数据采集AD转换实验报告
- 格式:doc
- 大小:1.20 MB
- 文档页数:11
ad da转换实验报告AD-DA转换实验报告摘要:本实验旨在通过AD-DA转换器,将模拟信号转换为数字信号,然后再转换回模拟信号,以验证转换器的性能和精度。
实验结果表明,转换器具有较高的精度和稳定性,能够准确地将模拟信号转换为数字信号,并且能够将数字信号准确地转换回模拟信号,为数字信号处理提供了可靠的基础。
引言:AD-DA转换器是现代电子设备中常用的一种电子元件,它能够将模拟信号转换为数字信号,然后再将数字信号转换回模拟信号。
这种转换器在数字信号处理、通信系统、音频设备等领域具有广泛的应用。
本实验旨在通过实际操作,验证AD-DA转换器的性能和精度,以便更好地了解其工作原理和特点。
实验步骤:首先,我们使用函数发生器产生一个模拟信号,并将其输入到AD-DA转换器中。
然后,转换器将模拟信号转换为数字信号,我们将数字信号输入到计算机中进行处理。
接着,我们将处理后的数字信号再次输入到AD-DA转换器中,转换器将数字信号转换回模拟信号,并将其输出到示波器上进行观测和分析。
实验结果:经过实验操作和数据分析,我们发现AD-DA转换器具有较高的精度和稳定性,能够准确地将模拟信号转换为数字信号,并且能够将数字信号准确地转换回模拟信号。
在不同频率和幅度的模拟信号输入下,转换器都能够保持良好的性能,没有出现明显的失真和误差。
这表明,AD-DA转换器在实际应用中具有较高的可靠性和稳定性,能够为数字信号处理提供可靠的基础。
结论:通过本次实验,我们验证了AD-DA转换器的性能和精度,得出了转换器具有较高的可靠性和稳定性的结论。
这为我们更好地理解和应用AD-DA转换器提供了重要的实验数据和经验,也为数字信号处理和通信系统的设计和应用提供了可靠的支持。
希望通过本次实验,能够更好地推动AD-DA转换器的研究和应用,为电子技术的发展做出更大的贡献。
8292924809基于单片机的AD转换电路专业:班级:学号:组员:指导老师:年月日目录键入章标题(第 1 级) (1)键入章标题(第2 级) (2)键入章标题(第3 级) (3)键入章标题(第 1 级) (4)键入章标题(第2 级) (5)键入章标题(第3 级) (6)引言A/D转换是指将模拟信号转换为数字信号,这在信号处理、信号传输等领域具有重要的意义。
常用的A/D转换电路有专用A/D集成电路、单片机ADC模块,前者精度高、电路复杂,后者成本低、设计简单。
基于单片机的A/D转换电路在实际电路中获得了广泛的应用。
一般的A/D转换过程是通过采样、保持、量化和编码4个步骤完成的,这些步骤往往是合并进行的.当A/D转换结束时,ADC输出一个转换结束信号数据。
CPU可由多种方法读取转换结果:a查询方式;b中断方式;c DMA方式。
通道8为A/D转换器,ADC0809是带有8为A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。
它是逐次逼近式A/D转换器,可以和单片机直接接口。
ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成.多路开关可选通8个模拟通道,允许8路模拟量分时输出,共用A/D转换器进行转换。
三台输出锁存器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据.一个实际系统中需用传感器把各种物理参数测量出来,并转换为电信号,在经过A/D转换器,传送给计算机;微型计算机加工后,通过D/A转换器去控制各种参数量。
一、实验方案的选择与分析1.1复位电路方案单片机在开机时都需要复位,以便中央处理器CPU以及其他功能部件都处于一个确定的初始状态,并从这个状态开始工作。
51的RST引脚是复位信号的输入端.复位电平是高电平有效持续时间要有24个时钟周期以上。
