泵与风机的分类及工作原理(可编辑修改word版)
- 格式:docx
- 大小:81.58 KB
- 文档页数:4
泵与风机的分类及工作原理..泵和风机是工业和生活中常见的设备,它们都是将流体或气体运动的机械。
本文将详细介绍泵与风机的分类及工作原理,并对常见的泵和风机进行简要介绍和分析。
一、泵的分类及工作原理泵是一种将液体或气体从一个地方输送到另一个地方的机械。
泵的分类主要根据其工作原理和结构分为以下几种:1.位移泵位移泵是一种常见的泵,它主要由一个活塞或转子和固定壳体组成。
当活塞或转子运动时,泵室里的体积发生改变,从而使液体或气体被吸入或排出。
常见的位移泵有柱塞泵、齿轮泵和螺杆泵等。
2.离心泵离心泵是利用离心力将液体或气体从低压区域输送到高压区域的一种泵。
它主要由旋转轴和离心叶片组成,当旋转轴转动时,离心力使液体或气体被向外挤压,从而达到输送目的。
离心泵适用于输送许多种液体,如水、油、气和各种化工介质。
3.轴流泵轴流泵是利用轴向力将液体或气体从低压区域输送到高压区域的一种泵。
它主要由叶轮和固定外壳组成,当旋转叶轮时,液体或气体在叶轮的冲击作用下被向前推动,从而达到输送目的。
轴流泵适用于输送大量液体或气体,如排水、灌溉、空调和通风等。
二、风机的分类及工作原理风机是一种将气体运动的机械,主要被用于通风、换气和风力发电等领域。
根据其工作原理和结构,风机可以分为以下几种:1.轴流风机轴流风机是一种将气体沿轴向运动的风机,主要由叶轮和外壳组成,在旋转时,叶轮的冲击作用使得气体被沿轴向推进,从而产生风流。
轴流风机适用于需要大量气体流动的环境,如矿山、隧道和建筑通风等。
2.离心风机离心风机是一种将气体沿射流方向运动的风机,主要由叶轮、进出口和外壳组成,当叶轮旋转时,气体被向外挤压,产生射流效应,从而产生风流。
离心风机适用于需要中等或较高压力的环境,如工厂、检测实验室和船舶空调等。
3.混流风机混流风机是一种将气体沿射流和轴向运动的风机,它是轴流风机和离心风机的结合,主要由叶轮和外壳组成。
混流风机在性能上介于轴流风机和离心风机之间,适用于对风量和风压要求都比较高的环境,如烘干、冷凝和饲料加工等。
流体泵和风机流体机械的分类和工作特性流体泵和风机是流体机械中常见的两种装置,它们在工程领域中发挥着重要作用。
本文将对流体泵和风机的分类和工作特性进行论述。
一、流体泵的分类和工作特性1.1 分类流体泵按工作原理可分为离心泵、容积式泵和轴流泵。
离心泵是最常见的一种泵,其工作原理是通过旋转叶轮产生离心力,将液体从进口处吸入并通过出口处排出,常用于输送液体的大部分工作场景。
容积式泵根据容积的变化来工作,通过增大和减小容积来实现液体的吸入和排出。
容积式泵的吸入和排出容积是通过运动零件的运动实现的,例如柱塞泵、齿轮泵和螺杆泵等。
轴流泵主要通过叶片所产生的轴向势能将液体推送出来,其工作原理类似于风机,常用于疏浚和冷却系统中。
1.2 工作特性流体泵在工作时具有以下特性:(1)流量特性:流体泵的流量特性是指泵在不同工况下流量与扬程、转速、叶轮直径等参数之间的关系。
一般来说,流量特性可以分为恒流量特性、变流量特性和常压特性。
(2)扬程特性:扬程特性是指泵在不同工况下扬程与流量、转速、叶轮直径等参数之间的关系。
扬程特性可以分为负责扬程特性、线性特性和非线性特性。
(3)效率特性:效率特性是指泵的效率与流量、扬程、转速之间的关系。
通常情况下,泵在额定工况下具有最高效率。
(4)NPSH特性:NPSH特性是指泵的净正吸入压头与流量之间的关系。
NPSH特性对于泵的工作稳定性和正常运行至关重要。
二、风机的分类和工作特性2.1 分类风机按工作原理可分为离心风机、轴流风机和混流风机。
