函数的定义域学案
- 格式:doc
- 大小:108.00 KB
- 文档页数:4
高中数学函数教案板书
课题:函数
教学目标:
1. 理解函数的概念,掌握函数的基本性质和特点。
2. 掌握函数的表示方法及其图像的特征。
3. 能够灵活运用函数的性质解决实际问题。
教学重点:
1. 函数的概念和特点
2. 函数的表示方法和图像
教学难点:
1. 函数的图像特征和性质的理解
2. 函数的实际应用
教学准备:
1. 教案、黑板、彩色粉笔
2. 教学PPT
3. 实例题及练习题目
4. 学生练习册
教学过程:
一、引入(5分钟)
教师通过引入实际生活中的例子,引起学生对函数概念的兴趣。
二、讲解函数的概念和特点(15分钟)
1. 引导学生了解函数的定义,函数的自变量、因变量和定义域、值域的概念。
2. 讲解函数的性质,如奇偶性、周期性等。
三、函数的表示方法和图像(15分钟)
1. 介绍函数的表示方法,包括表达式、图像、函数图像的特征。
2. 分析函数的图像在坐标系中的位置和特点。
四、实例分析和练习(15分钟)
1. 给学生展示一些函数的实例,并引导学生分析函数的图像特征。
2. 给学生练习相关的题目,巩固所学知识。
五、课堂小结(5分钟)
教师对本节课的要点进行回顾,并巩固学生对函数概念的理解。
六、作业布置(5分钟)
布置相关练习题目,要求学生认真完成并及时复习所学知识。
教学反思:
通过本节课的教学,学生对函数的概念有了更深的理解,能够灵活运用函数的性质解决实际问题。
希望学生能够加强练习,巩固所学内容,提升数学学习能力。
3.1.1(第1课时)函数的概念学案(含答案)3.13.1函数的概念与性质函数的概念与性质33..1.11.1函数及其表示方法函数及其表示方法第第11课时课时函数的概念函数的概念学习目标1.在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念.2.体会集合语言和对应关系在刻画函数概念中的作用.3.了解构成函数的要素,能求简单函数的定义域和值域.知识点一函数的有关概念函数的定义给定两个非空实数集A与B,以及对应关系f,如果对于集合A中的每一个实数x,在集合B中都有唯一确定的实数y与x对应,则称f为定义在集合A上的一个函数函数的记法yfx,xA定义域x 称为自变量,y称为因变量,自变量取值的范围即数集A称为函数的定义域值域所有函数值组成的集合yB|yfx,xA称为函数的值域知识点二同一个函数一般地,函数有三个要素定义域,对应关系与值域如果两个函数表达式表示的函数定义域相同,对应关系也相同,则称这两个函数表达式表示的就是同一个函数特别提醒两个函数的定义域和对应关系相同就决定了这两个函数的值域也相同思考定义域和值域分别相同的两个函数是同一个函数吗答案不一定,如果对应关系不同,这两个函数一定不是同一个函数1任何两个集合之间都可以建立函数关系2已知定义域和对应关系就可以确定一个函数3若函数的定义域只有一个元素,则值域也只有一个元素4函数yfxx2,xA与uftt2,tA表示的是同一个函数一.函数关系的判断例11多选下列两个集合间的对应中,是A 到B的函数的有AA1,0,1,B1,0,1,fA中的数的平方BA0,1,B1,0,1,fA中的数的开方CAZ,BQ,fA中的数的倒数DA1,2,3,4,B2,4,6,8,fA中的数的2倍答案AD解析A选项121,020,121,为一一对应关系,是A到B的函数B选项00,11,集合A中的元素1在集合B中有两个元素与之对应,不符合函数定义,不是A到B的函数C选项A中元素0的倒数没有意义,不符合函数定义,不是A到B的函数D选项122,224,326,428,为一一对应关系,是A到B的函数2设Mx|0x2,Ny|0y2,给出如图所示的四个图形其中,能表示从集合M到集合N的函数关系的个数是A0B1C2D3答案B解析中,因为在集合M中当1x2时,在N中无元素与之对应,所以不是;中,对于集合M中的任意一个数x,在N中都有唯一的数与之对应,所以是;中,x2对应元素y3N,所以不是;中,当x1时,在N中有两个元素与之对应,所以不是因此只有是反思感悟1判断对应关系是否为函数的两个条件A,B必须是非空实数集A中任意一元素在B中有且只有一个元素与之对应对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系2根据图形判断对应关系是否为函数的方法任取一条垂直于x轴的直线l.在定义域内平行移动直线l.若l与图形有且只有一个交点,则是函数;若在定义域内有两个或两个以上的交点,则不是函数跟踪训练11下列对应关系式中是A到B的函数的是AAR,BR,x2y21BA1,0,1,B1,2,y|x|1CAR,BR,y1x2DAZ,BZ,y2x1答案B解析对于A,x2y21可化为y1x2,显然对任意xAx1除外,y值不唯一,故不符合函数的定义;对于B,符合函数的定义;对于C,2A,在此时对应关系无意义,故不符合函数的定义;对于D,1A,但在集合B中找不到与之相对应的数,故不符合函数的定义2判断下列对应关系f是否为定义在集合A 上的函数AR,BR,对应关系fy1x2;A1,2,3,BR,f1f23,f34;A1,2,3,B4,5,6,对应关系如图所示解AR,BR,对于集合A中的元素x0,在对应关系fy1x2的作用下,在集合B中没有元素与之对应,故所给对应关系不是定义在A上的函数由f1f23,f34,知集合A中的每一个元素在对应关系f的作用下,在集合B中都有唯一的元素与之对应,故所给对应关系是定义在A上的函数集合A 中的元素3在集合B中没有与之对应的元素,且集合A中的元素2在集合B中有两个元素5和6与之对应,故所给对应关系不是定义在A上的函数二.