基于核函数的学习算法
- 格式:ppt
- 大小:1.21 MB
- 文档页数:24
机器学习的分类与主要算法对⽐机器学习的分类与主要算法对⽐ ⾸先让我们瞻仰⼀下当今机器学习领域的执⽜⽿者: 这幅图上的三⼈是当今机器学习界的执⽜⽿者。
中间的是Geoffrey Hinton, 加拿⼤多伦多⼤学的教授,如今被聘为“Google⼤脑”的负责⼈。
右边的是Yann LeCun, 纽约⼤学教授,如今是Facebook⼈⼯智能实验室的主任。
⽽左边的⼤家都很熟悉,Andrew Ng,中⽂名吴恩达,斯坦福⼤学副教授,如今也是“百度⼤脑”的负责⼈与百度⾸席科学家。
这三位都是⽬前业界炙⼿可热的⼤⽜,被互联⽹界⼤鳄求贤若渴的聘请,⾜见他们的重要性。
⽽他们的研究⽅向,则全部都是机器学习的⼦类–深度学习。
从⼴义上来说,机器学习是⼀种能够赋予机器学习的能⼒以此让它完成直接编程⽆法完成的功能的⽅法。
但从实践的意义上来说,机器学习是⼀种通过利⽤数据,训练出模型,然后使⽤模型预测的⼀种⽅法。
机器学习⽆疑是当前数据分析领域的⼀个热点内容。
很多⼈在平时的⼯作中都或多或少会⽤到机器学习的算法。
从范围上来说,机器学习跟模式识别,统计学习,数据挖掘是类似的,同时,机器学习与其他领域的处理技术的结合,形成了计算机视觉、语⾳识别、⾃然语⾔处理等交叉学科。
因此,⼀般说数据挖掘时,可以等同于说机器学习。
同时,我们平常所说的机器学习应⽤,应该是通⽤的,不仅仅局限在结构化数据,还有图像,⾳频等应⽤。
机器学习的算法很多。
很多时候困惑⼈们都是,很多算法是⼀类算法,⽽有些算法⼜是从其他算法中延伸出来的。
这⾥,我们从两个⽅⾯来给⼤家介绍,第⼀个⽅⾯是学习的⽅式,第⼆个⽅⾯是算法的类似性。
⼀、机器学习⽅式 根据数据类型的不同,对⼀个问题的建模有不同的⽅式。
在机器学习或者⼈⼯智能领域,⼈们⾸先会考虑算法的学习⽅式。
在机器学习领域,有⼏种主要的学习⽅式。
将算法按照学习⽅式分类是⼀个不错的想法,这样可以让⼈们在建模和算法选择的时候考虑能根据输⼊数据来选择最合适的算法来获得最好的结果。
习题2.1什么是感知机?感知机的基本结构是什么样的?解答:感知机是Frank Rosenblatt在1957年就职于Cornell航空实验室时发明的一种人工神经网络。
它可以被视为一种最简单形式的前馈人工神经网络,是一种二元线性分类器。
感知机结构:2.2单层感知机与多层感知机之间的差异是什么?请举例说明。
解答:单层感知机与多层感知机的区别:1. 单层感知机只有输入层和输出层,多层感知机在输入与输出层之间还有若干隐藏层;2. 单层感知机只能解决线性可分问题,多层感知机还可以解决非线性可分问题。
2.3证明定理:样本集线性可分的充分必要条件是正实例点集所构成的凸壳与负实例点集构成的凸壳互不相交.解答:首先给出凸壳与线性可分的定义凸壳定义1:设集合S⊂R n,是由R n中的k个点所组成的集合,即S={x1,x2,⋯,x k}。
定义S的凸壳为conv(S)为:conv(S)={x=∑λi x iki=1|∑λi=1,λi≥0,i=1,2,⋯,k ki=1}线性可分定义2:给定一个数据集T={(x1,y1),(x2,y2),⋯,(x n,y n)}其中x i∈X=R n , y i∈Y={+1,−1} , i=1,2,⋯,n ,如果存在在某个超平面S:w∙x+b=0能够将数据集的正实例点和负实例点完全正确地划分到超平面的两侧,即对所有的正例点即y i=+1的实例i,有w∙x+b>0,对所有负实例点即y i=−1的实例i,有w∙x+b<0,则称数据集T为线性可分数据集;否则,称数据集T线性不可分。
必要性:线性可分→凸壳不相交设数据集T中的正例点集为S+,S+的凸壳为conv(S+),负实例点集为S−,S−的凸壳为conv(S−),若T是线性可分的,则存在一个超平面:w ∙x +b =0能够将S +和S −完全分离。
假设对于所有的正例点x i ,有:w ∙x i +b =εi易知εi >0,i =1,2,⋯,|S +|。