离心风机是最常见的一种风机,其工作原理是通过旋转叶轮产生离心力,将空气从进口处吸入并通过出口处吹出。
离心风机的出口压力相对较高,适用于需要较大压升且流量较小的场景。
轴流风机主要通过叶片所产生的轴向势能将空气推送出来,其工作原理类似于轴流泵。
轴流风机的流量较大,适用于需要大流量但不需要很高压力的场景。
混流风机是离心风机和轴流风机的结合,既具有离心风机的较高压升特性,又有轴流风机的较大流量特性。
泵与风机的分类及其工作原理导言:泵和风机作为流体传动设备,在许多工业和民用领域都起着重要的作用。
本文将介绍泵与风机的分类以及它们的工作原理,帮助读者更好地理解和应用这些设备。
一、泵的分类及工作原理泵是一种将液体或气体从低压区域转移到高压区域的装置。
根据其工作原理和用途,泵可以分为许多不同的类型。
1. 位移泵位移泵通过改变容积来将液体或气体传送到高压区域。
常见的位移泵包括柱塞泵、活塞泵、齿轮泵等。
这些泵的工作原理是利用泵腔的容积变化,将液体或气体吸入并排出。
2. 风动泵风动泵是利用压缩空气的动力来实现液体的输送。
当压缩空气通过泵的空气马达时,驱动液体的进出。
风动泵具有简单、可靠的特点,广泛应用于化学、石油和制药等行业。
离心泵是最常见的一种泵,通过旋转叶轮来提高流体的压力。
当液体进入泵体后,旋转叶轮会产生离心力,将液体快速推向出口。
离心泵适用于输送液体,具有高效、稳定的特点。
4. 污水泵污水泵用于输送浑浊的、含有固体颗粒的液体。
这些固体颗粒的直径通常比较大,不适合通过其他类型的泵来处理。
污水泵的工作原理是通过大功率电动机驱动叶轮旋转,将污水从低处抽取到高处。
二、风机的分类及工作原理风机是一种将气体从低压区域运送到高压区域的装置。
根据其工作原理和用途,风机可以分为多种类型。
1. 离心风机离心风机是最常见的一种风机,通过旋转叶轮来增加气体的压力。
当气体进入风机后,旋转叶轮会产生离心力,推动气体快速流向出口。
离心风机适用于通风、空调、烟气排放等领域。
轴流风机又称为推进风机,采用叶轮绕轴线旋转的方式来增加气体的压力。
轴流风机适用于需要大量气体流动的场合,如船舶、消防等领域。
3. 混流风机混流风机是离心风机和轴流风机的结合,同时兼具两者的特点。
混流风机在压力和流量之间取得了平衡,适用于对气体流量和压力都有要求的场合。
4. 射流风机射流风机是一种通过高速射流来产生负压的风机。
射流风机适用于排除局部污染和减少气体浓度的场合,如化工、实验室等领域。
第六章泵与风机的分类及工作原理
第一节泵与风机的分类及其工作原理
一、泵与风机的分类
1.按工作原理分
2.按产生的压力分
泵按产生的压力分为:低压泵:压力在2MPa 以下;中压泵:压力在2~6MPa;高压
泵:压力在6MPa 以上。
风机按产生的风压分为:通风机:风压小于15kPa;鼓风机:风压在15~340kPa 以内;
压气机:风压在340kPa 以上。
通风机中最常用的是离心通风机及轴流通风机,按其压力大小又可分为:低压离心通风机:风压在1kPa 以下;中压离心通风机:风压在1~3kPa;高压离心通风机:风压在3~15kPa;低压轴流通风机:风压在0.5kPa 以下;高压轴流通风机:风压在0.5~5kPa。
二、泵与风机的工作原理
1.离心式泵与风机工作原理
离心式泵与风机的工作原理是,叶轮高速旋转时产生的离心力使流体获得能量,即流
体通过叶轮后,压能和动能都得到提高,从而能够被输送到高处或远处。
离心式泵与风机最简单的结构型式所示。
叶轮1 装在一个螺旋形的外壳内,当叶轮旋转时,流体轴向流人,然后转90°进入叶轮流道并径向流出。
叶轮连续旋转,在叶轮人口处不断形成真空,从而使流体连续不断地被泵吸人和排出。
2.轴流式泵与风机工作原理.