求函数的定义域.函数值和值域命题角度1求函数的定义域例2求下列函数的定义域1fxx12x11x;2fx5x|x|3;3fx3xx1.解1要使函数有意义,自变量x的取值必须满足x10,1x0.解得x1,且x1,即函数定义域为x|x1,且x12要使函数有意义,自变量x的取值必须满足5x0,|x|30,解得x5,且x3,即函数定义域为x|x5,且x33要使函数有意义,自变量x的取值必须满足3x0,x10,解得1x3,所以这个函数的定义域为x|1x3延伸探究在本例3条件不变的前提下,求函数yfx1的定义域解由1x13得0x2.所以函数yfx1的定义域为0,2反思感悟求函数定义域的常用依据1若fx是分式,则应考虑使分母不为零2若fx是偶次根式,则被开方数大于或等于零3若fx是由几个式子构成的,则函数的定义域要使各个式子都有意义4若fx是实际问题的解析式,则应符合实际问题,使实际问题有意义跟踪训练2函数y2x23x214x的定义域为________________答案,122,4解析由2x23x20,4x0,4x0,得x12或2x4,所以定义域为,122,4命题角度2求函数值例3已知fx12xxR,且x2,gxx4xR1求f1,g1,gf1的值;2求fgx解1f11211,g1145,gf1g15.2fgxfx412x412x1x2xR,且x2反思感悟求函数值的方法1已知fx的表达式时,只需用a替换表达式中的x即得fa的值2求fga的值应遵循由里往外的原则跟踪训练3已知fx11xxR,且x1,gxx22xR,则f2______,fg2______,fgx________.答案13171x23解析fx11x,f211213.又gxx22,g22226,fg2f611617.fgx11gx1x23.命题角度3求值域例4求下列函数的值域1y2x1,x1,2,3,4;2y3x1x1;3yxx.解1当x1时,y3;当x2时,y5;当x3时,y7;当x4时,y9.所以函数y2x1,x1,2,3,4的值域为3,5,7,92借助反比例函数的特征y3x14x134x1x1,显然4x1可取0以外的一切实数,即所求函数的值域为y|y33设uxx0,则xu2u0,则yu2uu12214u0由u0,可知u12214,所以y0.所以函数yxx的值域为0,反思感悟求函数值域常用的四种方法1观察法对于一些比较简单的函数,其值域可通过观察得到2配方法当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法求其值域3分离常数法此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;4换元法即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域对于fxaxbcxd其中a,b,c,d为常数,且a0型的函数常用换元法跟踪训练4求下列函数的值域1y2x1x3;2y2xx1.解1分离常数法y2x1x32x37x327x3,显然7x30,所以y2.故函数的值域为,22,2换元法设tx1,则xt21,且t0,所以y2t21t2t142158,由t0,再结合函数的图像如图,可得函数的值域为158,.三.同一个函数的判定例5多选下列各组函数表示同一个函数的是Afxx,gxx2Bfxx21,gtt21Cfx1x0,gxxxDfxx,gx|x|答案BC 解析A中,由于fxx的定义域为R,gxx2的定义域为x|x0,它们的定义域不相同,所以它们不是同一个函数B中,函数的定义域.值域和对应关系都相同,所以它们是同一个函数C中,由于gxxx1的定义域为x|x0,故它们的定义域相同,所以它们是同一个函数D中,两个函数的定义域相同,但对应关系不同,所以它们不是同一个函数反思感悟在两个函数中,只有当定义域.对应关系都相同时,两函数才是同一个函数值域相等,只是前两个要素相等的必然结果跟踪训练5下列各组式子是否表示同一个函数为什么1fx|x|,tt2;2y1x1x,y1x2;3y3x2,yx3.解1fx与t的定义域相同,又tt2|t|,即fx与t的对应关系也相同,fx与t是同一个函数2y1x1x的定义域为x|1x1,y1x2的定义域为x|1x1,即两者定义域相同又y1x1x1x2,两函数的对应关系也相同故y1x1x与y1x2是同一个函数3y3x2|x3|与yx3的定义域相同,但对应关系不同,y3x2与yx3不是同一个函数1若Ax|0x2,By|1y2,下列图形中能表示以A为定义域,B为值域的函数的是答案B解析A中值域为y|0y2,故错误;C,D中值域为1,2,故错误2若fxx1,则f3等于A2B4C22D10答案A解析因为fxx1,所以f3312.3函数y1xx的定义域为Ax|x1Bx|x0Cx|x1或x0Dx|0x1答案D解析由题意可知1x0,x0,解得0x1.4如果函数yx22x的定义域为0,1,2,3,那么其值域为A1,0,3B0,1,2,3Cy|1y3Dy|0y3答案A解析当x取0,1,2,3时,y 的值分别为0,1,0,3,则其值域为1,0,35下列四个图像中,不是以x为自变量的函数的图像是答案C解析根据函数定义,可知对自变量x的任意一个值,都有唯一确定的实数函数值与之对应,显然选项A,B,D满足函数的定义,而选项C不满足1知识清单1函数的概念2函数的定义域.值域3同一个函数的判定2方法归纳观察法.换元法.配方法.分离常数法3常见误区1定义域中的每一个自变量都有唯一确定的值与其相对应2自变量用不同字母表示不影响相同函数的判断。