数据分析知识:数据挖掘中的监督学习和无监督学习在数据分析领域,数据挖掘技术被广泛运用于从数据中挖掘出有意义的信息和规律,以帮助企业和个人做出更明智的决策。
而数据挖掘主要分为监督学习和无监督学习两种方式。
本文将详细介绍这两种学习方式的概念、算法、应用场景和优缺点。
一、监督学习监督学习是指基于已知结果的数据样本,通过建立一个映射函数,将输入数据映射到输出结果,从而实现对未知数据进行预测或分类的过程。
在监督学习中,我们通常将输入数据称为自变量,输出结果称为因变量。
监督学习的核心是建立一个有效的模型,这个模型需要能够对未知数据进行良好的预测或分类。
目前常用的监督学习算法包括决策树、神经网络、支持向量机、朴素贝叶斯分类和随机森林等。
1.决策树算法决策树算法是一种基于树型结构的分类算法,它通过对数据样本的分类特征进行判断和划分,最终生成一棵树形结构,用于对未知数据进行分类或预测。
决策树算法具有易于理解、易于实现和可解释性强等优点,适合于处理中小规模的数据集。
2.神经网络算法神经网络算法是一种基于人工神经网络的分类算法,它通过多层神经元之间的相互连接和权重调整,学习输入数据和输出结果之间的复杂非线性关系,从而实现对未知数据的分类或预测。
神经网络算法具有适应性强、泛化能力好等优点,但也存在学习速度慢、容易陷入局部最优等缺点。
3.支持向量机算法支持向量机算法是一种基于核函数的分类算法,它通过定义一个最优超平面,将不同类别的数据样本分隔开来,从而实现对未知数据的分类或预测。
支持向量机算法具有泛化性能强、对于样本噪声和非线性问题具有较好的处理能力等优点,但也存在计算量大、核函数选择过程较为困难等缺点。
4.朴素贝叶斯分类算法朴素贝叶斯分类算法是一种基于概率统计的分类算法,它通过统计样本数据中各个特征值出现的概率,并根据贝叶斯公式计算出对于给定数据属于每个类别的概率,从而实现对未知数据的分类或预测。
朴素贝叶斯分类算法具有计算速度快、对于高维数据具有处理优势等优点,但也存在对于样本分布不平衡和假设独立性等问题的限制。
常见的核函数核函数是机器学习中一种常用的方法,它主要用于将高维空间中的数据映射到低维空间中,从而提升算法的性能。
核函数在SVM、PCA、KPCA等机器学习算法中广泛应用。
下面我们将介绍常见的核函数。
1. 线性核函数线性核函数是最简单的核函数之一,它是一种将数据点映射到低维空间的方式,其表达式如下:K(x_i, x_j) = (x_i * x_j)其中x_i, x_j是样本数据集中的两个数据,返回一个标量值。
线性核函数的优点在于需要的计算量较小,适用于大型数据集,但它的缺点是它只能处理线性分离的数据。
2. 多项式核函数其中x_i, x_j是样本数据集中的两个数据,c是一个常数,d是多项式的度数。
多项式核函数适用于非线性分离的数据。
3. 径向基函数(RBF)核函数其中x_i, x_j是样本数据集中的两个数据,gamma是一个正常数,||x_i - x_j||^2表示两个数据点之间的欧几里得距离的平方。
4. Sigmoid核函数其中x_i, x_j是样本数据集中的两个数据,alpha和beta是Sigmoid函数参数。
Sigmoid核函数适用于二分类问题。
上述四种核函数都是常见的核函数,它们各自有不同的优劣势,在不同的机器学习算法中应该选择适当的核函数来处理不同的数据。
除了上述四种常见的核函数,还有其他的一些核函数也具有重要的应用价值。
5. Laplacian核函数Laplacian核函数计算方式类似于径向基函数,但是它将样本数据点间的距离转化成样本数据点间的相似度,其表达式如下:K(x_i, x_j) = exp(-gamma * ||x_i - x_j||)其中gamma和径向基函数中的参数相同。
Laplacian核函数在图像识别和自然语言处理等领域有着广泛的应用。
6. ANOVA核函数ANOVA核函数通常用于数据分析和统计学中,它对混合多种类型数据的模型有较好的表现,其表达式如下:其中h_i和h_j是从样本数据点中提取出来的特征,gamma是一个常数。
基于核函数的学习算法基于核函数的学习算法是一种机器学习算法,用于解决非线性分类和回归问题。
