第六章现场总线控制系统
- 格式:ppt
- 大小:35.36 MB
- 文档页数:7
浅谈现场总线控制系统现场总线控制系统,是一种广泛应用于各种自动控制系统中的控制技术。
它以现场总线作为通信介质,实现了各种传感器、执行器和控制器之间的相互通信和协调,从而实现了自动化控制系统的高效运行。
现场总线控制系统已经成为工业控制领域中一种重要的控制技术,被广泛应用于工业生产、能源管理、楼宇自动化等领域。
本文将从现场总线控制系统的基本原理、特点和应用领域等方面进行浅谈。
一、现场总线控制系统的基本原理现场总线控制系统是一种基于数字通信技术的控制技术,它以现场总线作为通信介质,将各种传感器、执行器和控制器连接在一起,通过总线通信来实现各种设备之间的数据交换和控制指令传输。
现场总线控制系统主要包括以下几个组成部分:1. 传感器和执行器:传感器用于采集各种环境参数和工艺数据,执行器用于控制各种执行元件的运行状态。
传感器和执行器是现场总线控制系统的“眼睛”和“手”,通过它们可以实现对系统各种状态的监测和控制。
2. 控制器:控制器是现场总线控制系统的核心部件,它通过采集传感器的数据和执行器的状态信息,实现对系统的自动控制。
控制器通常包括微处理器、控制算法和通信接口等部分,用于实现对系统的实时监测和控制。
通过以上部件的相互配合和协调运作,现场总线控制系统可以实现对各种设备的实时监测和控制,从而实现了自动化控制系统的高效运行。
现场总线控制系统具有以下几个显著的特点:1. 技术先进:现场总线控制系统采用了数字通信技术和计算机控制技术,具有高速传输、高精度控制和高可靠性的特点,能够满足各种复杂控制系统的需求。
2. 灵活性强:现场总线控制系统采用了分布式控制架构,能够实现多个设备之间的并行通信和协调运行,具有较强的通用性和灵活性。
3. 维护方便:现场总线控制系统的各个部件之间通过总线连接,维护和检修方便快捷,能够大大降低系统的维护成本。
4. 数据丰富:现场总线控制系统能够实现对各种传感器和执行器的数据采集和控制,能够提供丰富的数据支持,为系统的监测和控制提供了有力的支持。
浅谈现场总线控制系统现场总线控制系统是一种基于现场总线技术的控制系统,它可以实现现场设备和控制系统之间的数据交互和控制功能。
本文将对现场总线控制系统进行浅谈。
现场总线控制系统是由现场设备、总线网络、控制器和人机界面组成的。
现场设备包括各种传感器、执行器、开关等可以监测和控制现场的设备。
总线网络是连接各个现场设备和控制器之间的传输介质,可以传输数据和供电。
控制器是对现场设备进行控制的核心部分,它接收各个传感器的数据,并根据预定的逻辑进行控制操作。
人机界面则是与系统进行交互的部分,可以显示现场信息并接收用户的指令。
现场总线控制系统的优点之一是简化了系统的布线。
传统的控制系统中,每个设备都需要与控制器进行一对一的连接,需要大量的信号线。
而在现场总线控制系统中,所有的现场设备都通过总线网络连接到控制器,极大地减少了布线工作量。
总线网络还可以提供供电功能,不需要为每个设备单独提供电源。
现场总线控制系统还具有高可靠性和扩展性。
由于现场设备和控制器之间的连接是通过总线网络进行的,故障率较低。
总线网络可以支持多设备的接入,方便了系统的扩展和升级。
而传统的控制系统需要进行繁琐的系统改造才能满足新的需求。
现场总线控制系统还具有实时性好、易于监控、维护方便等优点。
总线网络可以提供实时的数据传输和控制指令,使得控制系统响应速度更快。
人机界面可以实时显示现场设备的工作状态,方便用户进行监控和控制。
总线网络还可以实现对系统的集中管理和维护,减少了故障排查和维修的时间和成本。
现场总线控制系统也存在一些问题。
总线网络需要有较高的带宽和可靠的通信性能,以支持大量的数据传输和设备接入。
由于总线网络上的设备较多,可能会产生较大的通信冲突,需要采取措施来解决。
由于总线网络对接的设备较多,系统的复杂性也增加了,需要有专业的人员进行维护。
现场总线控制系统是一种高效、可靠的控制系统,可以实现对现场设备的监测和控制。