本系统中单片机时钟频率为6MHz则复位脉冲至少应为4us.方案一:上电复位电路上电瞬间,RST端的的电位与Vcc相同,随着电容的逐步充电,充电电流减小,RST电位逐渐下降。
微机原理及接口技术之AD及DA实验一. 实验目的:1. 了解A/D芯片ADC0809和D/A芯片DAC0832的电气性能;外围电路的应用性搭建及有关要点和注意事项;与CPU的接口和控制方式;相关接口参数的确定等;2. 了解数据采集系统中采样保持器的作用和采样频率对拾取信号失真度的影响, 了解香农定理;3.了解定时计数器Intel 8253和中断控制器Intel 8259的原理、工作模式以及控制方式, 训练控制定时器和中断控制器的方法, 并学习如何编写中断程序。
4.熟悉X86汇编语言的程序结构和编程方法, 训练深入芯片编写控制程序的编程能力。
二. 实验项目:1. 完成0~5v的单极性输入信号的A/D转换, 并与实际值(数字电压表的测量值)比较, 确定误差水平。
要求全程至少10个点。
2.完成-5v~+5v的双极性输入信号的A/D转换, 并与实际值(数字电压表的测量值)比较, 确定误差水平。
要求全程至少20个点。
3.把0~FF的数据送入DAC0832并完成D/A转换, 然后用数字电压表测量两个模拟量输出口(OUT1为单极性, OUT2双极性)的输出值, 并与计算值比较, 确定误差水平。
要求全程至少16个点。
三. 仪器设备:Aedk-ACT实验箱1套(附电源线1根、通信线1根、实验插接线若干、跳线子若干);台式多功能数字表1台(附电源线1根、表笔线1付(2根)、);PC机1台;实验用软件: Windows98+LcaACT(IDE)。
四. 实验原理一)ADC0809模块原理1)功能简介A/D转换器芯片●8路模拟信号的分时采集●片内有8路模拟选通开关, 以及相应的通道抵制锁存用译码电路●转换时间为100μs左右2)内部结构ADC0809内部逻辑结构1图中多路开关可选通8个模拟通道, 允许8路模拟量分时输入, 共用一个A/D转换器进行转换, 这是一种经济的多路数据采集方法。
地址锁存与译码电路完成对A.B.C 3个地址位进行锁存和译码, 其译码输出用于通道选择, 其转换结果通过三态输出锁存器存放、输出, 因此可以直接与系统数据总线相连。
单片机实验报告姓名: XX班级: XXXXX学号: XXXXXXX专业:电气工程与自动化实验1 名称:数据采集_A/D转换一、实验目的⑴掌握A/D转换与单片机接口的方法;⑵了解A/D芯片0809 转换性能及编程方法;⑶通过实验了解单片机如何进行数据采集。
二、实验设备装有proteus和keil软件的电脑一台三、实验说明及实验原理:A/D 转换器大致分有三类:一是双积分A/D 转换器,优点是精度高,抗干扰性好,价格便宜,但速度慢;二是逐次逼近式A/D转换器,精度、速度、价格适中;三是并联比较型A/D转换器,速度快,价格也昂贵。
实验用ADC0809属第二类,是8位A/D转换器。
每采集一次一般需100μs。
由于ADC0809A/D 转换器转换结束后会自动产生EOC 信号(高电平有效),取反后将其与8031 的INT0 相连,可以用中断方式读取A/D转换结果。
ADC0809 是带有8 位A/D转换器、8 路多路开关以及微处理机兼容的控制逻辑的CMOS组件。
它是逐次逼近式A/D转换器,可以和单片机直接接口。
(1) ADC0809 的内部逻辑结构由图1.1 可知,ADC0809 由一个8 路模拟开关、一个地址锁存与译码器、一个A/D 转换器和一个三态输出锁存器组成。
多路开关可选通8 个模拟通道,允许8 路模拟量分时输入,共用A/D 转换器进行转换。
三态输出锁器用于锁A/D 转换完的数字量,当OE 端为高电平时,才可以从三态输出锁存器取走转换完的数据。
(2) ADC0809 引脚结构ADC0809各脚功能如下:D7 ~ D0:8 位数字量输出引脚。
IN0 ~ IN7:8位模拟量输入引脚。
VCC:+5V工作电压。
