江苏省 必修5教案 简单的线性规划(1)
- 格式:doc
- 大小:442.50 KB
- 文档页数:3
3.3.2 简单的线性规划问题(第1课时)【核心素养】通过学习简单的线性规划问题,提升学生的数学抽象、数学建模与数据处理的能力.【学习目标】理解什么是线性规划,并能够解决一些简单的线性规划问题.【学习重点】简单的二元线性规划问题.【学习难点】准确而快速的画出线性规划可行域,并进行最优解的求解.二、教学设计(一)课前设计1.预习任务任务 1 阅读教材P1-P4,思考:线性规划是如何形成的?它的主要功能是什么?利用线性规划解决一些简单问题.2.预习自测1.不等式组36020.x yx y≥⎧⎨<⎩-+,-+表示的平面区域是()【知识点:简单的线性规划;数学思想:数形结合】解:B2.不等式组210.y xy xy≤⎧⎪≤⎨⎪≥⎩-+,-,所表示的平面区域的面积为( )A.1B.12C.13D.14【知识点:简单的线性规划;数学思想:数形结合】解:D3.若满足条件20x yx yy a-≥⎧⎪+-≤⎨⎪≥⎩的整点(,)x y恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a的值为()A.3-B.2-C.1-D.0【知识点:简单的线性规划;数学思想:数形结合】解:C(二)课堂设计1.知识回顾在平面直角坐标系中,直线:0l Ax By C++=将平面分成两部分,平面内的点分为三类:(1)直线上的点(x,y)的坐标满足:0=++CByAx;(2)直线一侧的平面区域内的点(x,y)的坐标满足:0>++CByAx;(3)直线另一侧的平面区域内的点(x,y)的坐标满足:0Ax By C++<.即二元一次不等式0Ax By C++>或0Ax By C++<在平面直角坐标系中表示直线0Ax By C++=的某一侧所有点组成的平面区域,直线0Ax By C++=叫做这两个区域的边界,(虚线表示区域不包括边界直线,实线表示区域包括边界直线).由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分.2.问题探究问题探究一线性规划的含义观察与思考:某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A产品耗时1小时,每生产一件乙产品使用4个B产品耗时2小时,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么?想一想:怎样将题目条件转化为我们熟悉的不等式组?⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤≤≤+.0,0,124,164,82y x y x y x想一想:在前一节二元一次不等式(组)与平面区域的学习中,如何将上述不等式组表示成平面区域?探究:若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?想一想:设生产甲产品x 件,乙产品y 件时,工厂获得利润为z ,则如何表示它们的关系?错误!未找到引用源。
简单的线性计划教案●教学目标(一)教学知识点1.线性计划问题,线性计划的意义.2.线性约束条件、线性目标函数、可行解、可行域、最优解等大体概念.3.线性计划问题的图解方式.(二)能力训练要求1.了解简单的线性计划问题.2.了解线性计划的意义.3.会用图解法解决简单的线性计划问题.(三)德育渗透目标让学生树立数形结合思想.●教学重点用图解法解决简单的线性计划问题.●教学难点准确求得线性计划问题的最优解.●教学方式讲练结合法教师可结合一些典型例题进行讲解,学生再通过练习来掌握用图解法解决一些较简单的线性计划问题.●教具预备多媒体课件(或幻灯片)内容:讲义P60图7—23记作§ A进程:先别离作出x=1,x-4y+3=0,3x+5y-25=0三条直线,再找出不等式组所表示的平面区域(即三直线所围成的封锁区域).再作直线l0:2x+y=0.然后,作一组与直线的平行的直线:l:2x+y=t,t∈R(或平行移动直线l0),从而观察t值的转变.●教学进程Ⅰ.课题导入上节课,咱们一路探讨了二元一次不等式表示平面区域,下面,咱们再来探讨一下如何应用其解决一些问题.Ⅱ.教学新课第一,请同窗们来看如此一个问题.设z =2x +y ,式中变量x 、y 知足下列条件⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x求z 的最大值和最小值.分析:从变量x 、y 所知足的条件来看,变量x 、y 所知足的每一个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域.(打出投影片§ A)[师](结合投影片或借助多媒体课件)从图上可看出,点(0,0)不在以上公共区域内,当x =0,y =0时,z =2x +y =0. 点(0,0)在直线l 0:2x +y =0上.作一组与直线l 0平行的直线(或平行移动直线l 0)l :2x +y =t ,t ∈R .可知,当t 在l 0的右上方时,直线l 上的点(x ,y )知足2x +y >0,即t >0.而且,直线l 往右平移时,t 随之增大.(引导学生一路观察此规律)在通过不等式组所表示的公共区域内的点且平行于l 的直线中,以通过点A (5,2)的直线l 2所对应的t 最大,以通过点B (1,1)的直线l 1所对应的t 最小.所以:z m ax =2×5+2=12,z m in =2×1+3=3.诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,咱们把它称为目标函数.由于z =2x +y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除用一次不等式表示外,也可用一次方程表示.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性计划问题.例如:咱们适才研究的就是求线性目标函数z =2x +y 在线性约束条件下的最大值和最小值的问题,即为线性计划问题.那么,知足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部份表示的三角形区域.其中可行解(5,2)和(1,1)别离使目标函数取得最大值和最小值,它们都叫做那个问题的最优解.Ⅲ.课堂练习[师]请同窗们结合讲义P 64练习1来掌握图解法解决简单的线性计划问题.(1)求z =2x +y 的最大值,使式中的x 、y 知足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y解:不等式组表示的平面区域如图所示:当x =0,y =0时,z =2x +y =0点(0,0)在直线l 0:2x +y =0上.作一组与直线l 0平行的直线l :2x +y =t ,t ∈R .可知,在通过不等式组所表示的公共区域内的点且平行于l的直线中,以通过点A (2,-1)的直线所对应的t 最大.所以z m ax =2×2-1=3.(2)求z =3x +5y 的最大值和最小值,使式中的x 、y 知足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x解:不等式组所表示的平面区域如图所示:从图示可知,直线3x +5y =t 在通过不等式组所表示的公共区域内的点时,以通过点(-2,-1)的直线所对应的t 最小,以通过点(817,89)的直线所对应的t 最大. 所以z m in =3×(-2)+5×(-1)=-11. z m ax =3×89+5×817=14. Ⅳ.课时小结通过本节学习,要掌握用图解法解决简单的线性计划问题的大体步骤:1.第一,要按照线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值.Ⅴ.课后作业(一)讲义P 65习题(二)1.预习内容:讲义P 61~64.2.预习提纲:如何用线性计划的方式解决一些简单的实际问题.课 题有关概念 复习回顾约束条件 二元一次不等式表示平面区域 线性约束条件目标函数线性目标函数 例题讲解 课时小结线性规划问题 图解法解决线性规划问题的基本步骤 可行域最优解。
