阶跃信号
- 格式:doc
- 大小:31.00 KB
- 文档页数:2
§1.4 阶跃信号和冲激信号本节介绍函数本身有不连续点(跳变点)或其导数与积分有不连续点的一类函数统称为奇异信号或奇异函数。
主要内容•单位斜变信号•单位阶跃信号•单位冲激信号•冲激偶信号一.单位斜变信号1.定义3.三角形脉冲由宗量t-t0=0 可知起始点为2.有延迟的单位斜变信号二.单位阶跃信号1. 定义0点无定义或1/2宗量<0 函数值为0由宗量,函数有断点,跳变点宗量>0 函数值为12. 有延迟的单位阶跃信号3.用单位阶跃信号描述其他信号其它函数只要用门函数处理(乘以门函数),就只剩下门内的部分。
符号函数:(Signum)门函数:也称窗函数三.单位冲激函数(难点)概念引出定义1定义2冲激函数的性质定义1:狄拉克(Dirac)函数函数值只在t=0时不为零;积分面积为1;t=0时,,为无界函数。
定义2则窄脉冲集中于t=0处。
★面积为1★宽度为0三个特点:★描述时移的冲激函数若面积为k,则强度为k。
三角形脉冲,双边指数脉冲,钟形脉冲,抽样函数,取τ→0极限,都可以认为是冲激函数。
冲激函数的性质1.抽样性2.奇偶性3.冲激偶4.标度变换(1) 抽样性(筛选性))()0()()(tftftδδ=对于移位情况:如果f(t)在t=0处连续,且处处有界,则有)()(tt-=δδ(2)奇偶性o t)(tsττ-τ1 (3) 冲激偶①②冲激偶的性质时移,则:③④X(4) 对 (t)的标度变换冲激偶的标度变换四.总结:R (t ),u (t ),δ(t ) 之间的关系R (t )求↓ ↑ 积(-∞<t< ∞)u (t )导↓ ↑ 分δ(t )退出')( t δ'冲激函数的性质总结(1)抽样性(2)奇偶性(3)比例性(4)微积分性质(5)冲激偶(6)卷积性质冲激函数抽样性质证明分和讨论0=t 0≠t 即,证毕。
()()()()()t f t t f t δδδ0 , 0=≠积分结果为0.flash证明奇偶性时,主要考察此函数的作用,即和其它函数共同作用的结果。
冲激信号阶跃信号关系嘿,朋友们!今天咱来唠唠冲激信号和阶跃信号的关系,这可有意思啦!咱先来说说冲激信号呀,这就好比是赛场上的发令枪响,“砰”的一下,瞬间爆发,时间极短但能量巨大。
它就那么一下子,却能引起很大的动静呢!而阶跃信号呢,就像是跑步比赛中运动员起跑后的加速过程,从一个状态突然跨到另一个状态,干脆利落。
你想想看,要是没有冲激信号那一下子的刺激,很多系统可能还懒洋洋地不想动呢。
它就像是个急性子的小伙伴,突然来那么一下,让一切都活跃起来了。
阶跃信号呢,则更像是个坚定的执行者,一旦决定了,就勇往直前地跨过去,绝不拖泥带水。
冲激信号和阶跃信号,它们俩呀,就像是一对好搭档。
冲激信号负责开头的震撼,阶跃信号接着把这种变化延续下去。
就好像一场精彩的演出,冲激信号是开场的绚烂烟花,阶跃信号则是随后精彩剧情的展开。
比如说在电路中吧,冲激信号可以引发瞬间的电流变化,而阶跃信号就能让电路稳定在一个新的工作状态。
这不是很神奇吗?它们相互配合,让整个系统变得丰富多彩。
再打个比方,冲激信号像是一阵突如其来的狂风,能瞬间打破平静;阶跃信号则像风过后天空的变化,从乌云密布到晴空万里,或者从晴空万里到乌云密布。
你说这冲激信号阶跃信号的关系是不是特别有意思?它们在各种领域都发挥着重要的作用呢!无论是通信、控制还是其他的科技领域,都离不开它们俩的默契配合。
所以啊,可别小瞧了这冲激信号和阶跃信号,它们虽然看起来很简单,可蕴含的力量和作用那可是大大的!它们就像隐藏在科技世界背后的小魔法师,用它们独特的魔法让一切变得有序又神奇。
