第8节 子群的陪集
- 格式:ppt
- 大小:224.50 KB
- 文档页数:61
8.2 子群与陪集子群与群的关系:拉格朗日定理。
子群判定定理典型子群陪集H 是G 的非空子集(1)a,b ∈H 有a b ∈H(2) a ∈H 有a -1∈H.H 是G 的非空子集a,b ∈H,有ab -1∈HH 是G 的非空有穷子集a,b ∈H 有ab ∈H 陪集的性质Lagrange 定理及推论子群非空子集、群8.2 子群与陪集子群定义设G是群,H是G的非空子集,定义8.5(1) 如果H关于G中的运算构成群,则称H是G的子群, 记作H≤G.(2) 若H是G的子群,且H G,则称H是G的真子群,记作H<G.例如nZ (n是自然数) 是整数加群<Z,+> 的子群. 当n≠1时,nZ是Z的真子群.任何群G都存在子群. G和{e}都是G的子群,称为G的平凡子群.(子群判定定理1 )定理8.5设G为群,H是G的非空子集,则H是G的子群当且仅当(1) ∀a,b∈H有ab∈H(2) ∀a∈H有a-1∈H.证必要性是显然的.为证明充分性,只需证明e∈H.因为H非空,存在a∈H. 由条件(2) 知a-1∈H,根据条件(1) aa-1∈H,即e∈H.(子群判定定理2 )定理8.6设G为群,H是G的非空子集. H是G的子群当且仅当∀a,b∈H,有ab-1∈H.证必要性显然.只证充分性. 因为H非空,必存在a∈H.根据给定条件得aa-1∈H,即e∈H.任取a∈H, 由e,a∈H 得ea-1∈H,即a-1∈H.任取a,b∈H,知b-1∈H. 再利用给定条件得a(b-1) -1∈H,即ab∈H.综合上述,可知H是G的子群.(子群判定定理3 )定理8.7设G为群,H是G的非空有穷子集,则H是G的子群当且仅当∀a,b∈H有ab∈H. 证必要性显然.为证充分性,只需证明a∈H有a-1∈H.任取a∈H, 若a = e, 则a-1= e∈H.若a≠e,令S={a,a2,…},则S⊆H.由于H是有穷集,必有a i= a j(i<j).根据G中的消去律得a j-i= e,由a ≠ e可知j-i>1,由此得a j-i-1a = e 和 a a j-i-1= e从而证明了a-1= a j-i-1∈H.根据子群判定定理1,可知H是G的子群。
子群的左右陪集例题摘要:一、子群的定义与性质1.子群的定义2.子群的性质二、左右陪集的概念与性质1.左右陪集的定义2.左右陪集的性质三、子群的左右陪集例题解析1.子群G 与左陪集L 的关系2.子群G 与右陪集R 的关系3.子群G 的左陪集与右陪集的关系四、结论与拓展1.子群左右陪集在数学中的应用2.子群左右陪集在实际问题中的应用正文:子群的左右陪集是群论中的一个重要概念,它涉及到子群的定义、性质以及与左右陪集的关系。
本文将详细解析子群的左右陪集例题,帮助读者更好地理解这一概念。
首先,我们需要了解子群的定义与性质。
子群是群G 的一个子集,满足群G 的运算性质。
子群具有封闭性、结合律、单位元和逆元等性质。
其次,我们需要了解左右陪集的概念与性质。
左陪集是群G 的一个子集,满足G 的运算性质,且对任意g∈G,有h·g∈L(h∈L)。
右陪集是群G 的一个子集,满足G 的运算性质,且对任意g∈G,有g·h∈R(h∈R)。
左右陪集具有封闭性、结合律、单位元和逆元等性质。
接下来,我们通过例题来解析子群的左右陪集。
假设群G={e, a, b, a^2, b^2},其中运算为乘法,且满足结合律。
我们可以求出G 的子群H={e,a^2},以及左陪集L={e, a^2}和右陪集R={e, a, a^2, b, b^2}。
通过例题,我们可以发现子群G 与左陪集L、右陪集R 之间的关系,以及左陪集L 与右陪集R 之间的关系。
最后,我们总结子群左右陪集的概念、性质及应用。
