泵与风机的工作
- 格式:ppt
- 大小:11.65 MB
- 文档页数:28
第六章泵与风机的分类及工作原理第一节泵与风机的分类及其工作原理一、泵与风机的分类1.按工作原理分2.按产生的压力分泵按产生的压力分为:低压泵:压力在2MPa 以下;中压泵:压力在2~6MPa;高压泵:压力在6MPa 以上。
风机按产生的风压分为:通风机:风压小于15kPa;鼓风机:风压在15~340kPa 以内;压气机:风压在340kPa 以上。
通风机中最常用的是离心通风机及轴流通风机,按其压力大小又可分为:低压离心通风机:风压在1kPa 以下;中压离心通风机:风压在1~3kPa;高压离心通风机:风压在3~15kPa;低压轴流通风机:风压在0.5kPa 以下;高压轴流通风机:风压在0.5~5kPa。
二、泵与风机的工作原理1.离心式泵与风机工作原理离心式泵与风机的工作原理是,叶轮高速旋转时产生的离心力使流体获得能量,即流体通过叶轮后,压能和动能都得到提高,从而能够被输送到高处或远处。
离心式泵与风机最简单的结构型式所示。
叶轮1装在一个螺旋形的外壳内,当叶轮旋转时,流体轴向流人,然后转90°进入叶轮流道并径向流出。
叶轮连续旋转,在叶轮人口处不断形成真空,从而使流体连续不断地被泵吸人和排出。
2.轴流式泵与风机工作原理.轴流式泵与风机的工作原理是,旋转叶片的挤压推进力使流体获得能量,升高其压能和动能,其结构如图所示。
叶轮1安装在圆筒形(风机为圆锥形)泵壳3 内,当叶轮旋转时,流体轴向流人,在叶片叶道内获得能量后,沿轴向流出。
轴流式泵与风机适用于大流量、低压力,电厂中常用作循环水泵及送引风机。
3.往复泵工作原理现以活塞式为例来说明其工作原理,如图所示。
活塞泵主要由活塞1在泵缸2内作往复运动来吸人和排除液体。
当活塞l 开始自极左端位置向右移动时,工作室3的容积逐渐扩大,室内压力降低,流体顶开吸水阀4,进入活塞1 所让出的空间,直至活塞1移动到极右端为止,此过程为泵的吸水过程。
当活塞1从右端开始向左端移动时,充满泵的流体受挤压,将吸水阀 4 关闭,并打开压水阀5而排出,此过程称为泵的压水过程。
泵与风机的并联,串联工作原理探讨
在工程领域中,泵和风机是两个重要的设备,它们有时会被同时使用。
它们的工作原理不同,但它们可以通过并联或串联的方式来进行工作。
在本文中,我们将探讨泵与风机的并联串联的工作原理。
首先,我们来讨论泵与风机的并联工作原理。
并联工作表示两个设备,如泵和风机,同时被连接到一个负载上,它们同时工作,以增加负载上的流量。
泵和风机的功率被平均分配给负载,较小的系统变化能得到更好的平衡,因此能够更好地满足负载需求。
其次,我们来介绍泵与风机的串联工作原理。
串联工作表示两个设备,如泵和风机,被连接到一个负载上,它们分别工作,以增加负载上的流量。
在这种情况下,当一个设备不能满足负载需求时,另一个设备将被触发,以维持一定的流量。
在这种情况下,可以减少运行电机的数量,以及能耗。
综上所述,泵与风机的并联串联工作原理是不同的,但它们可以通过合理的设置实现良好的效果。
这些原理在工业应用中有很多用处,因此,在设计及使用时,必须仔细考虑其工作原理,以达到最佳的效果。
泵与风机的并联串联工作原理是一个复杂的话题,它包括了许多细节,如泵的型号、风机的型号、系统的压力及流量等。
要弄清它们的工作原理,就需要根据实际的系统情况,加上正确的设备,以及有效地操作来实现。
综上所述,要想让泵和风机同时运行,需要良好的操作及安装,以及合理的工作原理。
泵与风机的工作原理
泵的工作原理是利用动力把液体从低压区域输送至高压区域。
泵内部通常有一个或多个叶轮,当叶轮旋转时,由于离心力的作用,液体被吸入泵内并被推向出口。
泵可以通过电力、气压或其它动力源来提供所需的动力。
风机的工作原理是利用动力将气体(通常是空气)由低压区域输送至高压区域。
风机内部通常有一个或多个叶轮,当叶轮旋转时,由于离心力的作用,空气被吸入风机内并被推向出口。
