CRH2型动车组牵引电机速度传感器故障的分析正式样本
- 格式:docx
- 大小:144.52 KB
- 文档页数:10
关于CRH2型动车组牵引变流器工作原理及常见故障分析作者:王洪涛来源:《中国科技博览》2018年第34期[摘要]本文介绍了CRH2型动车组动力单元中牵引变流器的结构及工作原理,动车组运用过程中常见故障,并详细介绍了故障处理方法。
[关键词]CRH2型动车组;牵引变流器;常见故障中图分类号:TD540 文献标识码:A 文章编号:1009-914X(2018)34-0033-01一、高压及牵引控制系统概述动车组由动车、拖车组成,其中动车含有牵引驱动系统,拖车不含牵引等高压系统。
动车组通过车顶受电弓将25kv、50Hz单相交流电引致牵引变压器,牵引变压器将单相交流电转化为牵引变流器及客室、风机、辅助控制用电设备等。
动力单元列车一般含有一台牵引变压器,每台牵引变压器供两台牵引变流器工作;每辆动车含有一台牵引变流器,每台牵引变流器驱动4台牵引电机。
牵引工况下,牵引变流器将接触网25kv、50Hz单相交流电转化为牵引电机所需电源,驱动牵引电机;制动工况下,牵引变流器将牵引电机转化的电能反馈给接触网。
牵引电机一般采用3相鼠笼型感应电机,牵引电机非传动端安装有速度传感器,传感器将采集的数据提供给牵引变流器及制动控制装置。
其中拖车通过轴端速度传感器采集速度信号,提供给本车制动控制装置。
二、牵引变流器工作原理牵引变流器包括主电路设备、控制电路、冷却系统组成,其中主电路包括电平脉冲整流模块、中间直流电路、三电平逆变模块、交流接触器、充电单元、继电器单元等;控制电路包括无触点控制装置、门极电源等;冷却设备包括主风机、辅助风机、热交换器等。
整流部分将单相交流电转化为中间直流电压,逆变部分将中间直流电压转化为三相交流电,供牵引电机使用。
2.1 整流部分整流部分包括单相3级PWM脉冲整流模块,其将牵引变压器二次侧电压1500V、50Hz整流成中间直流电压。
通过无触点控制装置的IPM选通控制,实现输出直流电压2600~3000V定电圧控制、牵引变流器原边侧电压电流功率因数1控制。
需拆接线更换的变电站指示灯的研究与应用,使得指示灯故障或损坏、维修更换时,能像家里更换灯泡或日光灯一般方便,直接插拔更换而无需拆接线,减少和避免了拆柜、查线等繁琐过程,既简单方便,又省时高效,解决了变电站更换指示灯时需要停电和进行一系列操作等问题。
4结论对于无需拆接线更换的变电站指示灯的研究与使用,具有如下重大意义:(1)该指示灯使用效果良好,无需拆接线的连接机构方便地实现了指示灯的插拔。
(2)该指示灯无需拆接线的底座方便了与指示灯连接,提高了指示灯运行、维修、更换等工作的效能。
(3)该指示灯故障时维修更换无需拆接线,可减少拆线、测试、重新接线并安装指示灯等众多繁锁耗时的工序,一定程度上降低了变电运维风险。
[参考文献][1]冀小叶.KYN28-12型变电柜的设计改进[J].机械管理开发,2019,34(4):147-148.[2]薛忠刚.高压变电柜自动控制装置在电弧加热器中的应用[J].中国新技术新产品,2010(24):138.[3]张飞,张磊,栗世尧,等.智能消防应急指示灯设计[J].科技资讯,2017,15(29):14-15.[4]刘良瑞.基于实物模型的点、线、面投影教学探析[J].湖北农机化,2018(9):20-22.收稿日期:2019-09-27作者简介:温喜灵(1993—),男,广东梅州人,助理工程师,继保自动化一班员,研究方向:电气工程及其自动化。
图4指示灯变电柜面板示意图动车组牵引电机故障分析及诊断王世雄(中车永济电机有限公司,山西运城044500)摘要:基于目前我国高速动车组列车的发展情况,为提升动车组牵引电机运行的稳定性,保证动车组安全运行,通过文献综述法、对比法等研究手段对动车组牵引电机故障分析及诊断进行了研究,提出了基于SVM 的动车组牵引电机故障诊断方法、基于粒子群优化支持向量机的动车组牵引电机故障诊断方法等,此类故障分析及诊断方法均行之有效。
关键词:动车组;牵引电机;结构功能;故障0引言近年来,我国加大了对铁路运营的研究力度,尤其是与人们日常生活息息相关的动车组列车更是受到重视,复兴号的上线运营,大幅度提高了动车组列车的速度。
CRH2型动车组牵引变流器MFD故障的分析0 引言在故障实例中,牵引变流器(以下简称CI)在运行途中多次发生输入接触器K断开的现象,但车辆回段入库后做高压启动试验,K接触器动作正常,通过观察故障现象参数,下载CI的故障历史数据,综合分析,都可以判断出故障原因是K接触器本身辅助触点接触不良(亦称触点卡分)。
