(x f x Lu = (2)若L 的核是⾮平凡的,则格林函数不只⼀个。
不过,实际上因为对称性、边界条件或其他的因素,可以找到唯⼀的格林函数。
⼀般来说,格林函数只需是⼀种数学分布即可,不⼀定要具有⼀般函数的特性。
格林函数在凝聚态物理学中常被使⽤,因为格林函数允许扩散⽅程式有较⾼的精度。
在量⼦⼒学中,哈密顿算⼦的格林函数和状态密度有重要的关系。
由于扩散⽅程式和薛定谔⽅程有类似的数学结构,因此两者对应的格林函数也相当接近。
其⽅程如下:)(),(s x s x LG --=δ这⼀定义并不显著改变格林函数的任何性质。
如果运算符是平移不变量,即当L 与x 是线性关系时,那么格林函数可以转换成⼀个卷积算,即为:)(),(s x G s x G -=在这种情况下,格林函数和线性不变系统理论中的脉冲响应是相同的。
动机若可找到线性算符 L 的格林函数 G ,则可将(1)式两侧同乘)(s f ,再对变量 s 积分,可得:)()()()(),(x f ds s f s x ds s f s x LG =-=??δ由公式 (2) 可知上式的等号右侧等于)(x Lu ,因此:ds s f s x LG x Lu )(),()(?=由于算符 L 为线式,且只对变量x 作⽤,不对被积分的变量 s 作⽤),所以可以将等号右边的算符L 移到积分符号以外,可得:))(),(()(ds s f s x G L x Lu ?=⽽以下的式⼦也会成⽴:ds s f s x G x u )(),()(?= (3)因此,若知道(1)式的格林函数,及(2)式中的)(x f ,由于L 为线性算符,可以⽤上述的⽅式得到)(x u 。
第五章 格林函数法一 拉普拉斯方程的对称解与格林公式 1 拉普拉斯方程的对称解定义:如果在n 维空间的一个区域内,函数),...,,(21n x x x u 具有二阶连续偏导数,且满足n 维拉普拉斯方程:+∂∂=∆212x u u (2)2nxu∂∂+=0则称),...,,(21n x x x u 是n 维调和函数。
常见的是二维02222=∂∂+∂∂=∆yux u u 和三维的调和函数0222222=∂∂+∂∂+∂∂=∆zuy u x u u 。
二维拉普拉斯方程:02222=∂∂+∂∂=∆yux u u 的通解为: 211ln C rC u +=如果取π211=C ,02=C 就得到一个重要的特解ru 1ln 21π=,由于该解与点0M 的选择有关,所以常记作:MM rM M u u 01ln 21),(0π==三维拉普拉斯方程:0222222=∂∂+∂∂+∂∂=∆zu y u x u u 的通解为:211C rC u +=如果取π411=C ,02=C 就得到一个重要的特解ru π41=,由于该解与0M 点的选择有关,所以常记作:MM rM M u u 041),(0π==2格林公式及其应用(1)高斯公式设Ω是以分片光滑闭曲面Γ为边界的有界区域,函数),,(z y x P ,),,(z y x Q ,),,(z y x R 在闭区域上Γ+Ω=Ω_连续,其一阶偏导数在Ω内连续,则:⎰⎰⎰∂∂+∂∂+∂∂ΩdV zR y Q x P )(= dS z n R y n Q x n P ⎰⎰++Γ)],cos(),cos(),cos([。
其中dV 是体积元素,dS 是Γ上面积元素,n 是Γ上外法向量。
(2)第一格林公式设),,(z y x u ,),,(z y x v 的一阶偏导数在_Ω上连续,二阶偏导在Ω内连续,令x v u P ∂∂=,y v u Q ∂∂=,zvu R ∂∂=代入高斯公式可得:⎰⎰⎰⋅+⎰⎰⎰⎰⎰∂∂=∆ΩΩΓgradudV gradv dS vuu udV v 。
如何求格林函数格林函数是一种用于解决偏微分方程的数学工具。
它在物理学、工程学等领域中被广泛应用,用于描述空间中点源或边界条件下的场或势函数分布。
本文将以人类的视角,以一个具体的例子来介绍如何求解格林函数。
假设我们考虑一个二维空间中的热传导问题,即热量在空间中的传播。
假设有一个热源在坐标原点处,我们想求解在空间中任意点处的温度分布。
我们需要建立起偏微分方程描述这个问题。
热传导问题可以由热传导方程来描述,其形式为:∂u/∂t = α(∂²u/∂x² + ∂²u/∂y²)其中,u是温度分布函数,t是时间,α是热扩散系数。
接下来,我们引入格林函数G(x, y, x', y'),它是满足以下方程的函数:α(∂²G/∂x² + ∂²G/∂y²) = δ(x - x')δ(y - y')其中,δ(x)是狄拉克函数,表示单位脉冲。
注意,这里的格林函数是关于空间坐标的函数,与时间无关。
有了格林函数之后,我们可以通过以下公式来求解温度分布函数u(x, y, t):u(x, y, t) = ∫∫G(x, y, x', y')f(x', y', t)dxdy其中,f(x, y, t)是边界条件或初始条件。
在实际应用中,求解格林函数常常采用分离变量法、变换法等数学方法。
这些方法能够将偏微分方程转化为一系列普通微分方程或积分方程,从而求解出格林函数。
通过求解格林函数,我们可以得到任意时刻、任意位置的温度分布。
这对于热传导问题的研究和工程应用具有重要意义。
格林函数的求解方法可以推广到其他偏微分方程问题中,因此具有广泛的应用价值。
总结起来,格林函数是一种用于求解偏微分方程的数学工具。
它通过满足特定的方程条件,描述了空间中点源或边界条件下的场或势函数分布。
通过求解格林函数,我们可以得到解析解,从而获得任意时刻、任意位置的场或势函数分布。