风机可以通过电力或使用风能等动力源来提供所需的动力。
需要注意的是,泵和风机的工作原理类似,都是通过旋转的叶轮将流体或气体推向出口。
不同之处在于泵用于液体的输送,而风机用于气体的输送。
泵与风机的运⾏第⼗章泵与风机的运⾏1.本章教学提纲:⼀、管路特性曲线及⼯作点: 泵与风机的性能曲线,只能说明泵与风机⾃⾝的性能,但泵与风机在管路中⼯作时,不仅取决于其本⾝的性能,⽽且还取决于管路系统的性能,即管路特性曲线.⼆、泵与风机的联合⼯作:当采⽤⼀台泵或风机不能满⾜流量或能头要求时,往往要⽤两台或两台以上的泵与风机联合⼯作。
泵与风机联合⼯作可以分为并联和串联两种。
三、运⾏⼯况的调节:泵与风机运⾏时,由于外界负荷的变化⽽要求改变其⼯况,⽤⼈为的⽅法改变⼯况点则称为调节。
⼯况点的调节就是流量的调节,⽽流量的⼤⼩取决于⼯作点的位置,因此,⼯况调节就是改变⼯作点的位置。
通常有以下⽅法,⼀是改变泵与风机本⾝性能曲线;⼆是改变管路特性曲线;三是两条曲线同时改变。
四、运⾏中的主要问题:(1)泵与风机的振动:汽蚀引起振动,旋转失速(旋转脱流)引起振动,机械引起的振动(2)噪声(3)磨损2.本章基本概念:⼀、管路特性曲线:管路中通过的流量与所需要消耗的能头之间的关系曲线⼆、⼯作点:将泵本⾝的性能曲线与管路特性曲线按同⼀⽐例绘在同⼀张图上,则这两条曲线相交于某⼀点,该点即泵在管路中的⼯作点。
三、泵与风机的并联⼯作:并联系指两台或两台以上的泵或风机向同⼀压⼒管路输送流体的⼯作⽅式,并联的⽬的是在压头相同时增加流量。
四、泵与风机的串联⼯作:串联是指前⼀台泵或风机的出⼝向另⼀台泵或风机的⼈⼝输送流体的⼯作⽅式,串联的⽬的是在流量相同时增加压头。
3.本章教学内容:第⼀节管路特性曲线及⼯作点泵与风机的性能曲线,只能说明泵与风机⾃⾝的性能,但泵与风机在管路中⼯作时,不仅取决于其本⾝的性能,⽽且还取决于管路系统的性能,即管路特性曲线。
由这两条曲线的交点来决定泵与风机在管路系统中的运⾏⼯况。
⼀、管路特性曲线现以⽔泵装置为例,如右图所⽰,泵从吸⼈容器⽔⾯A—A处抽⽔,经泵输送⾄压⼒容器B—B,其中需经过吸⽔管路和压⽔管路。
下⾯讨论管路特性曲线。
第十章泵与风机的运行1.本章教学提纲:一、管路特性曲线及工作点: 泵与风机的性能曲线,只能说明泵与风机自身的性能,但泵与风机在管路中工作时,不仅取决于其本身的性能,而且还取决于管路系统的性能,即管路特性曲线.二、泵与风机的联合工作:当采用一台泵或风机不能满足流量或能头要求时,往往要用两台或两台以上的泵与风机联合工作。
泵与风机联合工作可以分为并联和串联两种。
三、运行工况的调节:泵与风机运行时,由于外界负荷的变化而要求改变其工况,用人为的方法改变工况点则称为调节。
工况点的调节就是流量的调节,而流量的大小取决于工作点的位置,因此,工况调节就是改变工作点的位置。
通常有以下方法,一是改变泵与风机本身性能曲线;二是改变管路特性曲线;三是两条曲线同时改变。
四、运行中的主要问题:(1)泵与风机的振动:汽蚀引起振动,旋转失速(旋转脱流)引起振动,机械引起的振动(2)噪声(3)磨损2.本章基本概念:一、管路特性曲线:管路中通过的流量与所需要消耗的能头之间的关系曲线二、工作点:将泵本身的性能曲线与管路特性曲线按同一比例绘在同一张图上,则这两条曲线相交于某一点,该点即泵在管路中的工作点。
三、泵与风机的并联工作:并联系指两台或两台以上的泵或风机向同一压力管路输送流体的工作方式,并联的目的是在压头相同时增加流量。
四、泵与风机的串联工作:串联是指前一台泵或风机的出口向另一台泵或风机的人口输送流体的工作方式,串联的目的是在流量相同时增加压头。
3.本章教学内容:第一节管路特性曲线及工作点泵与风机的性能曲线,只能说明泵与风机自身的性能,但泵与风机在管路中工作时,不仅取决于其本身的性能,而且还取决于管路系统的性能,即管路特性曲线。