对数函数定义域值域学案学习目标:1、会求对数函数地定义域; 2、会求对数函数地值域. 学习重点:求对数函数定义域、值域学习难点:利用对数函数定义域、值域解题. 例题分析:例1:求下列函数地定义域 ①()()2log 1+=-x y x ②121log 8.0--=x x y练习1.()()211log -=+x y x 2.)34(log 25.0x x y -=例2:求下列函数地值域 ①1log 2-=x y ②()1log 2-=x y练习1.]8,0(,log 21∈=x x y 2.()()532log 22-≤--=x x x y例3:①若函数]41)1([log 22+-+=x a ax y 地定义域为R ,求实数a 地取值范围.②已知)1lg(2++=ax x y 定义域为R ,值域为R ,求a 地范围例4:已知x 满足条件09log 9)(log 221212≤++x x ,求函数)4(log )3(log )(22x x x f ⋅=地最大值和最小值.学科作业:1.已知)13(log -a a 恒为正数,那么实数a 地取值范围是()A.a <31 B.3132<<a C.a >1 D. 3132<<a 或a >1 2.函数)1(2log )(2≥-=x x x f ,则)(1x f-地定义域是( )A.RB.),2[+∞-C.),1[+∞D.(0,1)3.函数)(x f 地定义域是(0,1),若)]3([log )(21x f x F -=,则函数F (x )地定义域是.4、函数)176(log 221+-=x x y 地值域是.5、求函数)1(log 2-=x y 地反函数=-)(1x f,反函数地定义域是,值域是6、已知函数)12lg()(2++=x ax x f ,(1)若f(x)地定义域为R ,求实数a 地范围; (2)若f(x)地值域为R ,求实数a 地范围.7、若9271≤≤x ,求)3(log 27log )(33x x x f ⋅=地最值.8、已知函数)1)((log )1(log 11log )(1.01.01.0 a x a x x x x f -+-+-+=地最小值为-2,求实数a 地值.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.b5E2R。
3.1.1 函数的概念课程标准(1)通过丰富实例,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.(2)了解构成函数的三要素,能求简单函数的定义域.(3)能够正确使用“区间”的符号表示某些集合.(4)理解同一个函数的概念,能判断两个函数是否是同一个函数.新知初探·课前预习——突出基础性教材要点要点一函数的概念要点二同一个函数如果两个函数的________相同,并且________完全一致,即相同的自变量对应的函数值相同,那么这两个函数是同一个函数❷.要点三区间及有关概念1.一般区间的表示设a,b∈R,且a<b,规定如下:2.特殊区间的表示助学批注批注❶抓住两点:(1)可以“多对一”、“不可一对多”;(2)集合A中的元素无剩余,集合B中的元素可剩余.批注❷只有当两个函数的定义域和对应关系分别相同时,这两个函数才是同一个函数.定义域和值域都分别相同的两个函数,它们不一定是相同的函数,因为函数对应关系不一定相同.批注❸这里的实数a与b都叫做相应区间的端点.区间的左端点一定要小于右端点,即a <b.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)任何两个集合之间都可以建立函数关系.( )(2)函数的定义域必须是数集,值域可以为其他集合.( )(3)根据函数的定义,定义域中的任何一个x可以对应着值域中不同的y.( )(4)区间是数集的另一种表示方法,任何数集都能用区间表示.( )2.下列选项中(横轴表示x轴,纵轴表示y轴),表示y是x的函数的是( )A B C D3.区间(0,1)等于 ( )A.{0,1}B.{(0,1)}C.{x|0<x<1}D.{x|0≤x≤1}4.若f(x)=x-√x+1,则f(3)=________.题型探究·课堂解透——强化创新性题型 1 函数的概念例1 (1)(多选)下列图形中是函数图象的是( )(2)下列从集合A到集合B的对应关系f是函数的是( ) A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方C.A=Z,B=Q,f:A中的数取倒数D.A={平行四边形},B=R,f:求A中平行四边形的面积方法归纳1.根据图形判断对应关系是否为函数的一般步骤2.判断一个对应关系是否为函数的方法巩固训练1 (多选)下列对应关系是集合A到集合B的函数的是( )A.A=R,B={x|x≥0},f:x→y=|x|B.A=Z,B=Z,f:x→y=x2C.A=Z,B=Z,f:x→y=√xD.A={x|-1≤x≤1},B={0},f:x→y=0题型 2 求函数值(x∈R,且x≠-1),g(x)=x2+2(x 例2 [2022·山东青岛高一期中]已知f(x)=11+x∈R).(1)求f(2),g(2)的值;(2)求f(g(3))的值.