14.2勾股定理的应用2
- 格式:ppt
- 大小:887.00 KB
- 文档页数:5
勾股定理的应用(二) 班级 姓名 学号教学目标:1能运用勾股定理及直角三角形的判定条件解决实际问题.2会用勾股定理及直角三角形的判定条件解决实际问题,逐步培养“数形结合”和“转化”数学能力。
发展学生的分析问题能力和表达能力。
3在提升分析问题能力和完整表达解题过程能力的同时,感受“数形结合”和“转化”的数学思想,体会数学的应用价值和渗透数学思想给解题带来的便利。
积极参加数学学习活动,增强自主、合作意识,培养热爱科学的高尚品质。
重 难 点:勾股定理及直角三角形的判定条件的应用教学过程(一)创设情景,引入新课;这些图形都有什么共同特征?几组勾股数.3,4,5; 5,12,13; 7,24,25; 8,15,17; 9,40,41;…… (二)实践探索,揭示新知1;.图1中的x 等于多少?图2中的z y x ,,分别是多少? (三)尝试应用,反馈矫正在数轴上画出表示5的点在数轴上表示76,,76--,的点怎样画出? 图2中的图形的周长和面积分别是多少? (四)实践探索,揭示新知2;图1x 11z y 11x图2例1、如图4,等边三角形ABC 的边长是6,求△ABC 的面积。
(五)尝试应用,反馈矫正2如图5,在△ABC 中,AB=AC=17,BC=16,求△ABC 的面积。
如图6,在△ABC 中,AD ⊥BC ,AB=15,AD=12,AC=13,求△ABC 的周长和面积。
(六)实践探索,揭示新知3;如图7,在△ABC 中,AB=25,BC=7,AC=24,问△ABC 是什么三角形? (七)尝试应用,反馈矫正1如图9,在△ABC 中, AB=15,AD=12,BD=9,AC=13,求△ABC 的周长和面积。
勾股定理与它的逆定理在应用上有什么区别? 材料5:如图10,以△ABC 的三边为直径向外作半圆,且S1+S3=S2,试判断△ABC 的形状?(目的:对总结的结论的应用)(八)归纳小结,巩固提高 (九)布置作业D CBA图6图9D CBA。
勾股定理的实际运用一、勾股定理内容回顾勾股定理是指在直角三角形中,两直角边的平方和等于斜边的平方。
如果直角三角形的两条直角边长度分别为和,斜边长度为,那么。
二、勾股定理实际运用的常见类型1. 工程测量中的应用测量建筑物高度例如,想要知道一座垂直于地面的大楼的高度。
我们可以在大楼旁边的平地上选一点,从点向大楼底部点拉一条绳子,测量出的距离。
然后在点用测角仪测量出大楼顶部点与点连线和地面的夹角。
此时在直角三角形中,,如果我们知道和,可以求出。
然后再根据勾股定理求出大楼的高度。
测量两点间的距离(不可直接测量的情况)假设在一个池塘的两边有、两点,我们要测量、两点间的距离。
我们可以在池塘边找一点,使得。
测量出的长度和的长度,然后根据勾股定理,就可以得到、两点间的距离。
2. 航海问题中的应用一艘船从港口出发,向正东方向航行海里后到达点,然后改变航向,向正南方向航行海里到达点。
此时船从港口到点的距离就是直角三角形的斜边长度。
根据勾股定理,海里。
航海中利用勾股定理可以计算船只的航行轨迹和距离等信息。
3. 生活中的简单应用梯子问题有一个长度为的梯子靠在墙上,梯子底部与墙的距离为,梯子顶端与地面的垂直高度为。
如果梯子底部向外滑动了距离,那么顶端下滑的距离可以通过勾股定理来计算。
初始时,滑动后,通过这两个等式联立求解可以得到的值。
电视屏幕尺寸问题电视屏幕的尺寸是按照对角线长度来衡量的。
如果屏幕的长为单位,宽为单位,那么对角线长度就满足。
我们可以根据这个关系来判断不同尺寸屏幕的实际大小关系等。
三、勾股定理实际运用的解题步骤总结1. 分析问题,确定是否为直角三角形问题。
如果是,找出直角三角形的三条边(已知边和未知边)。
2. 根据勾股定理(为斜边)列方程。
3. 解方程求出未知边的值。
4. 检验答案的合理性,看是否符合实际问题的情境。
四、练习题1. 在一个直角三角形中,一条直角边的长度为米,斜边长度为米,求另一条直角边的长度。
勾股定理及其应用勾股定理,也被称为毕达哥拉斯定理,是数学中一个重要的几何定理,被广泛应用于各个领域。
本文将介绍勾股定理的原理和证明,并介绍其在实际应用中的一些重要示例。
一、勾股定理的原理和证明勾股定理是一个关于直角三角形斜边与两个直角边的关系定理。
它的表述可以归纳为:在直角三角形中,斜边的平方等于两个直角边的平方和。