虽然存在一些问题,但通过合理的设计和运维,现场总线控制系统可以发挥其优势,提高生产效率和系统可靠性。
文库资料 ©2017 Guangzhou ZHIYUAN Electronics Stock Co., Ltd.第6章 CAN 总线应用层协议——CANopen1.1 CANopen 主站设备及其应用由于可靠性、实时性、低成本、抗干扰性、兼容能力等多个方面的优势,CAN-bus 与其高层协议CANopen 已成为了车辆数据通信系统的事实标准,并普遍应用于所有的可移动设施,例如船舶舰艇、客车火车、升降电梯、重载车辆、工程机械、运动系统、分布式控制网络等。
几乎所有的通用 I/O 模块、驱动器、智能传感器、PLC 、MMI 设备的生产厂商都提供有支持CAN-bus 与CANopen 标准的产品。
只要符合 CANopen 协议标准及其设备协议子集标准的系统,就可以在功能和接口上保证各厂商设备的互用性和可交换性。
1.1.1 CANopen 网络特点作为标准化应用,CANopen 建立在设备对象描述的基础上,设备对象描述规定了基本的通信机制及相关参数。
CANopen 可通过总线对设备进行在线配置,与生产厂商无关联,支持网络设备的即插即用("Plug and Play")。
CANopen 支持2类基本数据传输机制:PDO 实现高实时性的过程数据交换,SDO 实现低实时性的对象字典条目的访问。
SDO 也用于传输配置参数,或长数据域的传输。
CANopen 既规定了各种设备之间的通信标准,也定义了与其他通信网络的互连规范。
1.1.2 CANopen 网络中的设备分类在说明CANopen 网络设备分类之前,我们有必要先了解其网络通信模型。
CAN-bus 支持 “生产者-消费者”通信模型,支持一个生产者和一个或多个消费者之间的通信关系。
生产者提供服务,消费者接收则可以(消费)或忽略服务。
需要注意,CANopen 标准作为CAN-bus 的应用层协议之一,除了支持上述服务类型外,还支持“客户端-服务器”通信模型。
一、现场总线控制系统的概念(FCS)现场总线控制是工业设备自动化控制的一种计算机局域网络。
它是依靠具有检测、控制、通信能力的微处理芯片,数字化仪表(设备)在现场实现彻底分散控制,并以这些现场分散的测量,控制设备单个点作为网络节点,将这些点以总线形式连接起来,形成一个现场总线控制系统。
它是属于最底层的网络系统,是网络集成式全分布控制系统,它将原来集散型的DCS系统现场控制机的功能,全部分散在各个网络节点处。
为此,可以将原来封闭、专用的系统变成开放、标准的系统。
使得不同制造商的产品可以互连,是DCS系统的更新换代,大大简化系统结构,降低成本,更好满足了实事性要求,提高了系统运行的可靠性。
不同通信协议的现场总线控制系统一般通过工业PC机内总线插槽的PC接口板与现场总线网段连接。
图中所示为具有PC1接口卡的现场总线系统,每个接口板可带4条总线网段,为了系统可靠安全,冗余设置了两台相同的PC机。
图中PLC为用于联锁系统开关量控制的程序控制器。
二、现场总线控制系统的组成现场总线控制系统由测量系统、控制系统、管理系统三个部分组成,而通信部分的硬、软件是它最有特色的部分。
1、现场总线控制系统:它的软件是系统的重要组成部分,控制系统的软件有组态软件、维护软件、仿真软件、设备软件和监控软件等。
首先选择开发组态软件、控制操作人机接口软件MMI。
通过组态软件,完成功能块之间的连接,选定功能块参数,进行网络组态。
在网络运行过程中对系统实时采集数据、进行数据处理、计算。
优化控制及逻辑控制报警、监视、显示、报表等。
2、现场总线的测量系统:其特点为多变量高性能的测量,使测量仪表具有计算能力等更多功能,由于采用数字信号,具有高分辨率,准确性高、抗干扰、抗畸变能力强,同时还具有仪表设备的状态信息,可以对处理过程进行调整。
3、设备管理系统:可以提供设备自身及过程的诊断信息、管理信息、设备运行状态信息(包括智能仪表)、厂商提供的设备制造信息。