方法归纳求函数值的2种策略巩固训练2 已知函数f(x)=x+1.x+2(1)求f(2);(2)求f(f(1)).题型 3 求函数的定义域例3 求下列函数的定义域.; (2)y=√x2−2x−3;(1)y=2+3x−2(3)y=√3−x·√x−1; (4)y=(x-1)0+√2.x+1方法归纳求函数定义域的常用策略巩固训练3 (1)函数f (x )=√1+x −1x的定义域是( )A .[-1,0)∪(0,+∞)B .[-1,+∞)C .(-∞,0)∪(0,+∞)D .R(2)函数f (x )=√−x 2+6x −5的定义域为________.题型 4 同一函数的判断例4 下面各组函数中表示同一个函数的是( ) A .f (x )=x ,g (x )=(√x )2B .f (t )=|t |,g (x )=√x 2C .f (x )=x 2−1x−1,g (x )=x +1 D .f (x )=|x |x ,g (x )={1,x ≥0−1,x <0方法归纳判断同一函数的三个步骤和两个注意点(1)判断同一函数的三个步骤(2)两个注意点:①在化简解析式时,必须是等价变形; ②与用哪个字母表示无关.巩固训练4 下列函数中与函数y =x 2是同一函数的是( ) A .u =v 2B .y =x ·|x |C .y =x 3x D .y =(√x )43.1.1 函数的概念新知初探·课前预习[教材要点]要点一实数集 任意一个数x 唯一 要点二定义域 对应关系 要点三1.(a ,b ) (a ,b ]2.(-∞,+∞) [a ,+∞) (a ,+∞) (-∞,a ] (-∞,a )[基础自测]1.答案:(1)× (2)× (3)× (4)×2.解析:只有D 的函数图象与垂直于x 轴的直线至多有一个交点,故选D. 答案:D 3.答案:C4.解析:f (3)=3-√3+1=3-2=1. 答案:1题型探究·课堂解透例1 解析:(1)A 中至少存在一处如x =0,一个横坐标对应两个纵坐标,这相当于集合A 中至少有一个元素在集合B 中对应的元素不唯一,故A 不是函数图象,其余B ,C ,D 均符合函数定义.(2)对于选项B ,集合A 中的元素1对应集合B 中的元素±1,不符合函数的定义;对于选项C ,集合A 中的元素0取倒数没有意义,在集合B 中没有元素与之对应,不符合函数的定义;对于选项D ,A 集合不是数集,故不符合函数的定义.答案:(1)BCD (2)A巩固训练1 解析:选项A 中,对于A 中的任意一个实数x ,在B 中都有唯一确定的数y 与之对应,故是A 到B 的函数.选项B 中,对于集合A 中的任意一个整数x ,按照对应关系f :x →y =x 2在集合B 中都有唯一一个确定的整数x 2与其对应,故是集合A 到集合B 的函数.选项C 中,集合A 中的负整数没有平方根,在集合B 中没有对应的元素,故不是集合A 到集合B 的函数.选项D 中,对于集合A 中任意一个实数x ,按照对应关系f :x →y =0在集合B 中都有唯一一个确定的数0和它对应,故是集合A 到集合B 的函数.答案:ABD例2 解析:(1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6. (2)∵g (3)=32+2=11,∴f (g (3))=f (11)=11+11=112.巩固训练2 解析:(1)f (2)=2+12+2=34; (2)∵f (1)=1+11+2=23;∴f (f (1))=f (23)=23+123+2=58.例3 解析:(1)当且仅当x -2≠0,即x ≠2时,函数y =2+3x−2有意义,所以这个函数的定义域为{x |x ≠2}.(2)要使函数有意义,需x 2-2x -3≥0,即(x -3)(x +1)≥0,所以x ≥3或x ≤-1,即函数的定义域为{x |x ≥3或x ≤-1}.(3)函数有意义,当且仅当{3−x ≥0,x −1≥0,解得1≤x ≤3,所以这个函数的定义域为{x |1≤x ≤3}.(4)函数有意义,当且仅当{x −1≠0,2x+1≥0,x +1≠0,解得x >-1,且x ≠1,所以这个函数的定义域为{x |x >-1且x ≠1}.巩固训练3 解析:(1)由{1+x ≥0x ≠0,解得:x ≥-1且x ≠0.∴函数f (x )=√1+x −1x 的定义域是[-1,0)∪(0,+∞). (2)由-x 2+6x -5≥0,得x 2-6x +5≤0,(x -1)(x -5)≤0, 解得1≤x ≤5,所以函数的定义域为[1,5]. 答案:(1)A (2)[1,5]例4 解析:对于A ,f (x )=x 的定义域为R ,而g (x )=(√x )2的定义域为[0,+∞),两函数的定义域不相同,所以不是同一个函数;对于B ,两个函数的定义域都为R ,定义域相同,g (x )=√x 2=|x |,这两个函数是同一个函数;对于C ,f (x )=x 2−1x−1的定义域为{x |x ≠1},而g (x )=x +1的定义域是R ,两个函数的定义域不相同,所以不是同一个函数;对于D ,f (x )=|x |x 的定义域为{x |x ≠0},而g (x )={1,x ≥0−1,x <0的定义域是R ,两个函数的定义域不相同,所以不是同一个函数.答案:B巩固训练4 解析:函数y =x 2的定义域为R ,对于A 项,u =v 2的定义域为R ,对应法则与y =x 2一致,则A 正确;对于B 项,y =x ·|x |的对应法则与y =x 2不一致,则B 错误;对于C 项,y =x 3x 的定义域为{x |x ≠0},则C 错误;对于D 项,y =(√x )4的定义域为{x |x ≥0},则D 错误;故选A.答案:A。