由这两条曲线的交点来决定泵与风机在管路系统中的运行工况。
一、管路特性曲线现以水泵装置为例,如右图所示,泵从吸人容器水面A—A 处抽水,经泵输送至压力容器B—B,其中需经过吸水管路和压水管路。
下面讨论管路特性曲线。
第一章 泵与风机综述第一节 泵与风机的分类和型号编制一、 泵与风机的分类泵与风机是利用外加能旦输送流体的流体机械。
它们大量地应用于燃气及供热与通风 专业。
根据泵与风机的工作原理,通常可以将它们分类如下:(一)容积式容积式泵与风机在运转时,机械内部的工作容积不断发生变化,从而吸入或者排出流体。
按其结构不同,又可再分为;1 .往复式这种机械借活塞在汽缸内的往复作用使缸内容积反复变化,以吸入和排出流体,如活 塞泵(piston pump)等;2 .回转式机壳内的转子或者转动部件旋转时,转子与机壳之间的工作容积发生变化,借以吸入和 排出流体,如齿轮泵(gear pump)、螺杆泵(screw pump)等。
(二)叶片式叶片式泵与风机的主要结构是可旋转的、带叶片的叶轮和固定的机壳。
通过叶轮的旋 转对流体作功,从而使流体获得能量。
根据流体的流动情况,可将它们再分为下列数种: 1 .离心式泵与风机; 2 .轴流式泵与风机;3 .混流式泵与风机,这种风机是前两种的混合体。
4 .贯流式风机。
(三)其它类型的泵与风机如喷射泵(jet pump )、旋涡泵(scroll pump)、真空泵(vacuum pump)等。
本篇介绍和研讨制冷专业常用的泵与风机的理论、性能、 运行、调节和选用方法等知识。
由 于制冷专业常用泵是以不可压缩的流体为工作对象的。
而风机的增压程度不高(通常惟独 9807Pa 或者 1000mmH 2O 以下),所以本篇内容都按不可压缩流体进行论述。
二、 泵与风机的型号编制 (一)、泵的型号编制1 、离心泵的基本型号及其代号泵的型式大型立式单级单吸离心泵型式代号 沅江单级单吸离心泵泵的型式型式代号 IS.B2、混流泵的基本型号及其代号3、轴流泵的基本型号及其代号泵的形式 轴流式 立式 卧式 半调叶式 全调叶式 型式代号 Z L W B Q除上述基本型号表示泵的名称外,还有一系列补充型号表示该泵的性能参数或者结构特 点。
泵与风机的并联,串联工作原理探讨泵与风机的并联,串联工作原理探讨泵和风机是工程中最常用的推动机械设备,作为重要组成部分,它们能够将其他设备中多余的热量转换成动能,有效地驱动设备运行。
一般来说,泵和风机可以以单独方式一起使用,也可以通过并联和串联的方式联合使用,从而提高效率并降低成本。
那么,泵与风机的并联串联工作原理是什么?首先,需要了解的是,泵和风机的主要功能是把热能转换成动能,以给设备提供运行动能。
泵和风机可以彼此独立运行,但也可以通过串联和并联的方式联合起来使用,以增加效率,减少成本。
一、泵和风机并联工作原理并联泵和风机的结构是将两个设备安装在一起,让它们共同驱动一个设备。
泵和风机的运行有较大的差别,泵的工作速度是不可调节的,而风机的工作速度可以由控制器调节。
因此,当设备的负荷发生变化时,风机的工作速度可以调节,使泵和风机的输出能量协调,以满足负荷的变化。
并联泵和风机的优点是能够降低设备的额定负荷,从而减少设备的电力损耗。
同时,可以更精确地控制设备的负荷,降低传动设备的振动,缩短设备的停机时间,减少维修和检修的次数,并有助于提高工作效率。
二、泵和风机串联工作原理串联泵和风机的结构是将两个设备以串联的方式安装在一起,以驱动某一设备。
其中,泵的压力是固定的,而风机的压力可以由控制器调节,以适应设备的变化。
串联泵和风机的优点是泵的效率高,而风机的效率低,可以有效地提高设备的效率,节约能源,并有助于降低总体系统的损耗,缩短设备的停机时间,减少维修和检修次数。
综上所述,泵和风机的并联串联工作原理是将两个设备以一定方式安装,以满足不同设备的不同工作要求。
这种结构可以降低负荷,提高效率,减少损耗,并有助于提高设备的运行效率。