GND:地。
REF(+):参考电压正端。
REF(-):参考电压负端。
START:A/D转换启动信号输入端。
ALE:地址锁存允许信号输入端。
(以上两种信号用于启动A/D转换).EOC:转换结束信号输出引脚,开始转换时为低电平,当转换结束时为高电平。
ad转换器的实验报告AD转换器的实验报告一、引言AD转换器(Analog-to-Digital Converter)是一种电子设备,用于将模拟信号转换为数字信号。
在现代电子技术中,AD转换器被广泛应用于各种领域,如通信、控制系统、医疗设备等。
本实验旨在通过实际操作,了解AD转换器的工作原理和性能特点。
二、实验目的1. 了解AD转换器的基本原理;2. 掌握AD转换器的使用方法;3. 分析AD转换器的性能特点。
三、实验原理AD转换器的基本原理是将连续的模拟信号转换为离散的数字信号。
其工作过程可以简单概括为以下几个步骤:1. 采样:从模拟信号中按照一定的时间间隔取样,得到一系列离散的采样点;2. 量化:将每个采样点的幅值转换为相应的数字值;3. 编码:将量化后的数字值转换为二进制编码。
四、实验装置和步骤1. 实验装置:AD转换器、信号发生器、示波器、计算机;2. 实验步骤:a) 连接信号发生器的输出端与AD转换器的输入端;b) 连接AD转换器的输出端与示波器的输入端;c) 设置信号发生器的频率和幅值,调节示波器的触发电平和时间基准;d) 打开AD转换器和示波器,开始采集数据;e) 将采集到的数据导入计算机,进行数据分析。
五、实验结果与分析通过实验,我们获得了一系列采样点的幅值和时间信息。
将这些数据导入计算机,我们可以进行进一步的分析和处理。
例如,我们可以绘制出信号的波形图,观察信号的周期性和幅值变化。
同时,我们可以计算出信号的平均值、最大值、最小值等统计量,以评估AD转换器的精度和稳定性。
六、实验误差与改进在实验过程中,可能会存在一些误差,影响实验结果的准确性。
例如,信号发生器的输出可能存在漂移,导致采样点的幅值偏离真实值。
此外,AD转换器本身的非线性特性也会引入误差。
为了减小误差,可以采取以下改进措施:1. 使用更精确的信号发生器,提高输出稳定性;2. 选择高精度的AD转换器,降低非线性误差;3. 增加采样点的数量,提高采样率。
实验十DA、AD转换实验报告(一)引言概述:实验十DA、AD转换实验报告(一)本实验报告旨在介绍实验十DA、AD转换的相关内容。
在本次实验中,我们将会学习数字模拟转换和模拟数字转换的原理与方法,并通过实际操作进行验证。
本报告将按照以下五个主要部分进行阐述:(1)实验准备,(2)DA转换原理与方法,(3)AD转换原理与方法,(4)实验步骤与结果,(5)实验总结。
正文内容:1. 实验准备1.1 硬件准备- 数字模拟转换器(DAC)模块- 模拟数字转换器(ADC)模块- 连接电缆1.2 软件准备- 实验十DA、AD转换实验软件2. DA转换原理与方法2.1 DA转换原理- 数字模拟转换器将数字信号转换为模拟电压或电流输出的过程- 通过将数字数据转换为电路中的模拟信号,实现了数字信号到模拟信号的转换2.2 DA转换方法- 标准电压法- 标准电流法- R-2R网络法3. AD转换原理与方法3.1 AD转换原理- 模拟数字转换器将模拟量转换为数字量的过程- 通过将连续的模拟信号转换为离散的数字信号,实现了模拟信号到数字信号的转换3.2 AD转换方法- 逐次逼近法- 并行比较法- 闪存式转换法4. 实验步骤与结果4.1 实验设置- 连接DAC和ADC模块到电路中- 连接电缆,确保连接正确4.2 实验步骤- 设置DAC模块的输出值- 进行DA转换并记录输出结果- 将模拟信号输入到ADC模块中- 进行AD转换并记录输出结果4.3 实验结果- 实验运行过程中的数据记录与图表展示5. 实验总结5.1 实验心得体会- 通过本次实验,我更深入地了解了DA、AD转换的原理与方法- 实际操作过程中加深了对数字模拟转换和模拟数字转换的理解5.2 实验结果分析- 分析实验得到的数据与图表,验证转换原理与方法的准确性5.3 实验改进与展望- 在后续的实验中,可以进一步探索其他类型的DA、AD 转换器- 可以对实验步骤进行改进,提高实验效果和精确度总结:本实验报告阐述了实验十DA、AD转换的相关内容。