简单的线性规划问题(2)【三维目标】:一、知识与技能1.巩固图解法求线性目标函数的最大、最小值的方法;2.会用画网格的方法求解整数线性规划问题.3.培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力二、过程与方法引导学生如何使用网格法 三、情感、态度与价值观1.培养学生学数学、用数学的意识,并进一步提高解决问题的的能力2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新 【教学重点与难点】:重点:用画网格的方法求解整数线性规划问题. 难点:用画网格的方法求解整数线性规划问题. 【学法与教学用具】:1. 学法:学生在建立数学模型中,应主要分清已知条件中,哪些属于约束条件,哪些与目标函数有关,列出正确的不等式组。
可采用分组讨论,各组竞争,自主总结,部分同学示范画图等方式,让学生更切身地在活动中探索出建模的一般规律,并在交流中找到自己的思维漏洞2.教学方法:讲授法,多媒体直观教学3.教学用具:直角板、投影仪 【授课类型】:新授课 【课时安排】:1课时 【教学思路】: 一、创设情景,揭示课题1.什么是目标函数?线形目标函数?线形规划?可行解?可行域?2.当,x y 满足不等式组1101x y y x ⎧-≤⎪≥⎨⎪≤+⎩时,目标函数t x y =+的最大值是二、研探新知,质疑答辩,排难解惑,发展思维例1 设,,x y z 满足约束条件组1320101x y z y z x y ++=⎧⎪+≥⎪⎨≤≤⎪⎪≤≤⎩,求264u x y z =++的最大值和最小值。
解:由1x y z ++=知1z x y =--+,代入不等式组消去z 得210101y x x y -≥⎧⎪≤≤⎨⎪≤≤⎩,Axy OB1 1代入目标函数得224u x y =-++,作直线0l :0x y -+=,作一组平行线l :x y u -+=平行于0l ,由图象知,当l 往0l 左上方移动时,u 随之增大,当l 往0l 右下方移动时,u 随之减小,所以,当l 经过(0,1)B 时,max 202146u =-⨯+⨯+=,当l 经过(1,1)A 时,min 212144u =-⨯+⨯+=,所以,max 6u =,min 4u =.例2 已知,x y 满足不等式组230236035150x y x y x y -->⎧⎪+-<⎨⎪--<⎩,求使x y +取最大值的整数,x y .解:不等式组的解集为三直线1l :230x y --=,2l :2360x y +-=,3l :35150x y --=所围成的三角形内部(不含边界),设1l 与2l , 1l 与3l ,2l 与3l 交点分别为,,A B C ,则,,A B C坐标分别为153(,)84A ,(0,3)B -,7512(,)1919C -,作一组平行线l :x y t +=平行于0l :0x y +=,当l 往0l 右上方移动时,t 随之增大,∴当l 过C 点时x y +最大为6319,但不是整数解,又由75019x <<知x 可取1,2,3,当1x =时,代入原不等式组得2y =-, ∴1x y +=-; 当2x =时,得0y =或1-, ∴2x y +=或1; 当3x =时,1y =-, ∴2x y +=,故x y +的最大整数解为20x y =⎧⎨=⎩或31x y =⎧⎨=-⎩.说明:最优整数解常有两种处理方法,一种是通过打出网格求整点,关键是作图要准确;另一种是本题采用的方法,先确定区域内点的横坐标范围,确定x 的所有整数值,再代回原不等式组,得出y 的一元一次不等式组,再确定y 的所有相应整数值,即先固定x ,再用x 制约y .例2 某运输公司向某地区运送物资,每天至少运送180吨.该公司有8辆载重为6吨的A 型卡车与4辆载重为10吨的B 型卡车,有10名驾驶员.每辆卡车每天往返的次数为A 型车4次,B 型车3次.每辆卡车每天往返的成本费为A 型车320元,B 型车为504元.试为该公司设计调配车辆的方案,使公司花费的成本最低.解:设每天调出A 型车x 辆,B 型车y 辆,公司花费成本z 元,ACxy O1l3l2l则约束条件为*10463101800804,x y x y x y x y N ⎧+≤⎪⨯+⨯≥⎪⎪≤≤⎨⎪≤≤⎪⎪∈⎩,即*1045300804,x y x y x y x y N⎧+≤⎪+≥⎪⎪≤≤⎨⎪≤≤⎪⎪∈⎩,目标函数为320504z x y =+.作出可行域(图略,见课本第80页图3-3-11),当直线320504z x y =+经过直线4530x y +=与x 轴的交点(7.5,0)时,z 有最小值.但(7.5,0)不是整点.由图可知,经过可行域内的整点,且与原点距离最近的直线是3205042560x y +=,经过的整点是(8,0),它是最优解.因此,公司每天调出A 型车8辆时,花费成本最低.四、巩固深化,反馈矫正1.设,,x y z 满足约束条件组1320102x y z y z x y ++=⎧⎪+≥⎪⎨≤≤⎪⎪≤≤⎩,求364F x y z =++的最大值和最小值;五、归纳整理,整体认识1.本节课主要内容:(1)巩固图解法求线性目标函数的最大值、最小值的方法; (2)用画网格的方法求解整数线性规划问题。
3.3.3 简单的线性规划问题第1课时简单的线性规划问题(教师用书独具)●三维目标1.知识与技能(1)从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;(2)了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念,会根据条件建立线性目标函数;(3)了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合、等价转化的数学思想.2.过程与方法(1)本节课是以二元一次不等式(组)表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决;(2)考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性,同时,借助计算机的直观演示可使教学更富趣味性和生动性.3.情感、态度与价值观(1)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新;(2)渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识,激发学生的学习兴趣.●重点、难点重点:线性规划问题的图解法,寻求线性规划问题的最优解.难点:利用图解法求最优解.为突出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法,将实际问题数学化,代数问题几何化.