一.CI途中闪报K接触器断开故障分析1.1 故障现象2014年8月18日,武汉局配属的CRH2型2053列动车组在连续多天的运行途中,报6车的K接触器不吸合故障,同时MON网络控制系统记录MFD牵引不动作故障,通过段方人员的添乘观察描述,该故障多发生在过分相后,每天车辆运行10多个小时,故障现象发生好几次,库内试验检测、启动试验、模拟过分相,故障现象一直不重现。
1.2 基于电路原理的故障分析法运行途中MON信息显示器上显示的故障信息,2053列动车组与另一列CRH2A型动车组重联运行,2053列的1车担当操纵主控端,该时刻,车辆在升弓合主断有电状态,牵引级位手柄在零位,同时也未进行制动操作,所以级位显示“OFF”,由于方向手柄还在前进位,所以各节车厢CI的输入接触器K都应处于闭合状态,画面中2053列6车K未闭合,说明6车CI处于故障状态,由于故障,6车CI的直流电压反馈值也比其他CI低好几百伏。
牵引级位手柄提到2级位(即P2)运行,编组中各个正常CI的直流电压设定值、反馈值都升到3000V左右,而故障的2053列6车该电压只有2500多伏。
从图1所示的三点式脉冲整流器电路图我们知道,车辆在升弓合主断VCB的有电状态下,当司机操纵方向手柄(前进或后退)时,预充电接触器CHK先闭合,主变压器三次侧单相400V电压(对应网压25KV)经CHK接触器、CHT升压变压器、CHDd整流桥,输出1890V直流电压,给CI中间回路支撑电容预充电,CHK动作1秒即断开,K接触器投入,主变压器二次侧单相1500V电压(对应网压25KV)经过K接触器送到U、V两相整流器输入端,整流器输出继续给中间回路支撑电容充电到2500多伏,当司机提牵引级位手柄时,如上图提到P2级位,整流器IGBT栅极牵引启动,整流输出电压继续上升到3000V左右,同时逆变器IGBT栅极牵引启动,牵引电动机给电流。
CRH2动车组故障处理手册目录1、牵引变流器传输不良〔002〕2、牵引变流器故障1〔004〕3、牵引变流器故障2〔005〕4、制动控制装置传输不良〔052〕5、制动控制装置故障〔059〕6、制动控制装置速度发电机断线1〔060〕7、制动控制装置速度发电机断线2〔061〕8、制动控制装置速度发电机断线3〔062〕9、制动控制装置速度发电机断线4〔063〕10、辅助电源装置通风机停顿〔143〕11、辅助电源装置故障〔135〕12、辅助电源装置ACVN1跳闸〔146〕13、车门关闭故障〔第1位〕〔108〕14、车门关闭故障〔第2位〕〔109〕15、车门关闭故障〔第3位〕〔110〕16、车门关闭故障〔第4位〕〔111〕17、制动缺乏〔123〕18、牵引变流器通风机停顿〔137〕19、牵引电机通风机1停顿〔137〕20、牵引电机通风机2停顿〔138〕21、牵引变流器微机故障〔139〕22、牵引变流器故障〔141〕23、主电路接地〔142〕24、辅助电源装置ATN跳闸〔148〕25、抱死1〔151〕26、抱死2〔152〕27、制动不缓解〔153〕28、轴温1〔154〕29、轴温2〔155〕30、主变压器一次侧过电流〔162〕31、主变压器三次侧过电流〔163〕32、主变电压器三侧接地〔164〕33、主变压器油泵停顿〔165〕34、辅助电源装置传输不良〔204〕35、辅助电源装置ARfN2跳闸〔144〕36、空调装置传输不离〔302〕37、空调装置1逆变器传输不良〔308〕38、空调装置2逆变器传输不良〔309〕39、辅助电源装置VDTN跳闸〔166〕40、乘客信息显示器1传输不良〔611〕41、乘客信息显示器1故障〔617〕42、乘客信息显示器2传输不良〔619〕43、乘客信息显示器2故障〔625〕44、目的地显示器1故障〔631〕45、目的地显示器2故障〔632〕46、自动播送装置传输不良〔641〕47、自动播送装置故障〔646〕48、距离传感器2传输不良〔657〕49、距离传感器1传输不良〔661〕50、距离传感器1异常〔665〕51、距离传感器2异常〔666〕52、车上检查开关“开〞〔695、696〕53、编组间传输不良〔826〕54、监控器传输不良中央1〔830、832、850、852〕55、监控器传输不良中央2〔831、833、851、853〕56、监控器传输不良终端〔834-841,854-861〕57、辅助电源装置ACVN2跳闸〔147〕58、空调装置1通风机异常〔114〕59、空调装置2通风机异常〔115〕60、空调装置