微机ad转换实验报告微机AD转换实验报告一、引言AD转换是现代电子技术中非常重要的一部分,广泛应用于各种领域,如通信、仪器仪表、自动控制等。
本实验旨在通过使用微机进行AD转换实验,探究其原理和应用。
二、实验目的1. 了解AD转换的基本原理;2. 掌握使用微机进行AD转换的方法;3. 分析AD转换的精度和速度。
三、实验原理AD转换是将模拟信号转换为数字信号的过程。
在本实验中,我们将使用微机的AD转换器将模拟信号转换为数字信号。
微机的AD转换器通常是一个多通道的模数转换器,能够将多个模拟信号转换成相应的数字信号。
四、实验步骤1. 连接硬件设备:将待转换的模拟信号通过信号调理电路连接到微机的AD转换器输入端;2. 打开实验软件:启动微机上的AD转换实验软件;3. 设置参数:根据实验要求,设置采样率、分辨率等参数;4. 进行AD转换:点击软件界面上的“开始转换”按钮,开始进行AD转换;5. 数据分析:获取转换后的数字信号,进行数据分析和处理。
五、实验结果与分析通过实验,我们得到了一系列数字信号。
根据这些数字信号,我们可以进行各种数据处理和分析。
例如,我们可以绘制出信号的波形图、频谱图等,进一步分析信号的特性和性能。
六、实验中的问题与解决方法在实验过程中,我们可能会遇到一些问题,如信号失真、噪声干扰等。
针对这些问题,我们可以采取一些解决方法,如增加滤波电路、调整采样率等,以提高AD转换的精度和稳定性。
七、实验总结通过本次实验,我们深入了解了AD转换的原理和应用,掌握了使用微机进行AD转换的方法。
AD转换在现代电子技术中具有广泛的应用前景,掌握AD转换的原理和技术对于我们的学习和工作都具有重要意义。
八、实验心得本次实验让我对AD转换有了更深入的了解。
通过实际操作,我进一步掌握了使用微机进行AD转换的方法,并且了解到了AD转换的精度和速度对于实际应用的重要性。
在今后的学习和工作中,我将更加注重AD转换技术的应用与研究,为现代电子技术的发展做出自己的贡献。
实验报告题目: 班级: 时间: 姓名:实验目的熟悉数模转换的基本原理,掌握D/A 的使用方法。
一、实验设备CPU 挂箱、8086CPU 模块、示波器。
二、实验内容利用D/A 转换器产生锯齿波、三角波和方波。
三、实验原理图本实验用A/D 、D/A 电路四、实验步骤1、实验连线 CS0 CS0832 示波器 DOUT DS 跳线:1 22、用实验箱左上角的“VERF.ADJ ”电位器调节0832的8脚上的参考电压至5V 。
3、调试程序并全速运行,产生不同的波形。
4、用示波器观察波形。
六、实验提示利用电位器“VERF.ADJ ”可以调零,“VERF.ADJ ”电位器调整满偏值。
DAC0832在本实验中,工作在双缓冲接口方式下。
当A1=0时可锁存输入数据;当A1=1时,可启动转换输出。
所以要进行D/A 转换需分二步进行,方法如下:MOV DX,ADDRESS ;ADDRESS 片选信号偶地址MOV AL,DATAOUT DX,AL ;锁存数据ADD DX,2OUT DX,AL ;启动转换七、程序框图程序一 产生锯齿波 程序二 产生方波(实验程序名:dac-1.asm ) (实验程序名:dac-2.asm )N 数据清零 数据=FFH ?数据加一开始 开始 锁存数据 转换输出 数据00送BX 寄存BX 中的数据输出到0832 延时 数据FF 送B X 寄存器 延时程序三产生三角波(实验程序名:dac-3.asm)开始数据清零锁存数据转换输出数据加一数据=FFH?数据=FFH锁存数据转换输出数据减一数据=0?