解决难点的方法是精确作图,利用数形结合的思想将代数问题几何化.(教师用书独具)●教学建议从内容上看,简单的线性规划问题是在学习了不等式、直线方程的基础上展开的,它是对二元一次不等式的深化和再认识、再理解.它是用数学知识解决实际问题,属于数学建模,是初等数学中较抽象的,对学生要求较高,又是必须予以掌握的内容.考虑到学生的认知水平和理解能力,建议教师可以通过激励学生探究入手,讲练结合,培养学生对本节内容的学习兴趣,培养学生数形结合的意识,让学生体味数学的工具性作用.另外,教师还可借助计算机直观演示利用图解法求最优解的过程,增强教学的趣味性和生动性.●教学流程创设问题情境,引导学生了解线性约束条件、线性目标函数、可行域、线性规划问题等概念.⇒结合教材让学生掌握线性规划问题的图解法.⇒通过例1及其变式训练使学生巩固掌握利用图解法求最优解的步骤.⇒通过例2及其变式训练使学生掌握利用线性规划研究字母参数的方法.⇒通过例3及其变式训练使学生掌握求非线性目标函数的最值的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双达达标,巩固所学知识,并进行反馈矫正.(对应学生用书第56页)课标解读1.了解目标函数、约束条件、可行域、最优解等基本概念.2.掌握线性规划问题的求解过程,特别是确定最优解的方法.(重点、难点)可行域约束条件所表示的平面区域,称为可行域.线性规划求线性目标函数在线性约束条件下的最大值或最小值问题,通常称为线性规划问题,上述只含两个变量的简单线性规划问题可用图解法解决.(对应学生用书第56页)线性规划问题设z =3x +5y ,式中变量x 、y 满足条件⎩⎪⎨⎪⎧x +2y ≥3,7x +10y ≥17,x ≥0,y ≥0.求z的最小值.【思路探究】【自主解答】 画出约束条件表示的点(x ,y )的可行域, 如图所示的阴影部分(包括边界直线).把z =3x +5y 变形为y =-35x +z 5,得到斜率为-35,在y 轴上的截距为z5,随z 变化的一族平行直线.作直线l :3x +5y =0,把直线向右上方平行移至l 1的位置时,直线经过可行域上的点M ,此时l 1:3x +5y -z =0的纵截距最小,同时z =3x +5y 取最小值.解方程组⎩⎪⎨⎪⎧x +2y =3,7x +10y =17,得M (1,1).故当x =1,y =1时,z min =8.1.由本例可以看出,解线性规划问题时,一定要注意最优解的对应点是最大值点,还是最小值点.对于目标函数z =ax +by ,当b >0时,直线截距最大时,z 有最大值,截距最小时,z 有最小值;当b <0时,则相反.2.图解法是解决线性规划问题的有效方法,其关键是利用z 的几何意义求解.平移直线ax +by =0时,看它经过哪个点(哪些点)时最先接触可行域和最后离开可行域,则这样的点即为最优解,最优解一般是在可行域的边界取得.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为多少.【解】 作可行域如图所示,解⎩⎪⎨⎪⎧x -y +2=0,x +y -8=0得⎩⎪⎨⎪⎧x =3,y =5,∴A (3,5).解⎩⎪⎨⎪⎧x +y -8=0,x -5y +10=0得⎩⎪⎨⎪⎧x =5,y =3,∴B (5,3).平移直线3x -4y =z 可知,直线过A 点时,z 取最小值,过B 点时,z 取最大值. ∴z min =3×3-4×5=-11,z max =3×5-4×3=3.利用线性规划求字母参数的值(或范围)已知x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y ≤25,x ≥1,设z =ax +y (a >0),若当z 取最大值时,对应的点有无数多个,求a 的值.【思路探究】【自主解答】 作出可行域如图所示.由⎩⎪⎨⎪⎧3x +5y =25,x -4y +3=0,得⎩⎪⎨⎪⎧x =5,y =2,∴点A 的坐标为(5,2).由⎩⎪⎨⎪⎧x =1,3x +5y =25,得⎩⎪⎨⎪⎧x =1,y =4.4,∴点C 的坐标为C (1,4.4).当直线z =ax +y (a >0)平行于直线AC ,且直线经过线段AC 上任意一点时,z 均取得最大值,此时有无数多点使z 取得最大值,而k AC =-35,∴-a =-35,即a =35.1.本题中,z 取最值时对应的点有无数多个,故这无数多个对应点构成平面区域的一段边界.2.解线性规划问题时一般要结合图形(平面区域)及目标函数的几何意义解题.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是________.【解析】 作出可行域,让目标函数所表示的直线过定点,观察斜率的范围,构建不等式求参数范围.如图所示,约束条件所表示的平面区域为三角形,目标函数z =ax +2y ,即y =-a 2x +z 2仅在点(1,0)处取得最小值,故其斜率应满足-1<-a 2<2,即-4<a <2.故填(-4,2).【答案】 (-4,2)求非线性目标函数的最值已知x ,y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(1)求u =x 2+y 2的最大值和最小值; (2)求z =yx +5的最大值和最小值. 【思路探究】【自主解答】 画出不等式组所表示的平面区域,如图所示.(1)∵u =x 2+y 2,∴u 为点(x ,y )到原点(0,0)的距离,结合不等式组所表示的平面区域可知,点B 到原点的距离最大,而当(x ,y )在原点时,距离为0.由⎩⎪⎨⎪⎧7x -5y -23=0,4x +y +10=0得点B 的坐标为(-1,-6),∴(x 2+y 2)max =(-1)2+(-6)2=37,(x 2+y 2)min =0. (2)z =yx +5=y -0x --5,所以求z 的最大值和最小值,即是求可行域内的点(x ,y )与点(-5,0)连线斜率的最大值和最小值.设点M 的坐标为(-5,0),由⎩⎪⎨⎪⎧x +7y -11=0,4x +y +10=0得点C 的坐标为(-3,2),由(1)知点B 的坐标为(-1,-6),∴k max =k MC =2-0-3--5=1,k min =k MB =-6-0-1--5=-32,∴yx +5的最大值是1,最小值是-32. 1.本题中,(1)x 2+y 2是平面区域内的点(x ,y )到原点的距离的平方;(2)y x +5=y -0x --5可看成平面区域内的点(x ,y )与点(-5,0)连线的斜率.2.解决此类问题,应先准确作出线性约束条件表示的平面区域,然后弄清非线性目标函数的几何意义.已知x ,y 满足⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0.(1)求z =x 2+y 2+2x -2y +2的最小值; (2)求z =|x +2y -4|的最大值. 【解】 (1)作出可行域,如图所示, ∵z =(x +12+y -12)2,∴z 可看作是可行域内任意一点(x ,y )到点M (-1,1)的距离的平方. 由图可知z min 等于原点到直线x +y -4=0的距离的平方, ∴z min =(|-4|2)2=8.(2)∵z =|x +2y -4|=5·|x +2y -4|5, ∴z 可看作是可行域内任意一点(x ,y )到直线x +2y -4=0的距离的5倍. 由图可知点C 到直线x +2y -4=0的距离最大.