轴流式泵与风机的工作原理是,旋转叶片的挤压推进力使流体获得能量,升高其压能
和动能,其结构如图所示。
叶轮1 安装在圆筒形(风机为圆锥形)泵壳 3 内,当叶轮旋转时,流体轴向流人,在叶片叶道内获得能量后,沿轴向流出。
轴流式泵与风机适用于大流量、低压力,电厂中常用作循环水泵及送引风机。
3.往复泵工作原理
现以活塞式为例来说明其工作原理,如图所示。
活塞泵主要由活塞 1 在泵缸 2 内作往
复运动来吸人和排除液体。
当活塞l 开始
自极左端位置向右移动时,工作室 3 的容
积逐渐扩大,室内压力降低,流体顶开吸
水阀4,进入活塞 1 所让出的空间,直至
活塞1 移动到极右端为止,此过程为泵的
吸水过程。
当活塞 1 从右端开始向左端移动时,充满泵的流体受挤压,将吸水阀 4 关闭,并
打开压水阀5 而排出,此过程称为泵的压水过程。
活塞不断往复运动,泵的吸水与压水过程就连续不断地交替进行。
此泵适用于小流量、高压力,电厂中常用作加药泵。
4.齿轮泵工作原理
齿轮泵具有一对互相啮合的齿轮,齿轮l(主动轮)固定在主动轴上,轴的一端伸出壳外
由原动机驱动,另一个齿轮2(从动轮)装在另一个轴上,齿轮旋转时,液体沿吸油管3 进入
到吸人空间,沿上下壳壁被两个齿轮分别挤压到排出空间汇合(齿与齿啮合前),然后进入压油管4 排出。
5.螺杆泵工作原理
螺杆泵是一种利用螺杆相互啮合来吸人和排出液体的回转式泵。
螺杆泵的转子由主动
螺杆1(可以是一根,也可有两根或三根)和从动螺杆2 组成。
主动螺杆与从动螺杆做相反方
向转动,螺纹相互啮合,流体从吸人口进入,被螺旋轴向前推进增压至排出口。
此泵适用于高压力、小流量。
电厂中常用作输送轴承润滑油及汽轮机调速器用油的油泵。
6.喷射泵工作原理
如左图所示,将高压的工作流体7,由压力管送人工作喷嘴6,经喷嘴后压能变成高速动能,将喷嘴外围的液体(或气体)带走。
此时因喷嘴出口形成高速使扩散室2 的喉部吸人室
5 造成真空,从而使被抽吸流体8 不断进入与工作流体7 混合,然后通过扩散室将压力稍升高输送出去。
由于工作流体连续喷射,吸人室继续保持真空,于是得以不断地抽吸和排出流体。
工作流体可以为高压蒸汽,也可为高压水,前者称为蒸汽喷射泵,后者称为射水抽气器。
在电厂中都可用作抽出凝汽器中的空气。
7.水环式真空泵工作原理
如上右图为水环式真空泵的装置结构图。
圆柱形泵缸 2 内注入一定量的水,星形叶轮 1
偏心地装在泵缸内,当叶轮旋转时,水受离心力作用被甩向四周而形成一个相对于叶轮为偏心的封闭水环。
被抽吸的气体沿吸气管7 及接头5 由吸气孔 3 进入水环与叶轮之间的空间,右边月牙形部分,由于叶轮的旋转,这个空间容积由小逐渐增大,因而产生真空抽吸气体。
随着叶轮的旋转,气体进入左边月牙形部分。
因叶轮是偏心旋转的,此空间逐渐缩小,气体逐渐受到压缩升压,气与水便由排气孔4 经接头6 沿排气管8 进入水箱9 中,自动分离后再
由放气管12 放出。
废弃的水和空气一起被排到水箱里。
第二节泵与风机主要的性能参数
泵与风机的主要性能参数有流量Qv、能头(泵称为扬程)或压头(风机称为全压或风压)、功率户、效率,转速,泵还有表示汽蚀性能的参数,即汽蚀余量或吸上真空高度。
这些参数反映
了泵与风机的整体性能,现分别介绍如下:
1.流量
流量是指单位时间内所输送的流体数量。
它可以用体积流量qv 表示,也可以用质量流量qm 表示。
体积流量的常用单位为m3
/s 或m3
/h,质量流量的常用单位为kg/s 或t/h。
质量流量与体积流量的关系为
当温度t=0℃时,水的密度为1000kg/m3
’ ,空气的密度为1.293kg/m3。
2.能头
(1)泵的能头泵的能头称为扬程,系指单位重量液体通过泵后所获得的能量,即流体从泵进口断面l 一1 到泵出口断面2—2 所获得的能量增加值,则水泵的扬程为
由流体力学可知,单位重量液体的机械能通常由压力水头、速度水头和位置水头三部分组成,即
泵的扬程可写为
(2)风机的能头风机的能头称为全压或风压,包括静压和动压。
全压系指单位体积气体流过风机时所获得的总能量增加值,用符号户表示,故风机的全压为
对风机来说,由于输送的是气体(可压缩性流体),即使进出口风管直径相差不大,但流
3.功率与效率
泵与风机的功率可分为有效功率、轴功率和原动机功率。
有效功率是指单位时间内通过泵或风机的流体所获得的功率,即泵与风机的输出功率,
轴功率即原动机传到泵或风机轴上的功率,又称输入功率。
轴功率与有效功率之差是泵与风机内的损失功率。
泵与风机的效率为有效功率与轴功率之比。
效率的表达式为
4.转速
转速系指泵或风机轴每分钟的转数,用符号n 表示,单位为r/min。
除上述五个参数外,还有比转数ny、允许汽蚀余量[△h]或允许吸上真空高度[Hs]。