现场总线控制系统综述前言:现场总线技术产生于80 年代初期, 由于它适应了工业控制系统向分散化、网络化和智能化的发展方向, 所以一经产生便成为全球工业自动化技术的热点, 被称为是21 世纪数字过程控制仪表新语言的代表, 受到全世界的普遍关注。
它的出现同时导致了新一代控制系统即现场总线控制系统(FCS) 的诞生。
现场总线控制系统将操作站、现场智能仪表以及其它信息资源作为工厂网络中的节点, 非控制信息(管理信息) 大大增加, 从而从过程控制走向了过程管理, 提高了生产效率和产品质量。
因此现场总线控制系统必将成为21 世纪自动化控制系统的主流。
过程控制技术的发展历史:当过程控制技术由分立设备向共享设备发展、自动化技术由模拟仪表向智能仪表发展、计算机网络技术向现场延伸时, 过程控制技术(从控制手段来分) 同时经历了5 个发展阶段, 即人工控制阶段; 模拟仪表控制系统阶段(50 年代开始) ; 计算机集中监督控制系统阶段(60 年代开始) ; 分散控制系统(DCS) 阶段(70 年代开始) ; 现场总线控制系统(FCS) 阶段(90 年代开始)。
(1) 第一代过程控制体系为基地式气动控制仪表系统, 开始于50 多年以前。
传输信号为5~30 p si 的气动信号。
由于它以压缩空气作为动力,简单的就地操作模式, 所以主要用于实现大型阀门的开启和关闭控制。
这时控制理论初步形成, 还(2) 第二代过程控制体系为电动单元组合式模拟仪表控制系统, 它是基于0~ 10mA 或4~ 20mA 的电流模拟信号, 这是一个明显的进步。
这种控制系统在以后的25 年内牢牢地统治了整个自动控制领域。
(3) 第三代过程控制体系即集中式数字控制系统, 它被称为是自动控制领域的一次革命。
70年代开始的数字计算机应用, 产生了巨大的技术优势, 人们在测量、模拟和逻辑控制领域中率先使用, 促进了第三代过程控制系统(CCS, Compu terCon t ro l System ) 的产生。
一、现场总线控制系统的概念(FCS)现场总线控制是工业设备自动化控制的一种计算机局域网络。
它是依靠具有检测、控制、通信能力的微处理芯片,数字化仪表(设备)在现场实现彻底分散控制,并以这些现场分散的测量,控制设备单个点作为网络节点,将这些点以总线形式连接起来,形成一个现场总线控制系统。
它是属于最底层的网络系统,是网络集成式全分布控制系统,它将原来集散型的DCS系统现场控制机的功能,全部分散在各个网络节点处。
为此,可以将原来封闭、专用的系统变成开放、标准的系统。
使得不同制造商的产品可以互连,是DCS系统的更新换代,大大简化系统结构,降低成本,更好满足了实事性要求,提高了系统运行的可靠性。
不同通信协议的现场总线控制系统一般通过工业PC机内总线插槽的PC接口板与现场总线网段连接。
图中所示为具有PC1接口卡的现场总线系统,每个接口板可带4条总线网段,为了系统可靠安全,冗余设置了两台相同的PC机。
图中PLC为用于联锁系统开关量控制的程序控制器。
二、现场总线控制系统的组成现场总线控制系统由测量系统、控制系统、管理系统三个部分组成,而通信部分的硬、软件是它最有特色的部分。
1、现场总线控制系统:它的软件是系统的重要组成部分,控制系统的软件有组态软件、维护软件、仿真软件、设备软件和监控软件等。
首先选择开发组态软件、控制操作人机接口软件MMI。
通过组态软件,完成功能块之间的连接,选定功能块参数,进行网络组态。
在网络运行过程中对系统实时采集数据、进行数据处理、计算。
优化控制及逻辑控制报警、监视、显示、报表等。
2、现场总线的测量系统:其特点为多变量高性能的测量,使测量仪表具有计算能力等更多功能,由于采用数字信号,具有高分辨率,准确性高、抗干扰、抗畸变能力强,同时还具有仪表设备的状态信息,可以对处理过程进行调整。
3、设备管理系统:可以提供设备自身及过程的诊断信息、管理信息、设备运行状态信息(包括智能仪表)、厂商提供的设备制造信息。
DCS 液位集散控制系统摘要集散控制系统(Distributed control system )是以微处理器为基础的对生产过程进行集中监视、操作、管理和分散控制的集中分散控制系统,简称DCS 系统。