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0得点C (7,9),∴z max =|7+2×9-4|5×5=21.(对应学生用书第58页) 直线的倾斜程度判断不准致误已知⎩⎪⎨⎪⎧11x +4y ≤44,7x +5y ≤35,6x +7y ≤42,x ≥0,y ≥0,求z =x +y 的最大值.【错解】 作出可行域,如图所示.作出直线l 0:x +y =0,将它移至点B ,则点B 的坐标是可行域中的最优解,它使z 达到最大值.解方程组⎩⎪⎨⎪⎧11x +4y =44,7x +5y =35,得点B 的坐标为(8027,7727).所以z max =8027+7727=15727.【错因分析】 将直线l 0向上移动时,最后离开可行域的点不是点B 而是点A ,这是由于直线倾斜程度不准确引起的,由于三条边界直线的斜率依次是-67,-75,-114,而目标函数z =x +y 的斜率为-1,它夹在-67与-75之间,故经过点B 时,直线x +y =z 必在点A 的下方,即点B 不是向上平移直线时最后离开可行域的点,而是点A .【防范措施】 解决线性规划问题时,可行域一定要准确,关键点的位置不能画错,若数据比较大,不易画图,也可用斜率分析法确定关键点或取得最值点.【正解】 作出二元一次不等式组所表示的平面区域如上图.作出直线l ′0:x +y =0,将它向上平移,当它经过点A 时,z 取得最大值.解方程组⎩⎪⎨⎪⎧7x +5y =35,6x +7y =42,得⎩⎪⎨⎪⎧x =3519,y =8419,故z max =3519+8419=119191.基础知识: (1)可行域; (2)线性规划. 2.基本技能: (1)解线性规划问题;(2)利用线性规划求字母参数的值(或范围); (3)求非线性目标函数的最值. 3.思想方法: (1)数形结合思想; (2)函数思想; (3)转化思想.(对应学生用书第58页)1.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y ≥0,则目标函数z =x +2y 的最小值为________.【解析】 画出不等式组表示的平面区域,由图可知目标函数在点(3,-3)处取得最小值-3.【答案】 -3图3-3-72.给出平面区域(包含边界)如图3-3-7所示,若使目标函数z =ax +y (a >0)取得最大值的最优解有无数多个,则a 的值为________.【解析】 由题意知-a =k AC =-35,∴a =35.【答案】 353.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2<0,x >1,x +y -7<0,则yx的取值范围是________.【解析】 目标函数y x 是可行域上的动点(x ,y )与原点连线的斜率,最小值是k OC =95,最大值是k AO =6,又可行域边界取不到,∴95<yx<6.【答案】 (95,6)4.已知x 、y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0,求z =4x -3y 的最值.【解】 原不等式组表示的平面区域如图所示: 其中A (4,1)、B (-1,-6)、C (-3,2). 作与4x -3y =0平行的直线l :4x -3y =t , 即y =43x -t3,则当l 过C 点时,t 最小; 当l 过B 点时,t 最大.∴z max =4×(-1)-3×(-6)=14,z min =4×(-3)-3×2=-18.(对应学生用书第97页)一、填空题1.(2013·微山高二检测)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,y ≤x ,y ≥-2,则z =3x +y 的最大值为________.【解析】 不等式组表示的平面区域如图所示:把z =3x +y 变形为y =-3x +z 得到斜率为-3,在y 轴截距为z 的一族平行直线,由图当直线l :y =-3x +z 过可行域内一点M 时,在y 轴截距最大,z 也最大.由⎩⎪⎨⎪⎧x +y =1,y =-2,∴⎩⎪⎨⎪⎧x =3,y =-2,即M (3,-2).∴当x =3,y =-2时,z max =3×3+(-2)=7. 【答案】 72.(2013·苏州高二检测)变量x ,y 满足⎩⎪⎨⎪⎧2x +y ≥12,2x +9y ≥36,2x +3y ≥24,x ≥0,y ≥0,则使得z =3x +2y 的值最小的(x ,y )是________.【解析】 不等式组表示的平面区域如图所示:把z =3x +2y 变形为y =-32x +z 2,作与直线l 0:y =-32x 平行的直线l ,显然当l 经过可行域内点M 时在y 轴上截距最小,z 也最小.由⎩⎪⎨⎪⎧2x +y =12,2x +3y =24,∴⎩⎪⎨⎪⎧x =3,y =6,即M (3,6)时,z =3x +2y 的值最小. 【答案】 (3,6)3.设z =2y -2x +4,式中的x ,y 满足条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,则z 的取值范围是________.【解析】 作出满足不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1的可行域(如图所示),作直线2y -2x =0,并将其平移,由图象可知当直线经过点A (0,2)时,z max =2×2-2×0+4=8; 当直线经过点B (1,1)时,z min =2×1-2×1+4=4.所以z 的取值范围是[4,8]. 【答案】 [4,8]4.(2013·连云港检测)设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx的最大值是________.【解析】 不等式组表示的平面区域如图所示: 又y x =y -0x -0表示过平面区域内一点(x ,y )与原点(0,0)的直线的斜率,由图知(x ,y )在平面区域内A 点处时直线斜率最大.由⎩⎪⎨⎪⎧x +2y -4=0,2y -3=0得⎩⎪⎨⎪⎧x =1,y =32,∴A (1,32),∴y x 的最大值为32.【答案】 325.(2013·无锡检测)二元一次方程组⎩⎪⎨⎪⎧x <0,y <0,x +y +4>0表示的平面区域内,使得x +2y 取得最小值的整点坐标为________.【解析】 不等式组表示的平面区域如图所示: ∵平面区域不包括边界,∴平面区域内的整点共有(-1,-1),(-1,-2),(-2,-1)三个. 代入检验知,整点为(-1,-2)时x +2y 取得最小值. 【答案】 (-1,-2)6.已知⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,且u =x 2+y 2-4x -4y +8,则u 的最小值为________.【解析】 不等式组表示的平面区域如图所示,由已知得(x -2)2+(y -2)2=(u )2,则(u )min =|2+2-1|1+1=32,u min =92.【答案】 927.已知变量x ,y 满足约束条件1≤x +y ≤4,-2≤x -y ≤2.若目标函数z =ax +y (其中a >0)仅在点(3,1)处取得最大值,则a 的取值范围为________.【解析】 由题设知可行域为如图所示的矩形,要使目标函数z =ax +y 在点(3,1)处取得最大值,结合图形可知a >1.【答案】 (1,+∞)8.如果点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内,点Q 在曲线x 2+(y +2)2=1上,那么|PQ |的最小值为________.【解析】 首先作出不等式组表示的平面区域和曲线x 2+(y +2)2=1,如图所示,从而可知点P 到Q 的距离最小值是可行域上的点到(0,-2)的最小值减去圆的半径1,由图可知|PQ |min =12+-22-1=5-1。