总之呢,冲激信号和阶跃信号的关系真的是妙不可言,它们相互依存,相互成就,共同推动着科技的发展和进步。
咱得好好琢磨琢磨它们,才能更好地理解和运用它们呀!原创不易,请尊重原创,谢谢!。
冲激信号与阶跃信号的关系冲激信号和阶跃信号,听起来挺高大上的对吧?它们就像是信号世界里的两位好朋友,各有各的性格,却又紧密相连,常常一起出现在我们的生活中。
想象一下,冲激信号就像是一声响亮的“啪”,一下子把你从梦中惊醒;而阶跃信号呢,就像是早晨的第一缕阳光,温柔而坚定地照亮了整个房间。
这两个小家伙,一个是瞬间爆发,另一个则是稳稳地上升,形态各异,却又在信号处理中扮演着不可或缺的角色。
冲激信号,顾名思义,那个瞬间的能量释放,真的是快得让人瞠目结舌。
一眨眼,咔嚓一下,瞬间的信号就出现了,仿佛是在说:“嘿!我来了!”想想我们生活中的声音,比如鼓声,砰的一下,那可真是冲激信号的完美体现。
它就像是你小伙伴突如其来的恶作剧,瞬间打破了宁静,令人惊喜又尴尬。
冲激信号的特性是能量集中在一个极短的时间内,这种快速的变化,在信号处理中可是很有用的。
处理系统就像个敏感的侦探,能快速捕捉到这个信号的出现。
阶跃信号就像个温暖的大叔,慢慢地、稳稳地向你走来。
它不像冲激信号那么突然,而是逐步上升,就像是气温在春天一点点升高,让人感觉无比舒适。
你看,阶跃信号一出现,就开始逐渐增大,直至达到一个稳定的状态。
就像人生中的一个重要决定,开始总是有点犹豫,慢慢地才变得坚定。
信号处理中的阶跃响应,可以帮助我们理解系统对这种渐进变化的反应,简直就是一部活生生的“成长纪录片”。
冲激信号和阶跃信号之间的关系就像亲兄弟。
冲激信号可以看作是阶跃信号的“导火索”。
冲激信号一出现,阶跃信号就随之而来,就像是火花点燃了烟花,瞬间绽放,带来视觉与听觉的盛宴。
想象一下,若是在学校的操场上,老师一声令下,孩子们都像小鸟一样飞奔出去,这一瞬间就是冲激信号的感觉,而当孩子们欢笑着聚在一起,形成一片欢乐的海洋,那就是阶跃信号的表现了。
一个是瞬间的爆发,一个是持续的增长,两者相辅相成,缺一不可。
而且在实际应用中,这两者的结合更是如虎添翼。
工程师们常常利用这两种信号来测试系统的性能,看看在面对冲激信号时,系统如何快速反应,而当系统稳定下来后,又是如何应对阶跃信号的。
冲激信号和阶跃信号的关系嘿,咱今天就来讲讲冲激信号和阶跃信号的关系。
你看啊,冲激信号就像是个急性子,“啪”的一下就出现了,瞬间爆发,然后又忽地没了。
它可真是够干脆利落的!而阶跃信号呢,就像是个慢性子,慢慢地、稳稳地就上来了,然后就待在那了。
可以说冲激信号是那个在关键时刻给你一下子刺激的家伙,而阶跃信号则像是给你一个比较持久的推动。
就好像你在走路,冲激信号就是突然有人在你背后推了你一把,让你猛地往前一蹿;而阶跃信号呢,就像是有个缓坡,让你慢慢地、持续地往上走。
它们俩的关系啊,那可真是挺有趣的。
冲激信号常常能引发阶跃信号的变化呢,就好像是它给阶跃信号打了一针兴奋剂。
阶跃信号呢,也会因为冲激信号的出现而有不同的表现。
比如说,在一个系统里,本来阶跃信号好好地在那工作着,突然来了个冲激信号,哇,整个系统可能就会有一番新的变化。
就像平静的湖面突然丢进去一块石头,会激起层层涟漪一样。
有时候我就想啊,这冲激信号和阶跃信号就像是一对欢喜冤家,虽然性格不同,但又相互影响,共同在信号的世界里闯荡。
哎呀,说了这么多,总结起来就是,冲激信号和阶跃信号它们相互关联、相互作用,共同构成了我们丰富多彩的信号世界。
没有它们,那可真是少了很多乐趣和奇妙呢!