设直角三角形的斜边长度为c,两个直角边的长度分别为a和b。
根据勾股定理,有c² = a² + b²。
证明该定理的方法多种多样,其中一种比较简单的方法是利用面积关系进行证明。
假设直角三角形的两条直角边分别为a和b,斜边为c。
将该三角形移动到一个边长为a、边宽为b的矩形内,如图1所示。
[图1:勾股定理证明过程的示意图]显然,通过镜像方式将三角形补全,可以构成一个边长为c、边宽为c的正方形,如图2所示。
[图2:利用镜像补全三角形后构成正方形]由于正方形的面积等于边长的平方,我们可以得到两个式子:面积1 = a * b面积2 = c * c由于直角三角形的面积1等于正方形的面积2,我们可以得到:a *b =c * c进一步变换可得:c² = a² + b²上述证明过程说明了勾股定理的原理,并证明了定理的正确性。
二、勾股定理的应用示例勾股定理在实际生活中有着广泛的应用,下面将介绍其中一些重要的示例。
1. 测量直角三角形的边长勾股定理可以被用于测量直角三角形的边长。
当我们已知一个直角三角形的两个直角边的长度时,可以通过勾股定理计算出斜边的长度。
例如,如果直角三角形的两个直角边的长度分别为3和4,可以使用勾股定理计算出斜边的长度:c² = 3² + 4²c² = 9 + 16c² = 25c = 5因此,该直角三角形的斜边长度为5。
2. 建筑和工程应用勾股定理在建筑和工程领域中具有重要的应用。
第14章勾股定理§14.2勾股定理的应用(二)【学习目标】1.掌握勾股定理及其逆定理.2.准确运用勾股定理及逆定理.【课前导习】1.若一个三角形的三边满足c2-a2=b2,则这个三角形是三角形.2.在△ABC中,AB=AC=10,BD是AC边的高,DC=2,则BD= .3.直角三角形的两边分别为3和4,则第三边为 .4.在Rt△ABC中,∠BAC=90°,AC=1,CB=2,则斜边上的高为 .5.在垂直于地面的墙上2m的A点斜放一个长2.5m的梯子,由于不小心梯子在墙上下滑0.5m,则梯子在地面上滑出的距离BB'的长度为6. 利用勾股定理,分别画出长度为3厘米和5厘米的线段【主动探究】例题讲解例1如图,在5×5的正方形网格中,每个小正方形的边长都为1,请在给定网格中按下列要求画出图形:(1)从点A出发画一条线段AB,使它的另一个端点B在格点(即小正方形的顶点)上,且长度为22;(2)画出所有的以(1)中的AB为边的等腰三角形,使另一个顶点在格点上,且另两边的长度都是无理数.例2如图,已知CD=6m, AD=8m,∠ADC=90°, BC=24m,AB=26m.求图中阴影部分的面积.【当堂训练】1.若直角三角形的三边长分别为2、 4、 x, x的值为.2.在△ABC中,AB=2,BC=4,AC=23,∠C=30°,则∠B= .3.三角形的三边分别是n+1、 n+2、 n+3,当n= 时,三角形是一个直角三角形.4. 如图,已知AD⊥CD,AB=13,BC=12,CD=4,AD=3,∠CAB= ,∠B= .5.试判断下列三角形是否是直角三角形:(1)三边长为m2+n2、 mn、 m2-n2(m>n>0);( )(2)三边长之比为 1∶1∶2;( )(3)△ABC的三边长为a、 b、 c,满足a2-b2=c2( )【回学反馈】1.如图,有一块四边形地ABCD,∠B=90°,AB=4m,BC=3m, CD=12m,DA=13m,求该四边形地的面积.2. 如图,四边形ABCD中,AB=BC=2, CD=3,DA=1,且∠B=90°,求∠DAB的度数.3.如图,在矩形ABCD中,AB=5cm,在边CD上适当选定一点E,沿直线AE把△ADE折叠,使点D恰好落在边BC上一点F处,且△ABF的面积是30cm2.求此时AD的长.。
1 AB§14。
2 勾股定理的应用---最短路径问题安海中学 谢伟良教学目标:知识与技能目标:能运用勾股定理解决简单的实际问题.过程与分析目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件. 情感与态度目标:培养合情推理能力,体会数形结合的思维方法,激发学习热情 教学重点:利用“两点之间线段最短”和“勾股定理”求得最短路程. 教学难点:寻找最短路径.教学关键:把立体图形转化为合适的平面图形寻得最短路径再构造直角三角形应用勾股定理求最短路程。
教学准备:教师准备:幻灯片、直尺。
学生准备:复习勾股定理,自制圆柱体、立方体和长方体. 教学过程:一、复习引入,创设情境1。