4、必修5 简单的线性计划(第一课时)列位评委教师,下午好,我是数学_号,今天我说的题目是: 简单的线性计划.下面我将从说教材分析、学生情形分析、设计思想、说教法和学法、说教学进程、教学反思这六个方面对本课进行详细说明:一、教材分析。
一般高中课程标准实验教科书(人教B版)必修5第三章简单的线性计划问题(第一课时),这是一堂关于简单线性计划的“问题教学”。
线性计划是数学计划中理论较完整、方式较成熟、应用叫普遍的一个分支。
它能解决科学研究、工程设计、经济治理等许多方面的实际问题。
简单的线性计划关切的两类问题:一是在人力、物力、资金等资源必然的条件下,如何利用它们来完成最好的任务;二是给定一项任务应如何合理计划,能以最少的人力、物力、资金等资源来完成,突出表现了优化的思想。
教科书利用生产安排的具体实例,介绍而来线性计划问题的图解法,引用线性计划等概念,最后举例说明了简单的二元线性计划在饮食营养搭配中的应用。
二、学生情形分析。
本节课学生在学习了不等式、直线方程的基础上,通过实例明白得了平面区域的意义,并会画出平面区域,还能初步用数学关系表示简单的二元线性计划的限制条件,将实际问题转化成数学问题。
从数学知识上看,问题涉及多个已知数据,多个字母变量、多个不等关系,从数学方式上看,学生对图解法的熟悉还很少,数形结合的思想方式的把握还需时日,这成了学生学习的困难。
三、设计思想。
本课以问题为载体,以学生为主体,以数学实验为手腕,以问题解决为目的,激发学生动手操作、观看试探、猜想探讨的爱好。
注重引导帮忙学生充分体验“从实际问题到数学问题”的建构进程,“从具体到一样”的抽象进程。
应用“数形结合”的思想方式,培育学生学会分析问题,解决问题的能力。
结合本单元教学要求和本课特点,依据新课标中“知、过、情”三个维度,我讲本节课的教学目标确信为:(一)知识与技术了解线性计划的意义和线性约束条件、线性目标函数、可行解、可行域、最优解等概念;了解线性计划的图解法,并会用图解法求线性目标函数的最大(小)值。
简单的线性规划教案教案标题:简单的线性规划教案教学目标:1. 了解线性规划的基本概念和特点。
2. 理解线性规划问题的求解过程。
3. 能够利用线性规划方法解决简单的实际问题。
所需材料:1. 铅笔、纸张、计算器。
2. 多个线性规划问题的案例。
教学步骤:引入阶段:1. 引导学生思考:什么是线性规划?线性规划有哪些应用场景?2. 提出教学目标,并解释线性规划的定义和特点。
探究阶段:3. 解释线性约束条件和目标函数的概念。
4. 利用一个简单的例子说明线性规划问题的形式和表示方法。
5. 引导学生分析并列出问题的线性约束条件和目标函数。
实践阶段:6. 将学生分成小组,每个小组选择一个实际问题,并将其转化为线性规划问题。
7. 指导学生列出问题的线性约束条件和目标函数。
8. 引导学生运用计算器或手动计算,求解其线性规划问题。
9. 学生分享并讨论解决过程和结果。
巩固阶段:10. 提供更多复杂的线性规划问题案例,让学生独立尝试解答,并讨论解决策略和结果。
11. 简要总结线性规划的基本原理和步骤。
拓展阶段:12. 引导学生思考更高级的线性规划问题,如带有整数约束或非线性目标函数的问题。
13. 推荐相关参考书籍和网上学习资源供学生深入学习。
评估方式:1. 在实践阶段,观察学生的合作和参与情况。
2. 收集学生独立解答的线性规划问题的答案,并进行评估。
教学反思:根据学生的反馈和评估结果,适时调整教学步骤和内容,确保学生能够理解和应用线性规划的基本原理。
§3.3.3 简单的线性规划问题(1)【三维目标】:一、知识与技能1了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念;会根据条件建立线性目标函数2了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值二、过程与方法1以学生画二元一次不等式表示的平面区域和平行线组的几何意义为铺垫,学生自主探究线性规划问题的解法。
2将实际生活问题通过数学中的线性规划问题来解决。
三、情感、态度与价值观1结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新2渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识;激发学生的学习兴趣【教学重点与难点】:重点:线性规划的图解法难点:从实际情景中抽象出一些简单的二元线形规划问题;寻求线性规划问题的最优解【教学过程】一、问题情境1. 作出下列不等式组的所表示的平面区域问题1: 有无最大(小)值?问题2: 有无最大(小)值?问题3:2 有无最大(小)值?2作出下列直线:72;42;32;12;02=+=+-=+=+=+y x y x y x y x y x思考:形如t y x =+2的直线中t 具有怎样的几何意义?⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x二、学生活动 探究:设y x +=2z ,若),(y x 满足 时,求的最大值和最小值问题1:不等式组表示的平面区域是什么?问题2:题目中 =2关于,的斜截式方程是什么?它表示一组怎样的直线?表示什么?问题3:画出=2中的一条直线, 取什么值,最容易画直线?问题4:平移直线与不等式组表示的平面区域相交,怎样找到的最值?三、建构数学 1设y x +=2z ,若),(y x 满足 时,求的最大值和最小值 其中:y x +=2z 称为线性目标函数; 为线性约束条件;满足约束条件的),(y x 的集合称为可行域;线性目标函数取最值时的),(y x 称为最优解。
教学目标1知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等根本概念;理解线性规划问题的图解法,并能应用它解决一些简单的实际问题;2过程与方法:在实验探究的过程中,培养学生的数据分析能力、探究能力、合情推理能力;在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力。
3情态、态度与价值观:让学生体会数学源于生活,效劳于生活;体会数学活动充满着探索与创造,培养学生动手操作、勇于探索的精神。
2学情分析本节课学生在学习了不等式、直线方程的根底上,通过实例理解了平面区域的意义,并会画出平面区域,还能初步用数学关系表示简单的二元线性规划的限制条件,将实际问题转化成数学问题。
从数学知识上看,问题涉及多个数据,多个字母变量、多个不等关系,从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这成了学生学习的困难。
3重点难点1、教学重点 :求线性规划问题的最优解2、教学难点 :学生对为什么要将求目标函数的最值问题转化为经过可行域的直线在轴上的截距的最值问题以及如何想到这样转化存在疑惑,在教学中应紧扣实际,突出知识的形成开展过程。