在传统的机器学习算法中,我们通常假设样本数据是线性可分或线性可回归的,但是在现实世界中,许多问题是非线性的。
为了解决这些非线性问题,我们可以使用核函数来将原始数据映射到高维特征空间中,然后在该特征空间中进行线性分类或回归。
核函数是一个用于计算两个向量之间相似度的函数。
它可以通过计算两个向量在特征空间中的内积来度量它们的相似程度。
常用的核函数包括线性核函数、多项式核函数、高斯核函数等。
支持向量机是一种非常有力的分类算法。
它利用核技巧将输入数据映射到高维特征空间中,然后在该特征空间中找到一个最优分割超平面,使得样本点离超平面的距离最大化。
通过最大化间隔,支持向量机能够更好地处理非线性分类问题,并具有较好的泛化性能。
支持向量机的核函数可以将样本数据映射到高维特征空间中,以便在非线性问题上进行线性分类。
常用的核函数包括线性核函数、多项式核函数和高斯核函数等。
线性核函数可以实现与传统线性分类算法相同的效果。
多项式核函数可以将数据映射到多项式特征空间中,通过多项式特征的组合实现非线性分类。
高斯核函数可以将数据映射到无穷维的特征空间中,通过高斯核函数的相似度计算实现非线性分类。
核岭回归是一种非线性回归算法。
类似于支持向量机,核岭回归也利用核函数将输入数据映射到高维特征空间中,然后在该特征空间中进行线性回归。
通过最小二乘法求解岭回归问题,核岭回归能够更好地处理非线性回归问题。
1.能够处理非线性问题:核函数能够将数据映射到高维特征空间中,从而实现对非线性问题的线性分类或回归。
2.较好的泛化性能:支持向量机等基于核函数的学习算法通过最大化间隔来进行分类,可以有较好的泛化性能,减少模型的过拟合风险。
3.算法简洁高效:基于核函数的学习算法通常具有简单的模型结构和高效的求解方法,能够处理大规模数据集。
4.不依赖数据分布:基于核函数的学习算法不依赖于数据的分布情况,适用于各种类型的数据。
《核函数方法的研究进展》论文
《核函数方法的研究进展》
核函数方法是一种应用在计算机可视化研究中的非常流行的算法。
它能够将2D/3D数据集转换为一系列多维函数,以便于
计算机可视化问题的解决。
近年来,它已广泛应用于各种计算机可视化领域,如数据挖掘、社会计算、机器学习和图形处理等。
本文综述了核函数方法的研究进展。
首先,介绍了核函数方法的概念,接着介绍了它在计算机可视化研究中的应用。
随后,介绍了不同核函数使用的算法,其中包括支持向量机(SVM)、逐步分割(SS)、核密度估计(KDE)、核局部
线性嵌入(KLLE)、核局部线性投影(KLPA)和核矩阵因
子分解(KMFD)等。
接着,总结了核函数方法在各种计算机可视化研究中的成就。
最后,介绍了核函数方法的发展前景,以及可能未来的应用情况。
综述了核函数方法的研究进展,本文表明核函数方法已成为处理计算机可视化问题的重要算法,并取得了良好的成绩。
但由于其计算复杂度较高,对大规模数据集的处理存在一定的挑战,因此,未来研究应着重于加快核函数的计算速度,使之能够应用于大规模数据集,以便于计算机可视化研究的深入发展。
总之,核函数方法在计算机可视化研究中已经取得了很好的成就。
未来,将继续深入研究它们的优缺点,加以改进,以促进计算机可视化研究的发展。
核函数方法简介(1)核函数发展历史早在1964年Aizermann等在势函数方法的研究中就将该技术引入到机器学习领域,但是直到1992年Vapnik等利用该技术成功地将线性SVMs推广到非线性SVMs时其潜力才得以充分挖掘。
而核函数的理论则更为古老,Mercer定理可以追溯到1909年,再生核希尔伯特空间(ReproducingKernel Hilbert Space, RKHS)研究是在20世纪40年代开始的。
(2)核函数方法原理核函数方法原理根据模式识别理论,低维空间线性不可分的模式通过非线性映射到高维特征空间则可能实现线性可分,但是如果直接采用这种技术在高维空间进行分类或回归,则存在确定非线性映射函数的形式和参数、特征空间维数等问题,而最大的障碍则是在高维特征空间运算时存在的“维数灾难”。
采用核函数技术可以有效地解决这样问题。