1压缩机异常〔116〕61、空调装置2压缩机异常〔117〕62、空调装置1高压开关动作〔118〕63、空调装置2高压开关动作〔119〕64、空调装置1加热器异常〔120〕65、空调装置2加热器异常〔121〕66、空调装置1斩波器异常〔122〕67、空调装置2斩波器异常〔124〕68、空调装置1VVVF异常〔125〕69、空调装置2VVVF异常〔126〕70、空调装置1CVCF异常〔127〕71、空调装置2CVCF异常〔128〕72、空调装置1排水泵异常〔362〕73、空调装置2排水泵异常〔363〕74、ACK1接通不良〔170〕75、受电弓上升位置异常〔194〕76、污物槽100%〔196〕77、污物槽80%〔197〕78、分相区信号处理装置重故障〔682〕79、LKJ装置传输不良〔911〕一、牵引变流器传输不良故障代码:002行车控制要求:可以维持运行1、故障显示当出现牵引变流器传输不良故障时,在监视屏主菜单页面下方闪现故障提示界面,并伴有声音报警。
CRH2型动车组牵引变流器故障分析和处理摘要:牵引变流器具有转换直流制和交流制间的电能量,对各种牵引电动机起控制和调节的作用,能够控制机车的运行,是机车中的重要设备,一旦牵引变流器出现故障将会影响机车的正常运行,基于此本文对牵引变流器进行了分析,并针对CRH2型动车组在运行过程中牵引变流器经常会出现的故障进行了分析,并提出了常见故障的处理措施。
关键词:CRH2型动车组;牵引变流器;故障;处理引言牵引变流器作为CRH2型动车组的重要组成部分,它由四台牵引电机电源控制,由脉冲整流器直流平滑电路、真空交流、逆变器、无触点控制装置、接触器主电路设备组成。
它是动车组的传动装置,能够驱动动车组运行,但是牵引变流器在使用过程中经常会出现故障,影响了动车组的稳定、可靠运行,因此需要采取措施解决这些故障,从而保证动车组可靠、安全运行。
1牵引变流器的主要构成及参数CRH2型动车组牵引变流器主要由功率单元、真空交流接触器、交流电压传感器、过压抑制可控硅单元、充电单元、交流电流传感器、电阻单元、控制电源单元和电动送风机、无触点控制装置(变流器控制单元)等构成。
其中,功率单元主要包括:主开关元件IGBT或IPM和滤波电容器,不同形式的功率单元由不同的元件组成,并且元件的数量也不相同。
过压抑制可控硅单元包括:驱动电路和直流电压传感器(DCPT)。
充电单元包括:整流器、变压器、滤波电容器预充电用接触器。
电阻单元包括:放电电阻、过载电压抑制电阻。
电动送风机包括:主/辅助电动通风机,其中辅助电动通风机用于密闭室冷却。
CRH2型动车组的牵引变流器的主要参数有:(1)控制电源和辅助电源的电压为100V直流;(2)整流器和逆变器的输入电压为1650V的交流电压,中间直流电路的电压为3050V直流;(3)三相交流电源电压为400V;(4)每台牵引电机的输出功率为400kW。
2牵引变流器的结构2.1主电路主电路系统一般以两辆车为一个单元,其构成如图1所示,其电源为单相交流,受电弓引入,牵引变压器的原边绕组中主电路的开闭由VCB控制,同时将电流引入其它牵引变流器脉冲整流器中。
动车电机故障速度传感器波形筛选分析发布时间:2021-07-01T16:25:16.667Z 来源:《科学与技术》2021年第29卷第7期作者:吕娟[导读] 公司某型号系列牵引电机动车组中速度传感器易发故障,如果发现不及时或处理不当,会严重影响动车组的正常运行吕娟中车永济电机有限公司山西永济 044502[摘要] 公司某型号系列牵引电机动车组中速度传感器易发故障,如果发现不及时或处理不当,会严重影响动车组的正常运行。
通过对返厂检修电机的速度传感器研究分析,利用波形筛选及X-RAY检测的方法,总结出此类故障出现的原因,并提出针对性的故障处理方案和预防措施。
[关键词] 故障波形筛选处理方案预防措施前言速度传感器是动车电机的主要部件,也是易发故障的部件。
为进一步降低速度传感器在线故障及“抱死”安监故障,需进一步对其进行故障现象进行研究,制定新的筛选方案。
一、故障概况上年度检修某动车系列牵引电机2632台,涉及速度传感器5264支,厂外报故障传感器质量问题11起。
由于该类故障属于动态运行中出现的故障,静态试验时无法检测,且对动车组时速有一定要求(大于10km/h)。
一旦发生此类故障,将直接影响动车组在线路上的正常运行及行车安全。
二、原因查找及分析(一)、故障原因分析通过对故障案例逐一分析并将问题分类后发现,电机速度传感器故障是一项主因,细分牵引电机传感器故障可归为三类:第一类,传感器阻值故障;第二类,传感器绝缘故障;第三类,传感器检测面擦伤。