一、【基础训练】1.函数f (x )=1ln (x +1)+4-x 2的定义域为____________. 2. 设g (x )=2x +3,g (x +2)=f (x ),则f (x )=________.3. 若f (x )满足f (x +y )=f (x )+f (y ),则可写出满足条件的一个函数解析式f (x )=2x .类比可以得到:若定义在R 上的函数g (x ),满足(1)g (x 1+x 2)=g (x 1)g (x 2);(2)g (1)=3;(3)∀x 1<x 2,g (x 1)<g (x 2),则可以写出满足以上性质的一个函数解析式为__________.4.函数f (x )=log 2(3x +1)的值域为___________________.5. 已知f ⎝⎛⎭⎫1x =1+x 21-x 2,则f (x )=__________.二、【重点讲解】1.函数的定义域(1)函数的定义域是指使函数有意义的自变量的取值范围.(2)求定义域的步骤(3)常见基本初等函数的定义域2. 函数的值域(1)在函数y =f (x )中,与自变量x 的值相对应的y 的值叫函数值,函数值的集合叫函数的值域.(2)基本初等函数的值域3. 函数解析式的求法(1)换元法;(2)待定系数法;(3)消去法:若所给解析式中含有f (x )、f ⎝⎛⎭⎫1x 或f (x )、f (-x )等形式,可构造另一个方程,通过解方程组得到f (x ).(4)配凑法或赋值法:依据题目特征,能够由一般到特殊或由特殊到一般寻求普遍规律,求出解析式.三、【典题拓展】例1(1)函数y =ln (x +1)-x 2-3x +4的定义域为______________. (2)若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是____________.(1)若函数f (x )=x -4mx 2+4mx +3的定义域为R ,则实数m 的取值范围是__________. (2)已知f (x )的定义域是[0,4],则f (x +1)+f (x -1)的定义域是__________.例2 求下列函数的值域:(1)y =x 2+2x (x ∈[0,3]); (2)y =x -3x +1;(3)y =x -1-2x ; (4)y =log 3x +log x 3-1.求下列函数的值域:(1)y =x 2-x x 2-x +1; (2)y =2x -1-13-4x .例3 (1)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x );(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式;(3)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.给出下列两个条件:(1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式.【例4】已知f (x )=2+log 3x ,x ∈[1,9],试求函数y =[f (x )]2+f (x 2)的值域.变式训练4 不等式224x x p +-≥对所有x 都成立,求实数p 的最大值。
学习过程一、复习预习1、函数的概念及三要素2、函数的表示方法二、知识讲解考点1 常见基本初等函数的定义域(1)分式函数中分母不等于零.(2)偶次根式函数被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R .(4)y =a x (a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R .(5)y =log a x (a >0且a ≠1)的定义域为(0,+∞).(6)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z . (7)实际问题中的函数定义域,除了使函数的解析式有意义外,还要考虑实际问题对函数自变量的制约.考点2 基本初等函数的值域(1)y =kx +b (k ≠0)的值域是R .(2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y |y ≥4ac -b 24a ;当a <0时,值域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y |y ≤4ac -b 24a .(3)y =k x (k ≠0)的值域是{y |y ≠0}.(4)y =a x (a >0且a ≠1)的值域是{y |y >0}.(5)y =log a x (a >0且a ≠1)的值域是R .(6)y =sin x ,y =cos x 的值域是[-1,1].(7)y =tan x 的值域是R .考点3 分段函数的定义域、值域与各段上的定义域、值域之间的关系分段函数的定义域、值域为各段上的定义域、值域的并集三、例题精析【例题1】【题干】(1)(2012·江苏高考)函数f(x)=1-2log6x的定义域为________.(2)已知f(x)的定义域是[-2,4],求f(x2-3x)的定义域.【答案】(0, 6 ]【解析】(1)由1-2log6x≥0解得log6x≤12⇒0<x≤6,故所求定义域为(0, 6 ].