为参数)
名师点睛
1.曲线的普通方程直接地反映了一条曲线上的点的横、 纵坐标之间的联系,而参数方程是通过参数反映坐标变量x、 y间的间接联系.在具体问题中的参数可能有相应的几何意 义,也可能没有什么明显的几何意义.曲线的参数方程常常 是方程组的形式,任意给定一个参数的允许取值就可得到曲 线上的一个对应点,反过来对于曲线上任一点也必然对应着 其中的参数的相应的允许取值.
(1)求常数a; (2)求曲线C的普通方程. 【思维启迪】本题主要应根据曲线与方程之间的关系,可知 点M(5,4)在该曲线上,则点M的坐标应适合曲线C的方程,从 而可求得其中的待定系数,进而消去参数得到其普通方程.
解 (1)由题意可知有1at+2=2t4=5,故ta==21.∴a=1. (2)由已知及(1)可得,曲线 C 的方程为xy==t12+2t. 由第一个方程得 t=x-2 1代入第二个方程,得 y=x-2 12,即(x-1)2=4y 为所求.
∴x2+y2 的最大值为 11+6 2,最小值为 11-6 2.
题型三 参数方程的实际应用
例3 某飞机进行投弹演习,已知飞机离地面高度为H= 2 000 m,水平飞行速度为v1=100 m/s,如图所示.
(1)求飞机投弹t s后炸弹的水平位移和离地面的高度; (2)如果飞机追击一辆速度为v2=20 m/s同向行驶的汽车, 欲使炸弹击中汽车,飞机应在距离汽车的水平距离多远处 投弹?(g=10 m/s2)
点击1 考查圆的参数方程的应用 1.已知圆 C 的参数方程为xy==1c+ os sαin,α(α 为参数),以原点为
极点,x 轴正半轴为极轴建立极坐标系,直线 l 的极坐标方程为 ρsin θ=1,则直线 l 与圆 C 的交点的直角坐标为________.