(二)、故障预防措施及处理方案通过对以上传感器故障产生的原因进行分析,现从源头质量控制、过程质量卡控制及应急故障处理三个方面对牵引电机传感器故障预防措施及处理方案进行探讨。
1.源头质量控制通过对牵引电机速度传感器三类故障的分析,可以知道,牵引电机返厂检修过程中,传感器安装未到位会引起调试时的动态故障。
因此,针对此情况,可采取加强PG/SS传感器拆装过程中的检测面状态检查的方法,并严格落实传感器阻值及绝缘测试项目,加强质量控制等措施,从源头质量控制上来最大化避免此类故障的发生。
地铁车辆速度传感器故障原因分析摘要:速度传感器作为地铁车辆上核心部件之一,其性能的稳定可靠对于地铁安全运营至关重要,针对地铁车辆速度传感器的故障问题,文章通过速度传感器原理及现场故障分析,指出速度传感器存在的问题,提出了后续的检查措施。
关键词:电机;速度传感器;转速;信号;磁场电客车在检修作业时,出现列车报速度传感器4故障。
为消除列车正线运营隐患,车辆检修人员需要查找处理速度传感器故障的原因,并制定相应的预防维护措施。
1.速度传感器相关参数1.技术参数外罩材料:不锈钢工作电压:7-24V测试电阻:10.8Ω频率:0-15Hz输出:2.5V(高), 300mV(低)速度传感器与测速齿轮间隙:0.127-2.54mm1.1.结构及技术说明(如图1所示)图1 速度传感器外形图速度传感器用于给空气制动系统提供轴速信号,传感器头和线缆为整体部件,头部采用圆柱螺栓固定连接,尾端采用永贵的快速连接器连接,线缆为四芯屏蔽电缆。
1.速度传感器工作原理列车所使用的速度传感器是一种霍尔效应传感器。
霍尔效应在1879年被E.H. 霍尔发现,它定义了磁场和感应电压之间的关系,这种效应和传统的感应效果完全不同。
当电流通过一个位于磁场中的导体的时候,磁场会对导体中的电子产生一个横向的作用力,从而在导体的两端产生电压差。
系统结构框图如图 2。
当测速齿轮在磁场中转动时,在霍尔效应的作用下,速度传感器会产生一些列的脉冲信号,制动系统可以通过每分钟的脉冲数来计算轴的转速。
速度传感器为非接触式旋转检测有源双通道型速度传感器,安装在非驱动端端盖上部,检测电机转速和旋转方向。
TQG19速度传感器是双通道霍尔速度传感器,传感器安装于各种交通运输工具上的转动装置的箱体或箱盖上,被测转动物体为模数等于 2.75的导磁性齿轮。
它由永久磁钢、磁能转换器、放大整形电路、外壳、屏蔽电缆线等组成。
输出信号波形为方波,与交通运输工具上的测速控制装置配合使用,能检测转动装置的转速以及交通运输工具的速度,适用于各种类型的交通运输工具。
目录第一部分牵引供电系统故障 --------------------------------------------------------------------------------------------- - 1 -一.受电弓故障 ----------------------------------------------------------------------------------------------------------- -1-受电弓风路异常案例分析-------------------------------------------------------------------------------------------- - 1 -受电弓电路异常案例分析-------------------------------------------------------------------------------------------- - 3 -小结——受电弓故障排查与处理----------------------------------------------------------------------------------- - 6 -二.真空断路器故障--------------------------------------------------------------------------------------------------------- -9-VCB故障案例分析 ---------------------------------------------------------------------------------------------------- - 9 -小结——真空断路器故障排查与处理--------------------------------------------------------------------------- - 12 -三.