子群左右陪集在数学中有着广泛的应用,例如,通过对子群的左右陪集的研究,可以更好地理解群的性质,进而研究更复杂的数学问题。
此外,子群左右陪集在实际问题中也有应用,例如,在密码学、编码理论等领域,子群左右陪集的概念和性质可以帮助我们设计更安全的加密算法和更高效的编码方案。
子群的左右陪集例题一、子群的定义和性质子群是群的一个重要概念。
给定一个群G和一个子集H,如果子集H中的元素满足封闭性、结合律和单位元、逆元等群性质,那么称子集H是一个子群。
子群内部的元素具有一定的组合规律,我们可以利用子群来研究群的性质和结构。
二、陪集的概念和作用陪集是群论中的一个重要概念。
给定一个群G和一个子集H,对于子集H 中的每一个元素h,我们可以找到一个与h等价的元素g,使得陪集GH={g}。
陪集在研究群结构、子群关系等方面具有重要作用。
三、子群的左右陪集的求解方法子群的左右陪集是指子群G中元素与子群H中元素的对应关系。
求解子群的左右陪集的方法主要有以下几种:1.直接法:对于子群G和子群H,我们可以通过列出G中元素与H中元素的对应关系来求解左右陪集。
2.传输矩阵法:对于子群G和子群H,可以构造一个传输矩阵,通过矩阵的乘法得到左右陪集。
3.拉格朗日插值法:利用拉格朗日插值多项式求解子群的左右陪集。
四、例题解析以下以一个具体的例子来说明如何求解子群的左右陪集:已知群G={1, 2, 3, 4, 5},子群H={1, 3}。
1.求解G关于H的左陪集:根据直接法,我们可以得到G关于H的左陪集为:LG={(1, 1), (2, 1), (3, 1), (4, 1), (5, 1)}2.求解G关于H的右陪集:根据直接法,我们可以得到G关于H的右陪集为:RG={(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}五、总结与拓展本文介绍了子群的定义和性质、陪集的概念和作用,以及子群的左右陪集的求解方法。
通过具体例题的解析,加深了对子群和陪集的理解。
在实际应用中,子群和陪集的研究有助于揭示群的内在结构,为后续的群论研究打下基础。
子群的左右陪集例题子群的左右陪集是群论中的重要概念。
让我们首先回顾一下子群的定义。
设G是一个群,H是G的一个非空子集。
如果H对于G的乘法运算构成一个群,那么H被称为G的子群。
现在,让我们来看一个例题,设G是一个群,H是G的一个子群。
我们要找出H在G中的左陪集和右陪集的例子。
首先,我们来定义左陪集和右陪集。
对于群G的子群H和g∈G,gH={gh | h∈H} 是g的左陪集。
同样地,Hg={hg | h∈H} 是g的右陪集。
假设我们有一个群G = {1, -1, i, -i},其中乘法运算是复数的乘法。
现在,让我们考虑它的子群H = {1, -1}。
我们要找出H在G中的左陪集和右陪集。
首先,我们来计算左陪集:1. 对于元素1∈G,1H={11, 1-1}={1, -1}。
2. 对于元素i∈G,iH={i1, i-1}={i, -i}。
同样地,我们可以计算出其他元素-1和-i的左陪集。
接下来,我们来计算右陪集:1. 对于元素1∈G,H1={11, -11}={1, -1}。
2. 对于元素i∈G,Hi={1i, -1i}={i, -i}。
同样地,我们可以计算出其他元素-1和-i的右陪集。
通过这个例题,我们可以看到子群的左右陪集是如何在群G中分别作用的。
左陪集和右陪集的元素个数都等于子群H的阶(元素个数)。
这些陪集在群论中有着重要的应用,例如证明拉格朗日定理等。
希望这个例题能帮助你更好地理解子群的左右陪集的概念和性质。
如果你对群论中的其他概念有疑问,也欢迎随时向我提问。
第12 讲§9 子群的陪集(Coset of subgroup)P89—99本讲的教学目的和要求:在第一章中,我们曾介绍了集合的分类与集合上的等价关系——他们是互相兼容的两个代数概念。