设x,z∈X,X属于R(n)空间,非线性函数Φ实现输入间X到特征空间F的映射,其中F属于R(m),n<<m。
根据核函数技术有:K(x,z) =<Φ(x),Φ(z) >(1)其中:<, >为内积,K(x,z)为核函数。
从式(1)可以看出,核函数将m维高维空间的内积运算转化为n维低维输入空间的核函数计算,从而巧妙地解决了在高维特征空间中计算的“维数灾难”等问题,从而为在高维特征空间解决复杂的分类或回归问题奠定了理论基础。
根据模式识别理论,低维空间线性不可分的模式通过非线性映射到高维特征空间则可能实现线性可分,但是如果直接采用这种技术在高维空间进行分类或回归,则存在确定非线性映射函数的形式和参数、特征空间维数等问题,而最大的障碍则是在高维特征空间运算时存在的“维数灾难”。
采用核函数技术可以有效地解决这样问题。
设x,z∈X,X属于R(n)空间,非线性函数Φ实现输入间X到特征空间F的映射,其中F属于R(m),n<<m。
根据核函数技术有:K(x,z) =<Φ(x),Φ(z) > (1)其中:<, >为内积,K(x,z)为核函数。
机器学习:SVM(核函数、⾼斯核函数RBF)⼀、核函数(Kernel Function) 1)格式K(x, y):表⽰样本 x 和 y,添加多项式特征得到新的样本 x'、y',K(x, y) 就是返回新的样本经过计算得到的值;在 SVM 类型的算法 SVC() 中,K(x, y) 返回点乘:x' . y'得到的值; 2)多项式核函数业务问题:怎么分类⾮线性可分的样本的分类?内部实现:1. 对传⼊的样本数据点添加多项式项;2. 新的样本数据点进⾏点乘,返回点乘结果;多项式特征的基本原理:依靠升维使得原本线性不可分的数据线性可分;升维的意义:使得原本线性不可分的数据线性可分;例:1. ⼀维特征的样本,两种类型,分布如图,线性不可分:2.3. 为样本添加⼀个特征:x2,使得样本在⼆维平⾯内分布,此时样本在 x 轴升的分布位置不变;如图,可以线性可分:4. 3)优点 / 特点不需要每次都具体计算出原始样本点映射的新的⽆穷维度的样本点,直接使⽤映射后的新的样本点的点乘计算公式即可;减少计算量减少存储空间1. ⼀般将原始样本变形,通常是将低维的样本数据变为⾼维数据,存储⾼维数据花费较多的存储空间;使⽤核函数,不⽤考虑原来样本改变后的样⼦,也不⽤存储变化后的结果,只需要直接使⽤变化的结果进⾏运算并返回运算结果即可;核函数的⽅法和思路不是 SVM 算法特有,只要可以减少计算量和存储空间,都可以设计核函数⽅便运算;对于⽐较传统的常⽤的机器学习算法,核函数这种技巧更多的在 SVM 算法中使⽤; 4)SVM 中的核函数svm 类中的 SVC() 算法中包含两种核函数:1. SVC(kernel = 'ploy'):表⽰算法使⽤多项式核函数;2. SVC(kernel = 'rbf'):表⽰算法使⽤⾼斯核函数;SVM 算法的本质就是求解⽬标函数的最优化问题;求解最优化问题时,将数学模型变形: 5)多项式核函数格式:from sklearn.svm import SVCsvc = SVC(kernel = 'ploy')思路:设计⼀个函数( K(x i, x j) ),传⼊原始样本(x(i)、 x(j)),返回添加了多项式特征后的新样本的计算结果(x'(i) . x'(j));内部过程:先对 x i、x j添加多项式,得到:x'(i)、 x'(j),再进⾏运算:x'(i) . x'(j);1. x(i)添加多项式特征后:x'(i);2. x(j)添加多项式特征后:x'(j);3. x(i) . x(j)转化为:x'(i) . x'(j);其实不使⽤核函数也能达到同样的⽬的,这⾥核函数相当于⼀个技巧,更⽅便运算;⼆、⾼斯核函数(RBF)业务问题:怎么分类⾮线性可分的样本的分类? 1)思想业务的⽬的是样本分类,采⽤的⽅法:按⼀定规律统⼀改变样本的特征数据得到新的样本,新的样本按新的特征数据能更好的分类,由于新的样本的特征数据与原始样本的特征数据呈⼀定规律的对应关系,因此根据新的样本的分布及分类情况,得出原始样本的分类情况。