特高压部分故障------------------------------------------------------------------------------------------------------- -16-第二部分制动及供风系统 ---------------------------------------------------------------------------------------------- - 19 -一.制动不缓解------------------------------------------------------------------------------------------------------------ -19-案例分析--------------------------------------------------------------------------------------------------------------- - 19 -小结——制动不缓解故障排查与处理--------------------------------------------------------------------------- - 20 -二.制动力不足报警故障------------------------------------------------------------------------------------------------- -22-案例分析--------------------------------------------------------------------------------------------------------------- - 22 -小结——制动力不足故障排查与处理--------------------------------------------------------------------------- - 23 -第三部分转向架故障 ---------------------------------------------------------------------------------------------------- - 24 -一.抱死报警故障---------------------------------------------------------------------------------------------------------- -24-二.轴温报警故障---------------------------------------------------------------------------------------------------------- -27-三.车厢振动大故障------------------------------------------------------------------------------------------------------- -28-第四部分辅助供电系统故障 ------------------------------------------------------------------------------------------- - 29 -第五部分控制系统 ------------------------------------------------------------------------------------------------------- - 31 -案例分析--------------------------------------------------------------------------------------------------------------- - 31 -第六部分其他 ------------------------------------------------------------------------------------------------------------- - 33 -第一部分牵引供电系统故障牵引系统主要由受电弓、牵引变压器、牵引变流器及牵引电机组成。