4教学过程41 第一学时411教学活动活动1【讲授】?简单的线性规划问题?七、教学设计过程【复习引入】1不等式表示的平面区域在直线 2-6=0的填方向2点3,1和-4,6在直线3-2a=0的两侧,那么a的取值范围是【线性规划】【例】先讨论下面的问题设,式中变量、满足以下条件①求的最大值和最小值设计意图:让学生初步了解线性规划解题方式分析:把稍作变形为 ,作出一组平行直线,所以的变化表达在纵截距的变化。
作一条斜率为 -2的直线,当此直线平移时,发现当直线过A点时,纵截距最大,即值最大,过B点时截距最小,即值最小。
所以求出A,B坐标,代入目标函数:在上述问题中,不等式组①是一组对变量、的约束条件,这组约束条件都是关于、的一次不等式,所以又称线性约束条件线性约束条件除了用一次不等式表示外,有时也有一次方程表示是欲到达最大值或最小值所涉及的变量、的解析式,叫做目标函数,由于又是、的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数在线性约束条件①下的最大值和最小值问题,一般来说线性目标函数在线性约束条件下的最值都在平面区域边界处取得。
课题:简单的线性规划(高三一轮复习课)主旨:本节课是人民教育出版全日制普通高级中学数学教科书(必修5)第三章第3节“简单的线性规划”.本节课是高三第一轮复习课,内容包括二元一次不等式表示平面区域、线性规则及线性规划的实际应用.下面我从三方面来说说对这节课的分析和设计.1. 教材地位分析一教学背景分析 2. 学生特征分析3. 教学目标分析1. 教学重点、难点分析二教学展开分析 2. 教学策略和方法指导3. 教学媒体选择4. 教学实施三教学结果分析一、教学背景分析1、教材地位分析(1)“简单的线性规划”是在复习了直线方程的基础上而再度学习的. 因线性规划的应用性广泛,“简单线性规划”不仅是“新大纲”中增加的新内容,也是“新课标”的必修内容;说明了教材重视数学知识的应用.(2)“简单的线性规划”体现了数学应用性的同时,还渗透了化归、数形结合等数学思想和数学建模法.(3)“简单的线性规划”内容已成为近年来高考数学命题的一个亮点. 几乎每年必考。
考查的题型有选择题,填空题..2、学生特征分析(1)学习任务分析:通过第一轮复习,学生对不等式、直线方程知识有了更系统的理解;这是复习“简单的线性规划”的起点能力.(2)认知能力分析:学生能应用不等式、直线方程知识来解决问题,加之,体会过“简单的线性规划”应用性;这有益于“简单的线性规划”的“同化”和“顺应”.(3)认知结构变量分析:“不等式”、“直线方程”与“简单的线性规划”是“类属关系”,故“简单的线性规划”的复习是“下位学习”,说明认知结构的可利用性和可分辩性. 但是,由于“简单的线性规划”在教材上的编排简约、图解方法的动态,影响到认知结构的稳固性;这要求通过创设问题情境、自主探究等来促进认知结构的稳固性,进行意义建构.3、教学目标分析(1)知识技能:掌握二元一次不等式表示平面区域,进一步了解线性规划的意义,并能应用其解决一些简单的实际问题.(2)过程与方法:通过自主探究,师生会话,体验数学发现和创造的历程;经历线性规划的实际应用,提高数学建模能力.(3)情感态度:通过自主探究,师生会话,养成批判性的思维品质,形成良好的合作交流品质,提高“应用数学”的意识.以上三个目标确定是基于教材地位分析和学生特征分析.二、教学展开分析1、教学重点与难点分析重点:掌握二元一次不等式表示平面区域并灵活运用,以及线性规划最优解的求解.难点:实际问题转化为线性规划问题及其整数最优解、最优近似解的求解.利用例题、变式训练,求线性规划最优解的两种有效的方法——“调整优值法”、“换元取优法”的应用,以及“简单的线性规划解答器”的应用,来突出重点,突破难点.2、教学策略与方法指导(1)教学策略:本节课采用基于建构主义理论的“建构式教学方法”,即由“创设问题情境——自主探究——师生会话——意义建构”四个环节组成. 以学生为主体,并根据教学中的实际情况及时调整教学方案.(2)学法指导:教师平等地参与“师生会话”,间或参与“自主探究”并适时点拨指导;引导学生全员、全过程参与;自主探究的形式可以是小组学习,也可以是“学习共同体”等,引导学生反思评价.3、教学媒体的选择与运用使用多媒体辅助教学.4、教学实施按照“建构式教学法”的思想,围绕突出重点,解决难点,不断设置问题情境,激发学生自主探究,并由师生会话促进意义建构. 我把本节课的教学实施分成三大部分,即(1)概念“同化”,(2)例题研讨,(3)反思评价.Ⅱ例题分析三、教学结果分析通过本节课的学习,结合教学目标,从知识、能力、情感三个方面预测可能会出现的结果.1、学生能掌握并灵活运用二元一次不等式的平面区域,能够求出最优解;但在数学建模方面,估计有少部分学生会有一定的困惑. 另外,对线性规划和其它知识的交汇题的求解以及实际问题的整数最优解、近似最优解的求解仍会有学生感到陌生,故须督促学生课后加强消化.2、学生基本思想能力得到一定的提高,但良好的数学素养有待进一步提高.3、由于学生层次不同,已有的数学知识、观念不同,体验和认识也不同,对于学习层次较高的学生,应鼓励其严谨、谦虚、锲而不舍的求学态度;而对学习欠佳的同学,应多鼓励,并辅之以师生的帮助促进其进步.。
课题:简单的线性规划( 1)第课时总序第个教案课型:新讲课编写不时间:年月日履行时间:年月日教课目的:批1.知识与技术:使学生认识二元一次不等式表示平面地区;认识线性规划的意义注以及拘束条件、目标函数、可行解、可行域、最优解等基本观点;认识线性规划问题的图解法,并能应用它解决一些简单的实质问题;2.过程与方法:经历从实质情境中抽象出简单的线性规划问题的过程,提升数学建模能力;3.神态与价值:培育学生察看、联想以及作图的能力,浸透会合、化归、数形结合的数学思想,提升学生“建模”和解决实质问题的能力。
教课要点:用图解法解决简单的线性规划问题教课难点:正确求得线性规划问题的最优解教课器具:三角板,投影仪教课方法:经历从实质情境中抽象出简单的线性规划问题的过程,提升数学建模能力;教课过程:1.课题导入[ 复习发问 ]1 、二元一次不等式Ax By C0 在平面直角坐标系中表示什么图形?2、如何画二元一次不等式(组)所表示的平面地区?应注意哪些事项?3、熟记“直线定界、特别点定域”方法的内涵。
2. 讲解新课在现实生产、生活中,常常会碰到资源利用、人力分配、生产安排等问题。
1、下边我们就来看相关与生产安排的一个问题:引例:某工厂有 A、 B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个 A 配件耗时 1h, 每生产一件乙产品使用 4 个 B 配件耗时 2h,该厂每日最多可从配件厂获取 16 个 A 配件和 12 个 B 配件,按每日 8h 计算,该厂全部可能的日生产安排是什么?( 1)用不等式组表示问题中的限制条件:设甲、乙两种产品分别生产x、 y 件,又已知条件可得二元一次不等式组:x 2 y84x164y 12x0y0. (1)( 2)画出不等式组所表示的平面地区:如图, 图中的暗影部分的整点 (坐标为整数的点) 就代表全部可能的日生产安排。
( 3)提出新问题:进一步,若生产一件甲产品赢利 2 万元,生产一件乙产品赢利 3 万元,采纳哪一种生产安排收益最大? ( 4)试试解答:设生产甲产品 x 件,乙产品 y 件时,工厂获取的收益为 z , 则 z=2x+3y . 这样,上述问题就转变为:当 x,y 知足不等式( 1)并且为非负整数时, z 的最大值是多少?把 z=2x+3y 变形为y2 xz,这是斜率为2,在y 轴上的截距为z 的3333直线。