在群中引人一种特殊等价关系,由此对该群进行分类——群的陪集分解。
进而引出拉格朗日(Lagrange)定理,得到了“每个子集(元素)的阶都是有限母群阶的因子”这一重要结论。
在本讲的学习中要求(1)陪集的形成以及它们与母群的关系与子群H的联系要分辩清楚。
(2)陪集和陪集的代表元所形成的系列性质,要能掌握。
(3)群的陪集分解中对左右边旁的要求和注意事项需要了解。
(4)Lagrange定理和推论本身的掌握以及有关理论应用需要掌握。
本讲的重点和难点:本节的内容中重点是对陪集概念的了解和lagrange定理的应用,而难点在于学会并掌握有关陪集理论的等式命题证明。
一、陪集的引入引例1 对整数加群{}+,Z 而言,取定模4,则可确定Z 的一个分类:[][][][]{}3,2,1,04=Z 。
其中Z 中的4个剩余类分别为:[]{} ,8,4,0,4,8,0--=[]{} ,9,5,1,3,7,1--=[]{} 10,6,2,2,6,2--=[]{} ,11,7,3,1,5,3--=现利用群的观点,分析上述事实,可得到如下启示:(1) 在4Z 中剩余类[]{} ,8,4,0,4,8,0--=Z n n Z ∈∀==44是整数加群{}+,Z 的一个子集. 而其余的剩余类[]1,[]2,[]3都不是{}+,Z 的子群.(2) 其余的任何一个剩余类与这个特殊的剩余类[] 有着密切的联系.譬如, []1就是用代表元1与[]0中每个元素相加所成的剩余类, []1即恰是用[]0中每个元素都加上1而形成的.一般地, 4Z 中的每个剩余类[]i 都是由[]0中每个元素普遍加上i (或加上[]i 中任取定的一个元素)而形成的.其中3,2,1,0=i . 引例2. 给定三次对称群()()()()()(){}132123,23,13,12,13=S 的一个分类{}M K H ,,=Ω.其中这三个分列为: ()(){}12,1=H , ()(){}123,13=K ,()(){}132,23=M 。
近世代数第二章群论答案§.群的定义1. 全体整数的集合对于普通减法来说是不是一个群?解:不是,因为普通减法不是适合结合律。
例如3- 2-1 =3-仁2 3-2 -1 =1-1=03 - 2-1 3-2 -12. 举一个有两个元的群的例。
解:令G=「e,",G的乘法由下表给出首先,容易验证,这个代数运算满足结合律(1) xy z =x yz x,y,z G因为,由于ea二ae二a,若是元素e在(1)中出现,那么(1)成立。
(参考第一章,§4,习题3。
)若是e不在(1)中出现,那么有aa a = ea = a a aa = ae = a而(1)仍成立。
其次,G有左单位元,就是e;e有左逆元,就是e,a有左逆元,就是a。
所以G是一个群。
读者可以考虑一下,以上运算表是如何作出的。
3•证明,我们也可以用条件以及下面的条件IV , V来做群的定义:IV G里至少存在一个右逆元a J,能让ae = a对于G的任何元a都成立;V 对于G的每一个元a,在G里至少存在一个右逆元a-1,能让aa A = e解:这个题的证法完全平行于本节中关于可以用条件I,II,IV,V来做群定义的证明,但读者一定要自己写一下。
§2.单位元、逆元、消去律1. 若群G的每一个元都适合方程x2 = e,那么G是交换群。
解:令a和b是G的任意两个元。
由题设2ab ab = ab = e另一方面2 2ab ba = ab a = aea = a = e于是有ab ab = ab ba。
利用消去律,得ab= ba所以G是交换群。
2. 在一个有限群里,阶大于2的元的个数一定是偶数。
解:令G是一个有限群。
设G有元a而a的阶n> 2。
考察a,。