复习提问:线段性质定理、勾股定理的内容及数学式子表示。
设定情景引入新课。
2。
情景设定1(投影出示):在一款长30cm 宽40cm 的砧板上,蚂蚁要从点A 处到点B 处觅食,试问这只蚂蚁要怎么选择路线才能使路线最短?最短距离是多少?∵ 在Rt △ABC 中, ∠C=90º∴)(5040302222cm BC AC AB =+=+=∴ 走线段AB 的路线最短,且最短距离为50cm.2ACBA B AB二、创设情境,解决问题情景设定2:情景设定3:如图所示,圆柱体的底面直径为6cm ,高为12cm ,一只蚂蚁从A 点出发,沿着圆柱的侧面爬行到点B ,试求出爬行的最短路程(π取3). 22BC AC + ∴爬行的最短路程约为解:如图,∵在Rt △ABC 中, ∠ACB=90°BC =½πd ≈½×3×6=9cm ,∴AB = 22912+=)(15cm =如果把圆柱换成棱长为10cm 的正方体盒子,蚂蚁沿着表面从A 点爬行到B 点需要的最短路程又是多少呢?想一想都有哪些爬行路径?需要经过哪些面?3AB变式训练:左221020 500如图示,有一个长为3cm ,宽为2cm ,高为1cm 的长方体,一只蚂蚁要沿着表面从A 到B 处觅食,请问需要爬行的最短路程是多少呢?方法小结:把几何体适当展开成平面图形,再利用“两点之间线段最短”和“勾股定理”来解决问题。
14.2章勾股定理的应用(2)
教学目标:
1.在特殊三角形中要会找出直角三角形或构建直角三角形。
2.当三角形的三边是整式时,要会判断大小,从而判断三角形的形状。
思维激活:
以△ABC 三边a,b,c 为边向外
作正方形,以三边为直径作半圆,
若S 1+S 2=S 3成立,则△ABC 是直角
三角形吗?
问题研讨:
问题1:已知:等边△ ABC 的边长是6cm
(1)求高AD 的长.
(2)求S △ ABC.
解:(1)∵ △ ABC 是等边三角形,AD 是高,
在Rt △ ABD 中,AB=6,BD=3,根据勾股定理,
∵ AD 2=AB 2-BD 2
∴
=
练一练:
1.等腰△ABC 的腰长为10cm ,底边长为16cm ,则底边上的高为 ,面积为__________.
2.等腰直角△ABC 中,∠C=90°,AC=2cm ,那么它的斜边上的高为 .
问题2:
32
1==∴BC BD
知识拓展:
问题3:等腰三角形底边上的高为8,周长为32,求这个三角形的面积。
解:作∆ABC的高AD,设BD为X,则AB为(16-X),由勾股定理得:
∴ S∆ABC=
试一试:
等腰直角三角形ABC中,∠C=90°,
AC=BC=1.
求:斜边的一半.
课堂小结:
和同学们交流一下这节课你学到了什么?
课堂作业:
课本60页,习题第1、5题
课后反思:。
勾股定理及应用勾股定理是数学中的一条经典定理,也是三角学中最重要的基本公式之一。
在几何学和物理学中,勾股定理被广泛应用于求解直角三角形的各类问题。
本文将详细介绍勾股定理的原理和常见应用。
一、勾股定理的原理勾股定理是指在直角三角形中,直角边的平方等于两个直角边的平方和。
用数学形式表示为:c² = a² + b²,其中c为斜边(即直角三角形的斜边),a、b为直角边。
勾股定理的证明可以通过几何方法和代数方法来完成。
其中一种常见的几何证明方法是利用面积关系,将直角三角形一分为二,形成两个直角三角形,再应用面积公式推导得出结果。
代数证明则是通过将直角三角形的三条边的长度代入勾股定理进行计算,验证等式成立。
二、勾股定理的应用1. 求解未知边长:勾股定理最基本的应用就是求解直角三角形中的边长。
通过已知两条边长,可以利用勾股定理计算出第三条边的长度。
例如,已知直角三角形的一条直角边长为3,另一条直角边长为4,可以通过勾股定理计算出斜边的长度,即c² = 3² + 4² = 9 + 16 = 25,开平方得c=5。
2. 检验三角形是否为直角三角形:当已知三条边长时,可以利用勾股定理判断三角形是否为直角三角形。
当c² = a² + b²成立时,即可证明三角形为直角三角形。
3. 求解角度:在已知两条边长的情况下,可以通过勾股定理计算出两条直角边之间的夹角。
例如,已知直角三角形的直角边长为3和4,可以计算出斜边与其中一条直角边的夹角的正弦、余弦和正切值,从而求得该角度的大小。
4. 应用于物理问题:勾股定理在物理学中也有着广泛的应用。
例如,在力学中,可以通过勾股定理计算出斜坡上物体的加速度、速度和位移等相关物理量。