该系统将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人-机联系差以及单台微型计算机控制系统危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。
DCS 系统在现代化生产过程控制中起着重要的作用。
关键字:集散控制系统;微处理器;最优化控制经验总结:本次试验是一个极具实践意义的试验,让我们可以脱离课本直接感受到控制现场通过对DSC系统的组态,让我对DCS系统有了更加深入和直观的了解明确了DCS 系统的分层结构的实践意义,了解了组态的一般流程和浙大中控组态软件的基本的使用方法,虽然控制系统本身并不是复杂的系统,但是对我们理解知识却起到了很大的帮助。
实验中的过程既是熟悉的过程,实验中遇到的问题,大多是因为对系统组态的思路不够明确,在组态完成并下载执行后,操作界面各个参数对系统的影响,需要深入理解,才能很好的设置参数,使系统达到预想的结果。
虽然实验过程中有些参数由于设备和其他原因效果不佳,但也基本体会到了工程师,操作员的工作。
分散控制系统(Distributed Control System)以微处理器为基础,采用控制功能分散、显示操作集中、兼顾分而自治和综合协调的设计原则的新一代仪表控制系统。
名称:DCS,全称:DistributedControlSystem,定义:DCS是分散控制系统(DistributedControlSystem)的简称,国内一般习惯称为集散控制系统。
它是一个由过程控制级和过程监控级组成的以通信网络为纽带的多级计算机系统,综合了计算机(Computer)、通讯(Communication)、显示(CRT)和控制(Control)等4C技术,其基本思想是分散控制、集中操作、分级管理、配置灵活、组态方便。
现场总线控制系统(FCS)随着复杂过程工业的不断发展,工业过程控制对大量现场信号的采集、传递和数据转换以及对精度、可靠性、管控一体化都提出了更新、更高的要求。
现有的DCS已不能满足这些要求;况且现有的DCS具有诸如控制不能彻底分散、故障相对集中、系统不彻底开放、成本较高等缺点。
于是通过数字通信技术、传感器技术和微处理器技术的融合,把传统的数字信号和模拟信号的混合系统变成全数字信号系统,从而产生了新一代的控制系统FCS。
1、智能传感器和现场总线是组成FCS的两个重要部分FCS用现场总线在控制现场建立一条高可靠性的数据通信线路,实现各智能传感器之间及智能传感器与主控机之间的数据通信,把单个分散的智能传感器变成网络节点。
智能传感器中的数据处理有助于减轻主控站的工作负担,使大量信息处理就地化,减少了现场仪表与主控站之间的信息往返,降低了对网络数据通信容量的要求。
经过智能传感器预处理的数据通过现场总线汇集到主机上,进行更高级的处理(主要是系统组态、优化、管理、诊断、容错等),使系统由面到点,再由点到面,对被控对象进行分析判断,提高了系统的可靠性和容偌能力。
这样FCS把各个智能传感器连接成了可以互相沟通信息,共同完成控制任务的网络系统与控制系统,能更好地体现DCS中的'信息集中,控制分散'的功能,提高了信号传输的准确性、实时性和快速性。
以现场总线技术为基础,以微处理器为核心,以数字化通信为传输方式的现场总线智能传感器与一般智能传感器相比,需有以下功能:共用一条总线传递信息,具有多种计算、数据处理及控制功能,从而减少主机的负担。
取代4-20mA模拟信号传输,实现传输信号的数字化,增强信号的抗干扰能力。
采用统一的网络化协议,成为FCS的节点,实现传感器与执行器之间信息交换。
系统可对之进行校验、组态、测试,从而改善系统的可靠性。
接口标准化,具有'即插即用'特性。
现场总线智能传感器是未来工业过程控制系统的主流仪表,它与现场总线组成FCS的两个重要部分,将对传统的控制系统结构和方法带来革命性的变化。
浅谈现场总线控制系统随着科技的不断发展,现场总线控制系统在工业自动化中扮演着越来越重要的角色。