(2)∵f(x)的定义域是[-2,4],∴-2≤x2-3x≤4,由二次函数的图象可得,-1≤x≤1或2≤x≤4. ∴定义域为[-1,1]∪[2,4]【例题2】【题干】求下列函数的值域.(1)y=x2+2x,x∈[0,3];(2)y=x2-xx2-x+1;(3)y=log3x+log x3-1.【解析】(1)(配方法)y =x 2+2x =(x +1)2-1, ∵0≤x ≤3,∴1≤x +1≤4.∴1≤(x +1)2≤16.∴0≤y ≤15,即函数y =x 2+2x (x ∈[0,3])的值域为[0,15].(2)y =x 2-x +1-1x 2-x +1=1-1x 2-x +1,∵x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,∴0<1x 2-x +1≤43,∴-13≤y <1,即值域为⎣⎢⎡⎭⎪⎫-13,1.(3)y =log 3x +1log 3x -1,令log 3x =t ,则y =t +1t -1(t ≠0),当x >1时,t >0,y ≥2 t ·1t-1=1, 当且仅当t =1t 即log 3x =1,x =3时,等号成立;当0<x <1时,t <0,y =-⎣⎢⎡⎦⎥⎤(-t )+⎝ ⎛⎭⎪⎫-1t -1≤-2-1=-3. 当且仅当-t =-1t 即log 3x =-1,x =13时,等号成立.综上所述,函数的值域是(-∞,-3]∪[1,+∞).【例题3】【题干】若函数f(x)=1x-1在区间[a,b]上的值域为⎣⎢⎡⎦⎥⎤13,1,则a+b=________.【答案】6【解析】∵由题意知x-1>0,又x∈[a,b],∴a>1.则f(x)=1x-1在[a,b]上为减函数,则f(a)=1a-1=1且f(b)=1b-1=13,∴a=2,b=4,a+b=6.【例题4】【题干】若函数f (x )的值域是⎣⎢⎡⎦⎥⎤12,3,则函数F (x )=f (x )+1f (x )的值域是( ) A.⎣⎢⎡⎦⎥⎤12,5B.⎣⎢⎡⎦⎥⎤56,5C.⎣⎢⎡⎦⎥⎤2,103D.⎣⎢⎡⎦⎥⎤3,103【答案】 C【解析】令t =f (x ),则12≤t ≤3.易知函数g (t )=t +1t 在区间⎣⎢⎡⎦⎥⎤12,1上是减函数,在[1,3]上是增函数. 又因为g ⎝ ⎛⎭⎪⎫12=52,g (1)=2,g (3)=103.可知函数F (x )=f (x )+1f (x )的值域为⎣⎢⎡⎦⎥⎤2,103.四、课堂运用【基础】1.已知a为实数,则下列函数中,定义域和值域都有可能是R的是() A.f(x)=x2+a B.f(x)=ax2+1C.f(x)=ax2+x+1 D.f(x)=x2+ax+12.设M={x|-2≤x≤2},N={y|0≤y≤2},函数f(x)的定义域为M,值域为N,则f(x)的图象可以是()3.函数y=2--x2+4x的值域是()A.[-2,2] B.[1,2] C.[0,2] D.[-2, 2 ]【巩固】4.函数y=16-x-x2的定义域是________.5.(2013·厦门模拟)定义新运算“⊕”:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2.设函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2],则函数f(x)的值域为________.【拔高】6.下列函数中,与函数y=1x有相同定义域的是()A.f(x)=ln x B.f(x)=1 xC.f(x)=|x| D.f(x)=e x7.已知函数f(x)=x2+4ax+2a+6.(1)若函数f(x)的值域为[0,+∞),求a的值;(2)若函数f(x)的函数值均为非负数,求g(a)=2-a|a+3|的值域.课程小结1、求函数定义域应注意的问题(1)如果没有特别说明,函数的定义域就是能使解析式有意义的所有实数x的集合.(2)不要对解析式进行化简变形,以免定义域变化.(3)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(4)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.2、妙求函数的值域(1)当所给函数是分式的形式,且分子、分母是同次的,可考虑用分离常数法;(2)若与二次函数有关,可用配方法;(3)若函数解析式中含有根式,可考虑用换元法或单调性法;(4)当函数解析式结构与基本不等式有关,可考虑用基本不等式求解;(5)分段函数宜分段求解;(6)当函数的图象易画出时,还可借助于图象求解.。
学案5三角函数的定义域、值域学习目标:1、掌握正弦函数、余弦函数、正切函数的定义域、值域。
2、结合三角函数的定义域、值域求解最值问题。
重点:三角函数的定义域、值域。
一、 基本知识回顾:1、正弦函数x y sin =定义域是 ,值域是 ,当=x 时,y 有最大值 ,当=x 时,y 有最小值 。
2、余弦函数x y cos =定义域是 ,值域是 ,当=x 时,y 有最大值 ,当=x 时,y 有最小值 。
3、正切函数x y tan =定义域是 ,值域是 。
二、 基础过关:1、函数x x y cos sin -=的定义域为 ,值域为 。
2、函数x x y tan log 250++=⋅的定义域为 。