怎么样,是不是对冲激信号和阶跃信号的关系有了更清楚的认识啦?哈哈,这就是它们的故事,有趣又特别呢!就像我们生活中的各种关系一样,相互交织,共同演绎着精彩的篇章。
下次再看到它们,可别忘了它们之间的这些小趣事哦!。
单位阶跃信号定义、波形1用阶跃信号表示接入特性2主要内容用阶跃信号表示开关特性3阶跃信号1、单位阶跃信号1u (t )tt <00t >01u (t )=2、用阶跃信号表示接入特性单位阶跃信号u(t )的定义t <0t >0f (t )特性或因果(单边)特性。
利用单位阶跃信号u (t )可以很方便地用数学函数描述信号的接入=f (t )u (t )阶跃信号解例用阶跃信号表示如图所示的单边正弦信号。
sin ωt t <0t >0f 1(t)=1−1f 1(t )t0…TT /2=sin ωt u (t )3、用阶跃信号表示开关特性Au (t −t 0)=t <t 0t >t 0A t 0AAu (t −t 0)幅度为A 、任意时刻t 0的阶跃信号t这是在t 0时接入幅度为A 直流电源的数学模型。
t −t 0>0t >t 0=f (t)[u (t )−u (t −t 0)]其他0< t <t 0f (t )f 2(t ) =1u (t )−u (t −t 0)tt 010u (t )t−1−u (t −t 0)tt 0利用两个阶跃信号的组合可描述信号的开关(存在)特性。
例用阶跃信号表示如图所示的有限时宽正弦信号。
解f 3(t )t1−10TT /22T有限时宽正弦信号是电报信号的数学模型,或是具有开关功能= sin ωt [u(t )−u (t −2T )]sin ωt 0<t <2T 0其它f 3(t )=正弦电源的数学模型。
2.5 冲激信号和阶跃信号的傅里叶变换
2.5.1 冲激信号
由傅里叶变换定义及冲激信号的抽样特性很容易求得(t)函数的FT为
冲激函数的频谱等于常数,也就是说,在整个频率范围内频谱都是均匀的。
在时域中波形变化剧烈的冲激函数包含幅度相等的所有频率分量,这种频谱常称作"均匀谱"或"白色谱"。
2.5.2 直流信号
如前所述,冲激信号的频谱是常数,那么时域为常数的信号(直流信号)的频谱是否为冲激函数呢?
我们来考虑()的傅里叶逆变换,即
这也就是说
上式意味着
式中的E为常数。
这表明,直流信号的频谱是位于w=0的冲激函数,这与直流信号的物理概念是一致的。
2.5.3单位阶跃信号
单位阶跃函数同样不满足绝对可积条件,但仍存在傅里叶变换。
前面我们已经讲述了符号函数的傅里叶变换,下面我们借助符号函数来求阶跃信号的FT。
单位阶跃函数U(t)可用符号函数来表示,即
再利用直流信号与符号函数的傅里叶变换
可得单位阶跃函数的傅里叶变换为
单位阶跃函数及其频谱如下图所示。
由图可知,U(t)在t>0时等同于直流信号,但它又不是纯粹的直流信号,它在t=0处有跳变,因此其频谱不是仅在=0处有一个冲激函数(这对应于信号的直流特性),而且还会含有其它众多的频率分量。
为什么会有众多的频率分量呢?这是因为信号在时域零点处有跳变!由于时域的剧烈变化,相应的频域中的分量将是无限的。
还记得我们在前面讲周期矩形脉冲信号所提及的"时域跳变将使频域包含无限的频率分量"的结论吗?这儿就是一个很好的例证。
大家可以翻回去看看,是不是这样。
图2-11 (a) 单位阶跃函数的波形 (b) 信号的幅度谱。