我们有af ) = e e(a,) =(a^ f = e设正整数m<n而a4 m=e,那么同上可得a m = e,与n是a的阶的假设矛盾。
这样,n也是a J的阶,易见a J=a否贝卩a2 = aa 1 = e与n > 2的假设矛盾。
子群的左右陪集例题【原创版】目录1.子群的左右陪集概念介绍2.左右陪集的性质3.左右陪集的求法4.应用实例正文一、子群的左右陪集概念介绍在数学中,子群是指一个群的某个子集,它具有群的一些性质。
在群论研究中,子群的陪集是一个重要的概念,它可以帮助我们更好地理解和分析群的结构。
而子群的左右陪集是陪集中的一种,它具有一些独特的性质和应用。
二、左右陪集的性质左右陪集具有以下性质:1.存在性:对于任意子群 H,总存在左右陪集。
2.对称性:对于任意子群 H,左陪集与右陪集是相等的,即左陪集等于右陪集。
3.唯一性:对于任意子群 H,左陪集与右陪集是唯一的。
4.稳定子群:对于任意子群 H 和其左陪集 L,H 与 L 的交集是 H 的稳定子群。
三、左右陪集的求法求子群的左右陪集,通常采用如下方法:1.先求出子群的正规子群。
2.对于正规子群,求出它的极大子群。
3.极大子群与子群的交集即为子群的左陪集。
4.对于子群的任意元素,都可以找到一个元素与其对应,使得它们的乘积属于左陪集。
根据这个性质,可以求出子群的右陪集。
四、应用实例子群的左右陪集在群论中有广泛的应用,下面举一个例子:例:设 G 为四个元素的群,子群 H 为{e, a^2},其中 e 为单位元,a 为群 G 的生成元。
求子群 H 的左陪集。
解:首先,求出子群 H 的正规子群,即 H 本身。
因为 H={e, a^2},所以 H 的极大子群也是 H。
然后,求出 H 与 H 的交集,即得到子群 H 的左陪集。
计算可得,左陪集为{e, a^2, a^4, a^6}。
证明陪集构成划分1. 引言在数学中,划分是一种重要的概念,在许多领域中都有广泛应用。
特别是陪集的划分,被广泛用于群论和线性代数等领域。
本文将的重要性,并提供一个详细的证明过程。
2. 陪集的定义在了解陪集构成划分之前,我们首先要明确陪集的定义。
给定一个群G和它的一个子群H,对于任意元素a∈G,H的左陪集定义为aH={ah|h∈H},右陪集定义为Ha={ha|h∈H}。
在陪集的定义下,我们可以将群G分成若干个不相交的陪集。
3. 陪集的性质在证明陪集构成划分之前,我们先来看一些陪集的性质。
首先,对于两个陪集aH和bH,它们要么完全相等,即aH=bH;要么完全不相交,即aH∩bH=∅。
这是因为如果aH∩bH不为空,那么必然存在一个元素c同时属于aH和bH,即存在c1,c2∈H,使得ac1=bh,则b=ac1h-1∈aH,因此bH包含于aH;同理可证,aH包含于bH。
因此,要么aH=bH,要么aH∩bH=∅。
其次,对于任意元素c∈G,它属于某个左陪集aH,即c∈aH,证明如下:由于G是一个群,所以它必然包含单位元素e。
而e∈aH,因此aH非空。
又由于aH是一个陪集,它包含了所有形如ah(其中h是H的一个元素)的元素。
那么对于给定的任意元素c,我们可以找到一个h使得c=ah,因此c属于aH。
同样地,对于右陪集,它们也具有类似的性质。
对于两个右陪集Ha和Hb,要么Ha=Hb,要么Ha∩Hb=∅;对于任意元素c∈G,它属于某个右陪集Ha。
4. 陪集构成划分现在我们来证明陪集构成划分。
证明过程分为两步。
第一步,我们要证明陪集构成的是一个划分,即每个元素属于且只属于一个陪集。
假设存在一个元素c同时属于两个陪集aH和bH,即c∈aH且c∈bH。
那么必然存在两个元素h1,h2∈H,使得c=ah1=bh2。
由于H是一个子群,它一定包含单位元素e,因此对于h1和h2,我们可以找到元素h3使得h1=h3=hh-1=h2,从而得到c=ae=ab=b。