课题:简单的线性规划全日制普通高级中学教科书(必修)第二册(上)第七章第四节第二课时一、教材分析:1、教材的地位与作用:线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用。
本节内容是在学习了不等式、直线方程的基础上,利用不等式和直线方程的有关知识展开的,它是对二元一次不等式的深化和再认识、再理解。
通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。
2、教学重点与难点:重点:画可行域;在可行域内,用图解法准确求得线性规划问题的最优解。
难点:在可行域内,用图解法准确求得线性规划问题的最优解。
二、目标分析:在新课标让学生经历“学数学、做数学、用数学”的理念指导下,本节课的教学目标分设为知识目标、能力目标和情感目标。
知识目标:1、了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和最优解等概念;2、理解线性规划问题的图解法;3、会利用图解法求线性目标函数的最优解.能力目标:1、在应用图解法解题的过程中培养学生的观察能力、理解能力。
2、在变式训练的过程中,培养学生的分析能力、探索能力。
3、在对具体事例的感性认识上升到对线性规划的理性认识过程中,培养学生运用数形结合思想解题的能力和化归能力。
情感目标:1、让学生体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用,品尝学习数学的乐趣。
2、让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神;3、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想。
三、过程分析:数学教学是数学活动的教学。
因此,我将整个教学过程分为以下六个教学环节:1、创设情境,提出问题;2、分析问题,形成概念;3、反思过程,提炼方法;4、变式演练,深入探究;5、运用新知,解决问题;6、归纳总结,巩固提高。
3.3.2 简单的线性规划(基本概念)29 **学习目标**1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念; 2.了解线性规划问题的图解法,并能应用它解决一些简单的最值问题 **要点精讲**1. 研究一个问题:设2t x y =+,式中变量,x y 满足下列条件⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x 。
求t 的最大值和最小值分析:从变量x 、y 所满足的条件来看,变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域ABC.作一组与直线0l :2x +y =0平行的直线l :2x +y =t ,t ∈R (或平行移动直线0l ),从而观察t 值的变化:]12,3[2∈+=y x t从图上可看出,点(0,0)不在以上公共区域内,当x =0,y =0时,t =2x +y =0. 点(0,0)在直线0l :2x +y =0上.作一组与直线0l 平行的直线(或平行移动直线0l )l :2x +y =t ,t ∈R . 可知,当l 在0l 的右上方时,直线l 上的点(x ,y )满足2x +y >0, 即t >0.而且,直线l 往右平移时,可以发现t 随之增大.在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点B (5,2)的直线2l 所对应的t 最大,以经过点A (1,1)的直线1l 所对应的t 最小.所以: m ax t =2×5+2=12,min t =2×1+3=3。
2. 目标函数, 线性目标函数线性规划问题,可行解,可行域, 最优解:诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件。
t =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于t =2x +y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z =2x +y 在线性约束条件下的最大值和最小值的问题,即为线性规划问题那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解 **范例分析**例1.给出下列命题:①线性规划中最优解指的是使目标函数取得最大值或最小值的变量x 或y 的值; ②线性规划中最优解指的是目标函数的最大值或最小值;③线性规划中最优解指的是使目标函数取得最大值或最小值的可行域; ④线性规划中最优解指的是使目标函数取得最大值或最小值的可行解. 其中正确的是( )A.①②B.②③C.②④D.④例2.已知变量,x y 满足约束条件⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x 。
3.4.2简单的线性规划教学设计【教材分析】1.学情分析学生刚刚经历了学习二元一次不等式表示平面区域的过程,学习平面区域有什么用处?为本节课做好了知识的铺垫,同时又促进了学生对本节课的兴趣.2.教材分析根据教学大纲的要求,本节着重要介绍线性规划的有关概念,并且要推导出“最优解一般在可行域的边界处,而且在可行域的顶点处取得”的重要结论。
围绕重点内容,我们在教学时,对概念部分让学生自研完成,让学生通过合作探究得到平移原理,从而利用平移原理准确的寻找出最优解。
3.教学方法自主研究与合作探究相结合。
4.教学目标(1)知识与技能:①会画二元一次不等式表示平面区域;②了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;③探究和掌握解决线性规划问题的平移原理;④了解线性规划问题的图解法。
(2)过程与方法经历从探究平移原理,从而解决简单的线性规划问题的过程,提高学生从特殊到一般的研究问题的方法,感受解决问题的快乐。
(3)情态、态度、价值观培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生从特殊到一般的研究问题的方法,以及解决实际问题的能力。
5.教学重点(1)线性规划的有关概念(2)平移原理;(3)用图解法解决简单的线性规划问题。
突出重点的方法:对(1):自主阅读,培养学生的自学能力,从而加深学生的印象;对(2):通过从特殊到一般的方法,通过合作探究;对(3):通过学生的课堂练习、板演、讲解、纠错、观察、设问等形式突出重点。
6. 教学难点用平移原理准确求得线性规划问题的最优解。
突破难点的方法:通过从特殊到一般的方法,通过合作探究,通过学生的课堂练习、板演、讲解、纠错、观察、设问等形式突破重点。