浅谈CRH2型动车组牵引电机检修常见故障及分析作者:刘勇来源:《中国科技博览》2013年第37期摘要:对CRH2型动车组牵引电机检修常见故障现象及原因进行分析,提出改进建议。
關键词:CRH2;牵引电机;常见故障;轴承;速度传感器;原因分析;改进建议。
【分类号】:U266.2;U2691.问题的提出动车组牵引电机作为动车组十大关键技术之一,它性能的好坏直接影响到动车组可靠运行。
为维持牵引电机正常工作,检修部门不得不采取临修、专项修和定期检修等方法来维护牵引电机正常功能,但实际上牵引电机故障仍屡屡出现,运行维护成本很高。
CRH2型动车组牵引电机采用鼠笼式、三相交流异步电机,由定子、转子、轴承、通风系统及速度传感器等部件组成。
同直流电动机相比,具有功率大、体积小、质量轻、结构简单、便于维护的特点。
随着牵引电机绕组绝缘质量的提高及浸漆工艺的改进,绕组故障的发生逐渐减少,然而随着动车组牵引电机的高速化,牵引电机轴承故障和速度传感器故障越来越突出,两者的使用状态直接影响牵引电机使用性能,涉及到动车组运行安全。
本文主要从牵引电机轴承和速度传感器常见故障现象进行分析。
2.CRH2型动车组牵引电机轴承常见故障及分析CRH2型动车组牵引电机轴承一般采用日本NSK轴承,在运行及检修中常见故障现象有以下两种:(1)轴承异音(2)轴承过热根据2010年至2013年牵引电机检修期间处理的入厂鉴定和返工故障类型统计,其中轴承类故障分布大致见下表1。
2.1轴承异音故障现象及分析在牵引电机综合试验和手动转动电机轴时,发现牵引电机轴承异音主要有以下三种故障现象:(1)轴承发出干磨声,且声音中含有与转速无关、不规则金属声音。
(2)轴承发出声音小而不规则,与转速无关,但也会有咕噜的声音。
(3)轴承发出咕噜的声音,其周期与转速成正比。
通过对牵引电机多年检修经验的积累,发现第一类故障的原因主要是缺少润滑油,第二类故障的原因主要是轴承中有杂质;第三类故障的原因主要是轴承内部有伤或损坏,故障如图所示:2.2轴承温度过热故障现象及分析动车组检修规程中规定牵引电机须做轴承温升试验:电机在通风(风量:20m3/min)状况下电机由变频电源供电,以转速1500r/min运行15min,提高转速至4140r/min运行15min,提高转速至最高使用转速6120r/min,运行30分钟。
文件编号:TP-AR-L7005
In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives.
(示范文本)
编制:_______________
审核:_______________
单位:_______________
CRH2型动车组牵引电机速度传感器故障的分析正
式样本
CRH2型动车组牵引电机速度传感器故障的分析正式样本
使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。
材料内容可根据实际情况作相应修改,请在使用时认真阅读。
动车组高级检修中的牵引电机传感器故障往往时
在动态调试时才发现,如果发现和处理不当,会对动
车组正常修竣造成较大影响。
本文通过对上海动车检
修基地试修以来的牵引电机速度传感器四起故障的分
析,提出该类故障的处理方法及质量卡控措施。
故障概况
自20xx年上海高级修基地试修以来,目前已完
成100多组(标准列)CRH2型动车组的三级检修。
其中牵引电机传感器故障共四起,由于该类故障属于
动态故障,静态试验时无法发现,须动态试验中才会
出现且对动车组时速有一定要求(大于10km/h)。
一旦发生此类故障动态调试大部分试验都将无法进行,直接影响正常的修竣交验及车辆安全。
因此梳理出此类故障的现象、原因,并提出针对性的故障处理方案和预防措施就十分必要了。
原因查找及分析
2.1.故障情况
自试修以来,共发生四起,下面对四起故障情况做简要介绍。
2.1.1. 20xx年9月在对2095C做三级检修通电前测量时,发现06车01轴8~3针(线号481B~481)约为0Ω(参考值40±10KΩ)。
拆下01轴SS速度传感器后测量3~4针发现阻值为0Ω,其余针间阻值良好。
更换该速度传感器后,重新测量BCU处电气插头针间电阻,阻值良好,已达标,故障
消除。
2.1.2. 20xx年1月在对6021AL进行动调试验过程中,当动车组第一次牵引至12km时监视器报警05车“抱死1(151)”“速度发电机断线2”。