在天文学中,可以利用勾股定理测算星体距离和角度,辅助观测和研究。
总结:勾股定理是数学中的重要定理之一,通过勾股定理可以求解直角三角形的各类问题。
§14.2 勾股定理的应用南安侨光中学叶超毅2010年12月§14.2 勾股定理的应用一、教学目标:1、知识目标:能运用勾股定理及逆定理解决简单的实际问题.2、能力目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件,培养学生的合情推理能力。
3、情感目标:让学生知道数学源自于生活,又服务于生活。
通过问题提高学生学习数学的兴趣,增强学生的学习热情。
二、教材分析:本片段是华师大版八年级(上)§14.2勾股定理的应用P53的例题4的知识。
它是本节中勾股定理及其逆定理的综合应用,能帮助学生提高综合分析和解答能力,在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学。
三、重点与难点:1、教学重点:勾股定理及其逆定理的应用;2、教学难点:勾股定理及其逆定理的正确使用.四、教学方法:采用启发式、讨论式,发挥学生的主体作用,倡导自主、合作、探究的学习方式。
五、教学过程:1、创设情境,复习引入:请同学们看下面两道题:(1)、如图1所示,求第三边的长度和三角形的面积;生(马上回答):5,面积是6。
师:5是怎么来的?面积是6又是怎么来的?生(争先恐后地答):勾3股4弦5,面积是64321=⨯⨯ 师:很好。
(2)、如图2所示,判断三角形的形状,并求出它的面积。
生(高兴地说):三角形是直角三角形,面积是30。
师:理由是什么呢?生(满有信心地大声答):根据勾股定理的逆定理就可以判断三角形是直角三角形,然后根据直角三角形的面积等于21×底×高,就可得面积为30。
2、新课讲解,巩固旧知:例4、如图,已知CD=6m ,AD=8m ,090=∠ADC ,BC=24m ,AB=26m ,求图中阴影部分的面积。
【分析:师:图中阴影部分的图形是不规则的四边形,要求其面积,应如何求呢? 生(思考后说):利用大三角形的面积减去小三角形的面积,便可得到。
师:小三角形是什么形状三角形? 生:直角三角形。
14.2勾股定理的应用(二)知识与基础1.在 Rt ΔABC 与 Rt ΔA`B`C`中∠C =∠C`=90°,有下列几组条件( ).①AC =B`C`,BC =A`C`;②AC =A`C`,BC =B`C`;③AC =A`B`,∠A =∠A`;④BC =A`C`,AB =A`B`.其中能判定这两个直角三角形全等的有( ).A.1个B.2个C.3个D.4个2.下面是直角三角形具备的几条性质:( ).①两个较小的内角之和等于较大的内角;②三个内角的和等于180°;③面积等于较短的两边的乘积的一半;④有斜边和一条直角边相等的两个直角三角形全等.其中一般三角形不具备的有( ).A.4条B.3条C.2条D.1条3.在下列语句中,不正确的是( ).A.有两条边对应相等的两个直角三角形全等;B.一般三角形所具备的性质,直角三角形都具备;C.直角三角形没有稳定性;D.两边及其中一边上的高对应相等的两个锐角三角形全等4.如图,0A =0B ,AD ⊥0B ,BC ⊥0A ,D 、C 为垂足,AD 、BC 相交于点P.下面给出的四个结论:①△A0D ≌△B0C ;②∠1=∠2;③PC =PD ;④0P 平分∠A0B.其中,一定成立的有( ).A.4个B.3个C.2个D.1个5.如图,AB 是∠CAD 的平分线2,BC ⊥AC ,BD ⊥AD ,垂足分别为C 、D ,E 是AB 上任意一点,下面给出的四个结论:①BC =BD ,②EC =ED ,③∠CAE =∠ADE ,④点B 在∠CED 的平分线上,其中,正确的结论有( ).A.1个B.2个C.3个D.4个6.如图,在△ABC 中,∠B =90°,BC =20㎝,AD 是角平分线,且BD :CD =2:3,则点D 到AC 边上的距离是 ㎝。
7.如图,已知∠C =∠D =90°,∠1≠∠4,∠2≠∠3。
如果补充一个条件 ,那么△ABC ≌△ABD ﹙HL ﹚如果补充一个条件 ,那么△ABC ≌△ABD ﹙HL ﹚如果补充一个条件 ,那么△ABC ≌△ABD ﹙AAS ﹚如果补充一个条件 ,那么△ABC ≌△ABD ﹙AAS ﹚O A A B C D E D CPD C CA8.如图,已知,AB =AC ,AE =AF ,AE ⊥EC ,AF ⊥BF ,说明∠BAE =∠CAF 。