八、程序代码清单:DAC-1,产生锯齿波:assume cs:codecode segment publicorg 100hstart: mov dx,04a0hup1: mov bx,0Up2: mov ax,bxout dx,ax ;锁存数据mov dx,04a2hout dx,ax ;输出使能mov dx,04a0hinc bx ;数据加一jmp up2code endsend startDAC-2,产生方波:assume cs:codecode segment publicorg 100hstart: mov dx,04a0hmov cx,04fhup1: mov bx,0up2: mov ax,bxout dx,axmov dx,04a2hout dx,axmov dx,04a0hloop up1mov cx,04fhup4: mov bx,0ffhup3: mov ax,bxout dx,axmov dx,04a2hout dx,axmov dx,04a0hloop up4jmp startcode endsend startDAC3,产生三角波:assume cs:codecode segment publicorg 100hstart: mov dx,04a0hmov bx,0up: mov ax,bxout dx,ax ;锁存数据mov dx,04a2hout dx,ax ;输出使能inc bxmov dx,04a0hcmp bx,0ffhjne up ;产生三角波上升沿down: mov ax,bxout dx,ax ;锁存数据mov dx,04a2hout dx,ax ;输出使能dec bxmov dx,04a0hcmp bx,0jne down ;产生三角波下降沿jmp upcode endsend start九、实验代码所得波形:图1:实验所得锯齿波图形图2:实验所得方波图形图3:实验所得三角波图形十、实验分析与总结1、实验指导书中已给出一部分内容的完整代码,需要自己思考改动的地方不多,因此实验难度不大。
学生实验报告册
课程名称:
学院:
专业班级:
姓名:
学号:
指导教师:
成绩:
学年学期:2017-2018学年秋学期
重庆邮电大学教务处制
实验项目名称数据采集_A/D转换
实验地点
控制专题实验室
C611/C612 实验时间
第九周周三第9-12
节
实验指导教师仇国庆成绩
一、实验目的
(1)掌握A\D转换与单片机接口的方法;
(2)了解A\D转换芯片0809转换性能及编程方法;
(3)通过实验链接了解单片机如何进行数据采集。
二、实验原理(或设计方案)
实验原理:
ADC0809是8位的A/D转换器,每采集一次一般需100μs。
由于ADC0809 A/D转换器转换结束后会自动产生EOC信号(高电平有效),取反后将其与8031的INT0相连,可以用中断方式读取A/D转换结果。
ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS 组件。
它是逐次逼近式A/D转换器,可以和单片机直接接口。
(1) ADC0809的内部逻辑结构
如下图所示,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。
多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。
三态输出锁器用于锁存A/D转换完的数字量,当OE 端为高电平时,才可以从三态输出锁存器取走转换完的数据。
(2) ADC0809引脚结构
ADC0809各脚功能如下:
D7 ~ D0:8位数字量输出引脚。
IN0 ~ IN7:8位模拟量输入引脚。
VCC:+5V工作电压。
GND:地。
REF(+):参考电压正端。
REF(-):参考电压负端。
START:A/D转换启动信号输入端。
ALE:地址锁存允许信号输入端。
(以上两种信号用于启动A/D转换).