对05车做关门车操作后完成后续交路后回库。
拆下05车1轴SS速度传感器电气插头,用万用表测量3、4针绝缘发现仅30Ω,绝缘失效。
拆卸该SS传感器后,发现传感器霍尔检测面有长约1.5cm划痕,更换该速度传感器后,重新试验,故障消除。
2.1.3 . 20xx年5月2102C动调试验中,01车主控,当动车组牵引至14km/h时,牵引变流器(车)页面中的04车显示牵引电机过电流1。
将04车切除后,限速返回检修库。
通过对04车牵引电机PG 传感器绝缘值测量比对后,发现04车02轴PG传感器电气插头1~5针对地绝缘值均为0兆欧,判定
牵引变流器故障系02轴PG传感器绝缘不良发出的错误信号所致,后对2102C 4车02轴PG传感器进行了更换,重新试验正常,故障消除。
2.1.4. 20xx年9月6064AL进行动调试验过程中,当动车组第一次牵引至19km/h时,监视器报警05车“牵引变流器故障”“牵引变流器PGD故障
2 ”,现场复位无效后切除动车运行。
回库后对05车04轴牵引电机PG传感器电气插头进了拆卸,发现其检测面存在轻微擦伤,更换该传感器后重新试验,故障消除。
2.2. 故障原因分析
通过对四起牵引电机传感器故障的分析可以看出,牵引电机传感器故障可分为三类故障。
(I)传感器阻值故障(II)传感器绝缘故障(III)传感器检测面擦伤。
其中I类故障可通过静态调试时的阻值测量
项目进行状态检查、确认;而II类故障的电机传感器绝缘性测试目前由相关电机厂家检修完成并出具合格证,我方不再另进行绝缘性能测试;III类故障的外部磕擦伤在静态调试状态下无法预知,只能动态调试且速度提升至15km/h左右时才发生报警。
因此II 和III类故障对只进行一次往返的正常的动态调试试验影响较大,故障处理后须申请再次动态调试验证,故障的查找、处理所需时间至少延误交车1天以上,严重影响三级修的正常检修进度,同时增加了动车组运用运营成本。
故障预防措施及处理方案
上面已经对四起传感器故障的产生原因进行了分析,下面将从源头质量控制、过程质量卡控及应急故障处理三个方面对牵引电机传感器故障预防措施及处理方案进行探讨。
3.1. 源头质量控制
通过对牵引电机速度传感器三类故障的分析我们可以知道,牵引电机返厂检修过程中的传感器检修、安装未到位会引起调试时的动态故障。
因此针对此情况,可采取督促相关牵引电机检修厂家加强PG/SS传感器拆装过程中的检测面状态检查,并严格落实传感器阻值及绝缘测试项目,加强质量控制等措施,从源头质量控制上来最大化避免故障晚发现引起的进度延误。
3.2.交接质量卡控
3.2.1.制定三级修后的牵引电机交接时的查验工艺,重点检查牵引电机传感器的阻值、绝缘性能。
3.2.2.严格落实三级修静态调试通电前的阻值测量工艺及质量控制。
3.3.故障处理方案
当故障发生后处理方案的合理制定对及时处理故障至关重要。
下面将传感器绝缘故障及检测面磕擦伤的处理思路做简要探讨。
3.3.1.电机传感器PG/SS电气插头母头共有5针。
一旦发生牵引变流器及电机传感器故障,查询监视器中的故障信息,确认故障车号、转向架位号、传感器位号。
3.3.2.故障处理时优先使用万用表测阻值,2~
4、3~4阻值相同,若值不相同,可判定相应传感器故障。
3.3.3.若仍无法判定,使用万用表测量1~4针分别对5号针的绝缘和1~5针对地绝缘值,确认绝缘良好。
3.3.
4.最后若仍无法排除,拆卸相应传感器,对传感器的检测面做状态检查,确认外观表面平滑、无
擦伤及划痕。
3.3.5.动车组在运行过程中若发生“速度发电机断线”及“PGD故障”,优先检查相应位置的电机传感器状态。
结束语
随着动车组高级检修工作的持续开展,更多更复杂的电机速度传感器故障可能发生。
本文从试修以来的现有故障案例着手,分析了传感器的故障现象、排查处理方法及质量卡控措施。
由于CRH2型动车组牵引电机速度传感器故障发生时的故障记录信息页面故障代码一般比较多,都是系统故障代码带着部件故障代码一起报,主要有牵引变流器故障、牵引电机故障、发电机故障、牵引电机过流故障等,在此不一一赘述。
笔者希望通过对四起高级修调试试验中发现的牵引电机速度传感器故障的分析,抛砖引玉,为该类
故障的现场实际处理提供一些思路和方法,为动车组高级检修的顺利开展提供实践和理论支持。
此处输入对应的公司或组织名字
Enter The Corresponding Company Or Organization Name Here。