【教学过程】 1.课题导入 【复习提问】(1)二元一次不等式在平面直角坐标系中表示: ; (2)画二元一次不等式(组)的方法: ; (3)你能画出下面不等式组表示的平面区域吗?⎪⎩⎪⎨⎧≥≤≤+.1,3,3065y x y y x2.讲授新课(1)实例:设y x ,满足以下条件条件⎪⎩⎪⎨⎧≥≤≤+.1,3,3065y x y y x求y x z +=2的最小值与最大值. 线性规划的有关概念:①线性约束条件:在上述问题中,不等式组是一组变量y x ,的约束条件,这组约束条件都是关于y x ,的一次不等式,故又称线性约束条件. ②线性目标函数关于y x ,的一次式y x z +=2是欲达到最大值或最小值所涉及的变量y x ,的解析式,叫线性目标函数. ③线性规划问题一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解满足线性约束条件的解(y x ,)叫可行解;由所有可行解组成的集合叫做可行域; 使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. (2)提出问题:如何在可行域中找出最优解? (3)探究平移原理给出四组直线,要求学生在不同的直角坐标系中做出下列四组直线,并观察它们之间的变化,你能得出什么结论?①4,2,0,1,3,2--=+=z y x z 令②4,2,0,1,3,2--=+-=z y x z 令③4,2,0,1,3,2--=-=z y x z 令 ④4,2,0,1,3,2--=--=z y x z 令课前学生自主完成,教师引导观察平移原理: 【小结】平移原理直线l :by ax z +=,令 0=z 得00=+by ax l :. ①当 0>b 时,上移z l ,0变大,下移z l ,0变小; ②当 0<b 时,上移z l ,0变小,下移z l ,0变大.(4)利用平移原理解决实例中的问题,总结解决线性规划问题的步骤. (5)课堂练习 设y x ,满足以下条件(1)求目标函数y x z 32+=的最小值与最大值; (2)求目标函数2434--=y x z 的最小值与最大值. (5)课堂小结 从以下几方面总结:(1) 基本知识:①线性规划的基本概念及解线性规划的步骤 ;②平移原理. (2) 基本思想:① 数形结合思想;②转化思想;(3) 基本方法:① 特殊到一般的方法;②类比归纳的方法.精美句子1、善思则能“从无字句处读书”。
课题: §3.3.2简单的线性规划第4课时授课类型:新授课【教学目标】1.知识与技能:掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。
【教学重点】利用图解法求得线性规划问题的最优解;【教学难点】把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。
【教学过程】1.课题导入[复习引入]:1、二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域(虚线表示区域不包括边界直线)2、目标函数, 线性目标函数,线性规划问题,可行解,可行域, 最优解:2.讲授新课线性规划在实际中的应用:线性规划的理论和方法主要在两类问题中得到应用,一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务下面我们就来看看线性规划在实际中的一些应用:[范例讲解]例5 营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪,1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元。
为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?指出:要完成一项确定的任务,如何统筹安排,尽量做到用最少的资源去完成它,这是线性规划中最常见的问题之一.例6 在上一节例3中,若根据有关部门的规定,初中每人每年可收取学费1 600元,高中每人每年可收取学费2 700元。
河北武中·宏达教育集团教师课时教案0x ⎪≥⎪河北武中·宏达教育集团教师课时教案教学过程及方法问题与情境及教师活动学生活动(2)画出不等式组所表示的平面区域:如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。
(3)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?(4)尝试解答:设生产甲产品x件,乙产品y件时,工厂获得的利润为z,则z=2x+3y.这样,上述问题就转化为:当x,y满足不等式(1)并且为非负整数时,z的最大值是多少?把z=2x+3y变形为233zy x=-+,这是斜率为23-,在y轴上的截距为3z的直线。
当z变化时,可以得到一族互相平行的直线,如图,由于这些直线的斜率是确定的,因此只要给定一个点,(例如(1,2)),就能确定一条直线(2833y x=-+),这说明,截距3z可以由平面内的一个点的坐标唯一确定。
可以看到,直线233zy x=-+与不等式组(1)的区域的交点满足不等式组(1),而且当截距3z最大时,z取得最大值。
因此,问题可以转化为当直线233zy x=-+与不等式组(1)确定的平面区域有公共点时,在区域内找一个点P,使直线经过点P时截距3z最大。
(5)获得结果:由上图可以看出,当实现233zy x=-+金国直线x=4与直线x+2y-8=0的交点M(4,2)时,截距3z的值最大,最大值为143,这学生完成学生尝试解答河北武中·宏达教育集团教师课时教案河北武中·宏达教育集团教师课时教案。
3.3.2 简单的线性规划问题(1)
教学 目标
1.从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;
2.了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最
优解等概念;会根据条件建立线性目标函数
3.了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值
4.培养学生观察、联想以及作图的能力;渗透集合、化归、数形结合、等价转化的数学思想,提高学生“建模”和解决实际问题的能力,培养学生应用数学的意识。
重点难
点
重点:线性规划的图解法
难点:从实际情景中抽象出一些简单的二元线形规划问题;寻求线性规划问题的
最优解
教学过程 一、问题情境
1. 在生活、生产中,经常会遇到资源利用、人力调配、生产安排的等问题,本节课就学习此方面的应用
2.问题:在约束条件410432000
x y x y x y +≤⎧⎪+≤⎪
⎨≥⎪⎪≥⎩下,如何求目标函数2P x y =+的最大值?
二、互动探究
1. 基本概念 对于在约束条件410
432000
x y x y x y +≤⎧⎪+≤⎪
⎨≥⎪⎪≥⎩下,若2P x y =+,式中变量x 、y 满足上面
不等式组,则不等式组叫做变量x 、y 的约束条件 ,2P x y =+叫做目标函数;又因为这里的
2P x y =+是关于变量x 、y 的一次解析式,所以又称为线性目标函数。
满足线性约束条件的平
面区域叫做可行解,如图(1)所示.由所有可行解组成的集合叫做可行域;
将目标函数2P x y =+变形为2y x P =-+的形式,它表示一条直线,斜率为2-,且在y 轴
点(0,0)在直线0l :20x y +=上,作一组平行于0l 的直线l :2x y t +=,t R ∈,
可知:当l 在0l 的右上方时,直线l 上的点(,)x y 满足20x y +>, 即0t >,而且,直线l 往右平移时,t 随之增大. 由图象可知,当直线l 经过点(5,2)A 时,对应的t 最大,
当直线l 经过点(1,1)B 时,对应的t 最小, 所以,max 25212z =⨯+=,min 2113z =⨯+=.
四、矫正反馈
教材80页练习1.2.3
课外作业
书P84的4
教学反思
O
y
x
A C
B
430x y -+=
1x = 35250x y +-=。