3、如果4π≤x ,()x x x f sin cos 2+=的最小值是( ) A .212- B .221+- C .1- D .221- 4、若21cos sin =y x ,则y x P sin cos =的值域为 ( ) A .⎥⎦⎤⎢⎣⎡-21,23B .⎥⎦⎤⎢⎣⎡-21,21C .⎥⎦⎤⎢⎣⎡-23,21D .[]1,1-5、(2006年福建卷)已知函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,则ω的最小值等于 ( )(A )23 (B )32(C )2 (D )3 三、典型例题1、求下列函数的定义域(1)()x y x cos 21log sin += (2)()4log sin 21++-=x x x x y (3)()12cos 32sin lg -+=x x y2、求下列函数的值域(1)x x x y cos 1sin 2sin -=(2)x x x x y cos sin cos sin ++=(3)x x y cos 23cos 2+⎪⎭⎫⎝⎛+=π3、函数()x x a a x f 2sin 2cos 221---=的最小值为()a g ()R a ∈.(1)求()a g ; (2)若()21=a g ,求a 及此时()x f 的最大值.4、已知31sin sin =+y x ,求x y 2cos sin -的最小值和最大值.四、强化训练1、函数x x y sin 2sin -=的值域为 ( )A .[]1,3--B .[]3,1-C .[]3,0D .[]0,3-2、函数()()x x y sin 1log sin 1log 22-++=,当⎥⎦⎤⎢⎣⎡-∈4,6ππx 时的值域为( ) A .[]0,1- B .(]0,1- C .[)1,0 D .[]1,03、设实数y x ,满足122=+y x ,则y x 43+的最大值为 。
函数的定义域和值域(一)求函数定义域的一般原则:(1)如果f (x )是整式,那么函数的定义域是实数集R .(2)如果f (x )是分式,那么函数的定义域是使分母不等于零的实数的集合 .(3)如果f (x )是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合. (4)如果f (x )是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)(5)满足实际问题有意义. (二):抽象函数的定义域求法:①函数f (x )的定义域是指x 的取值范围所组成的集合。
②函数[])(x f ϕ的定义域还是指x 的取值范围,而不是)(x ϕ的取值范围。
③已知f(x)的定义域为A ,求[])(x f ϕ的定义域:其实质是(求法):已知)(x ϕ的取值范围为A ,求出x 的取值范围;解得的x 的取值范围即是[])(x f ϕ的定义域。
④已知[])(x f ϕ的定义域为B ,求f(x)的定义域:其实质是(求法):已知[])(x f ϕ中x 的取值范围为B ,求出)(x ϕ的取值范围;解得的)(x ϕ的取值范围即是f(x)的定义域。
⑤同在对应法则f 下的范围相同:即[][])(,)(),(x h f x f t f ϕ三个函数中)(),(,x h x t ϕ的范围相同。
(三):复合函数的定义域及其求法:(1)定义:如果函数)(t f y =的定义域为A,函数)(x g t =的定义域为D ,值域为C ,则当A C ⊆时,称函数[])(x g f y =为)(x f 与)(x g 在D 上的复合函数,其中t 叫做中间变量,)(x g t =叫做内层函数,)(t f y =叫做外层函数。
(2)复合函数定义域求法:①函数[])(x g f 的定义域还是指x 的取值范围,而不是)(x g 的取值范围。
②已知f(x)的定义域为A ,求[])(x g f 的定义域:其实质是(求法):已知)(x g 的取值范围为A ,求出x 的取值范围;解得的x 的取值范围即是[])(x g f 的定义域。
高中数学专题函数教案模板
一、教学目标:
1. 理解函数的基本概念;
2. 掌握函数的定义和性质;
3. 能够求解函数的定义域、值域和单调性;
4. 能够绘制函数的图像。
二、教学重点:
1. 函数的定义和性质;
2. 函数的图像绘制。
三、教学难点:
1. 函数的单调性;
2. 函数的图像绘制。
四、教学准备:
1. 课件、教材、作业本;
2. 黑板、彩色粉笔;
3. 实验器材。
五、教学过程:
1. 导入:通过举例引入函数的概念,让学生了解函数的意义;
2. 讲解:讲解函数的定义和性质,重点讲解函数的单调性;
3. 实验:让学生通过实验验证函数的性质,如函数的定义域和值域;
4. 练习:让学生通过练习巩固所学内容,并解决相关问题;
5. 辅导:对学生提出的问题进行解答和辅导;
6. 总结:对本节课的内容进行总结,并布置下节课的作业。
六、教学反思:
1. 学生的学习情况:学生是否理解了函数的定义和性质;
2. 教学方法的效果:教师采用的教学方法是否得当;
3. 改进措施:针对学生的学习情况和教学效果,进行相应的改进措施。
七、作业布置:
1. 完成课堂练习;
2. 阅读教材相关章节。
以上就是本次高中数学专题函数教案的模板范本,可根据实际情况进行调整和完善。
希望对您有所帮助!。
1.2.2 函数的定义域及区间表示
【学习目标】
1.能举例说明区间的几种形式的意义,能准确运用区间或集合表述什么是函数的定义域;2.会求分式型、根式型函数的定义域;
3.逐步树立解决函数问题时定义域优先的意识.