EOC:转换结束信号输出引脚,开始转换时为低电平,当转换结束时为高电平。
OE:输出允许控制端,用以打开三态数据输出锁存器。
CLK:时钟信号输入端(一般为500KHz)。
A、B、C:地址输入线。
(3) ADC0809对输入模拟量要求:
信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。
地址输入和控制线:4条
ALE为地址锁存允许输入线,高电平有效。
当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。
A,B和C为地址输入线,用于选通IN0-IN7上的一路模拟量输入。
通道选择表如下表所示。
C B A 选择模拟通道
0 0 0 IN0
0 0 1 IN1
0 1 0 IN2
0 1 1 IN3
1 0 0 IN4
1 0 1 IN5
1 1 0 IN6
1 1 1 IN7
数字量输出及控制线:11条
ST为转换启动信号。
当ST上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A/D 转换;在转换期间,ST应保持低电平。
EOC为转换结束信号。
当EOC为高电平时,表明转换结束;否则,表明正在进行A/D 转换。
OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。
OE=1,输出转换得到的数据;OE=0,输出数据线呈高阻状态。
D7-D0为数字量输出线。
CLK为时钟输入信号线。
因ADC0809的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ,
VREF(+),VREF(-)为参考电压输入。
(4) ADC0809应用说明
(1).ADC0809内部带有输出锁存器,可以与AT89S51单片机直接相连。
(2).初始化时,使ST和OE信号全为低电平。
(3).送要转换的哪一通道的地址到A,B,C端口上。
(4).在ST端给出一个至少有100ns宽的正脉冲信号。
(5).是否转换完毕,我们根据EOC信号来判断。
(6).当EOC变为高电平时,这时给OE为高电平,转换的数据就输出给单片机了实验设计电路图如下:
三、实验仪器设备、材料
装有proteus、keil 4的电脑一台
四、实验步骤(或设计过程)
实验设计思路:
采集到的信号通过A/D转换芯片输出后转到单片机处理后送到显示器显示
出来。
实验步骤:
1.根据原理图在电脑上proteus软件中画出仿真图。
2.打开keil4 软件根据原理图写出程序,并保存生成.hex文件,然后到proteus仿真界面点击51单片机选中.hex文件后开始仿真。
实验程序:
#include<reg52.h>
sbit duan=P2^0;
sbit wei =P2^1;
sbit ADC0808_OE = P3^7;
sbit ADC0808_ALE = P3^6;
sbit ADC0808_ADDC =P3^5;
sbit ADC0808_ADDB =P3^4;
sbit ADC0808_ADDA =P3^3;
sbit ADC0808_EOC =P3^2;
sbit ADC0808_START =P3^1;
unsigned char code table[10]={0X3f,0X06,0X5b,0X4f,0X66,0X6d,0X7d,0X07,0X7f,0X6f,}; void Delayms(unsigned char x)
{
unsigned char i,j;
i=2*x;
j=199;
do
{
while (--j);
}while (--i);
}
void display (unsigned char a,b,c) {
duan=1;wei=0;P0=table[a];
Delayms(10);
duan=0;wei=1;P0=0XFE;
Delayms(10);P0=0XFF;
duan=1;wei=0;P0=table[b];
Delayms(10);
duan=0;wei=1;P0=0XFd;
Delayms(10);P0=0XFF;
duan=1;wei=0;P0=table[c];
Delayms(10);
duan=0;wei=1;P0=0XFb;
Delayms(10);P0=0XFF;Delayms(10);
}
unsigned char getad(unsigned char x)
{
ADC0808_START=0;
ADC0808_OE=0;
ADC0808_ADDC=x/4;
ADC0808_ADDB=(x-ADC0808_ADDC*4)/2;
ADC0808_ADDA=(x-ADC0808_ADDC*4-ADC0808_ADDB*2); Delayms(10);
ADC0808_ALE=1; //slect channel
ADC0808_START=1;
Delayms(10);
ADC0808_START=0;
while(ADC0808_EOC==1)
ADC0808_OE=1;
}
void mian()
{
unsigned char a,b,c;
getad(3);
while(1);
{
display(P1/100,P1/10%10,P1%10);
}
}
五、实验过程原始记录(数据、图表、计算等)(或设计计算、图纸等)
六、实验结果及分析(或设计总结)
实验结果如上图。
在本次实验中我初步了解到了A/D转换芯片和单片机接口的以及编程的方法,对用于A/D转换的芯片ADC0809的性能及编程方法有了更加深刻的了解,也是我对单片机如何采集到数据并进行处理有了更深的了解。
七、评阅意见
评阅人签字:
评阅日期:。