现场总线控制系统是指一种基于数字通信技术的控制系统,它通过在工业现场设备之间建立通信网络,实现数据的传输和控制指令的下发,从而实现对生产过程的监控和控制。
本文将从现场总线控制系统的基本原理、应用场景以及发展趋势等方面进行较为详细的介绍。
现场总线控制系统的基本原理现场总线控制系统的核心是现场总线,在现场总线控制系统中,各种工控设备如传感器、执行器、控制器等通过现场总线相互连接,形成一个统一的数据通信网络。
通过这个网络,工业自动化系统可以实现对各种设备的数据采集、信息传输和控制指令的下发。
1. 数据采集:现场总线控制系统可以通过各种传感器对现场设备的参数进行实时采集,比如温度、压力、流量等数据。
2. 数据传输:采集到的数据通过现场总线进行传输,可以实现远程监控和实时数据的传输。
3. 控制指令下发:控制器可以通过现场总线向执行器下发控制指令,实现对设备的控制。
现场总线控制系统在工业自动化中有着广泛的应用,下面我们来看一下它的主要应用场景:1. 工厂自动化:工厂中有大量的生产设备,通过现场总线控制系统可以实现这些设备之间的数据通信和控制指令的下发,提高生产效率和灵活性。
2. 过程控制:在化工、制药等行业,生产过程中的各种参数需要实时监控和调节,现场总线控制系统可以很好地满足这种需求。
3. 智能建筑:现场总线控制系统可以用于智能建筑中的空调、照明、安防等设备的智能控制,提高能源利用效率和舒适度。
4. 车辆控制:在交通运输领域,现场总线控制系统可以用于车辆的自动控制和智能交通系统。
以上只是现场总线控制系统的一些应用场景,随着技术的发展和行业的需求,它的应用领域还在不断扩展和深化。
随着工业自动化的普及和技术的不断进步,现场总线控制系统也在不断发展和完善,主要体现在以下几个方面:1. 通信技术的进步:随着通信技术的发展,现场总线控制系统的通信速度、稳定性、抗干扰能力等都得到了很大提升,可以更好地满足工业生产的需求。
现场总线技术与现场总线控制系统现场总线,是指安装在制造或过程区域的现场装置之间、以及现场装置与控制室内的自动控制装置之间的开放式、数字化、串行和多点通信的数据总线。
作为连接生产现场的仪表、控制器等自动化装置的通信网络,现场总线是20世纪90年代国际上兴起的新一代全分布式控制系统的核心技术。
它作为工厂数字通信网络的基础,沟通了生产过程现场及控制设备之间及其与更高控制管理层次之间的联系。
采用现场总线技术可以促进现场仪表智能化、控制功能分散化、控制系统开放化,符合现代工业控制系统领域的技术发展趋势。
以现场总线为基础的全数字控制系统将现有的模拟信号电缆用高容量的现场总线网络代替,从而大大减轻现场信号电缆连接的费用和工作量,提高信号的传输效率。
实际上现场总线控制系统就是以现场总线技术为核心,以基于现场总线的智能I/O或智能传感器、智能仪表为控制主体、以计算机为监控指挥中心的系统编程、组态、维护、监控等功能为一体的工作平台。
现场总线的基础——智能现场装置现场装置包括多类工业产品,它们是流量、压力、温度、振动、转速等或其他各种过程量的转换器或变送器以及各类传感器。
数值通信是一种有力的工具,一个相互可操作的现场总线产生一种巨大的推动力量,加速了现场装置与控制室仪表的变革,现场装置智能化的趋势越来越明显。
同时我们也看到,正是由于现场装置智能化的进展与完善,它已成为现场总线控制系统有力的硬件支撑,是现场总线控制系统的基础。
多功能智能化现场装置中,信号检测系统是一项重要组成部分。
其目的就是从生产现场获取有用信息并将其转化为电信号,并经信号调理电路进行数字化处理等输出。
一个广义的检测系统一般由激励装置、测试装置、数据处理与记录装置所组成(如图1)。
图1 检测系统原理图(1)激励信号激励信号由激励装置产生,采用激励装置是为了使被测对象处于预定状态下,并将其有关方面的内在联系充分显示出来,以便于有效的测量。
当测试工作所希望获取的信息并没有直接载于可检测的信号中时,就需要激励被测对象,使其既能表示相关信息又便于检测。