【学习重点】 区间的概念, 求分式型、根式型函数的定义域.
【难点提示】求较为复杂的混合型、复合型的函数的定义域
【学法提示】1.请同学们课前将学案与教材1718P -结合进行自主学习(对教材中的文字、图象、表格、符号、观察、思考、说明与注释、例题及解答、阅读与思考、小结等,都要仔细阅读)、小组讨论,积极思考提出更多、更好、更深刻的问题,为课堂学习做好充分的准备;
2.在学习过程中用好“九字学习法”即:“读”、“挖”、“举”、“联”、“用”、“悟”、“总”、“研”、“会”,请在课堂上敢于提问、敢于质疑、敢于讲解与表达.
【学习过程】
一、学习准备
前面我们已经学习了函数概念,我们知道,函数的定义域是什么概念中的一个十分重要的因素(链接1),本节课让我们一起来研究函数的定义域问题.为此,先回忆以下知识:
1.什么是函数的定义域?
2.求函数的定义域是求哪个变量的取值范围?
3.根据初中所学我们知道求函数定义域有些什么方法?(链接2)
预备演练:解下列不等式(组)
3442(2)63(1)2(21)(1);(2)3143;(4).3143653234x x x x x x x x x x x x -≤+--->+⎧⎧>--≥-⎨⎨-≤-+≥+⎩⎩
;(3) 问:你能用几种方式来表示上面不等式(组)的解集?还有其它的方式吗?
二、学习探究
阅读思考 请同学们阅读教材第16页的内容,思考:
1.教材区间定义有几种类型?加上还可拓展出几种形式?“∞”是一个数吗?它表示什么含义?
2.请用区间表示预备演练中不等式的解集;3143x x -≥-的解集能写成]2,⎡+∞⎣吗?
三、典例赏析
例1.求函数f (x )= 12
x +的定义域. 思路启迪:该函数的结构是怎样的?使各项有意义的变量x 的取值范围怎样?使函数式有意义的x 的范围怎样确定?
解:
●解后反思 (1)本例中定义域可以表示出哪些形式?
(2)求函数定义域的本质是什么?入手点在哪里?易错点在哪里?
●变式练习 请求以下函数的定义域.
(1)
y =(2)
y = (3
)y =
解:
●反思归纳 如果f (x )是分式形式时,其定义域的约束条件是什么?
如果f (x )是根式形式时,其定义域的约束条件是什么?
如果只给出了解析式f (x ),而没有指明定义域,那么函数的定义域是指什么?; 如果f (x )是由多个式子的和、差、积、商构成时,其定义域是应满足什么条件? 例2
、已知函数y =R ,求实数m 的取值范围.
思路启迪:从函数的结构出发,联想“三个二次”的关系,再思考一下m 是否可以为0. 解:
●解后反思 (1)该题的入手点在哪里?易错点又在哪里?
(2)解题中体现了怎样的数学思想?
●变式练习(1
)已知函数y =
R ,求实数m 的取值范围.
解:
(2)已知函数211
y ax x =
++定义域为R ,求实数a 的取值范围. 解:
四、学习反思
1.本节课我们学习了哪些数学知识、数学思想方法,实现了我们的学习目标吗?
如:求函数f (x )的定义域,即求使函数解析式 的自变量的取值范围;变式练习中的反思归纳都清楚了吗?分类讨论思想在求定义域的作用?
2.对本节课你还有独特的见解吗?本节课的数学知识与生活有怎样的联系?感受到本节课数学知识与方法的美在哪里?(链接3)
五、学习评价
1.
函数y x =的定义域为( )
A .[]4,1-
B .[)4,0-
C .[]0,1
D .[)(]4,00,1-⋃
2.
函数y =
的定义域为 ; 3.
若函数y =R ,则实数a 的取值范围是 ;
4.求下列函数的定义域: 3(1)();4
x f x x =-
(2)()f x =
26(3)();32f x x x =-
+(4)()1f x x =
-(5)1y x =-1(6);222
y x =++ 解:
5.
已知函数()f x =
{}24,x x x R ≤≤∈,求m 、n 的值.
解:
6.已知函数212
y x x a =
-+的定义域和值域都为[]1,b (b >1),求a 、b 的值. 解:
◆承前启后 我们学习了函数的概念、定义域的求法,函数还有哪些表示法呢?
函数1,0,R
x Q y x Q ∈⎧=⎨∈⎩ð的表达式有什么特点?你能给它取个名字吗? 六、学习链接
链接1. 函数三大要素的重要地位:定义域是灵魂、对应法则是核心、值域是结果; 链接2. 初中学习函数的定义域的概念是:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域,确定函数定义域的方法是:
(1)关系式为整式时,函数定义域为全体实数;
(2)关系式含有分式时,分式的分母不等于零;
(3)关系式含有二次根式时,被开放方数大于等于零;
(4)关系式中含有指数为零的式子时,底数不等于零;
(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
链接3. 区间表示连续实数集美在:直观、简洁、明白;。