比较冒泡算法,选择算法,希尔排序算法
- 格式:docx
- 大小:9.31 KB
- 文档页数:2
C程序经典算法50例1.二分查找算法:在有序数组中查找指定元素。
2.冒泡排序算法:通过不断比较相邻元素并交换位置,将较大的元素向后冒泡。
3.快速排序算法:通过选择一个基准元素,将数组分割为左右两部分,并递归地对两部分进行快速排序。
4.插入排序算法:将数组划分为已排序和未排序两部分,每次从未排序中选择一个元素插入到已排序的合适位置。
5.选择排序算法:遍历数组,每次选择最小元素并放置在已排序部分的末尾。
6.希尔排序算法:将数组按照一定间隔进行分组并分别进行插入排序,然后逐步减小间隔并重复这个过程。
7.归并排序算法:将数组递归地划分为两部分,然后将两个有序的部分进行合并。
8.桶排序算法:将元素根据特定的映射函数映射到不同的桶中,然后对每个桶分别进行排序。
9.计数排序算法:统计每个元素的出现次数,然后根据计数进行排序。
10.基数排序算法:从低位到高位依次对元素进行排序。
11.斐波那契数列算法:计算斐波那契数列的第n项。
12.阶乘算法:计算给定数字的阶乘。
13.排列问题算法:生成给定数组的全排列。
14.组合问题算法:生成给定数组的所有组合。
15.最大连续子序列和算法:找出给定数组中和最大的连续子序列。
16.最长递增子序列算法:找出给定数组中的最长递增子序列。
17.最长公共子序列算法:找出两个给定字符串的最长公共子序列。
18.最短路径算法:计算给定有向图的最短路径。
19.最小生成树算法:构建给定连通图的最小生成树。
20.汉诺塔算法:将n个圆盘从一个柱子移动到另一个柱子的问题。
21.BFS算法:广度优先算法,用于图的遍历和查找最短路径。
22.DFS算法:深度优先算法,用于图的遍历和查找连通分量。
23.KMP算法:字符串匹配算法,用于查找一个字符串是否在另一个字符串中出现。
24.贪心算法:每次都选择当前情况下最优的方案,适用于求解一些最优化问题。
25.动态规划算法:将一个大问题划分为多个子问题,并通过子问题的解求解整个问题,适用于求解一些最优化问题。
检索排序算法一、前言随着信息化时代的到来,数据量急剧增长,如何快速、准确地从海量数据中检索出所需信息成为了一项重要的任务。
而检索排序算法作为解决这一问题的关键技术之一,其研究和应用也日益受到关注。
二、概述检索排序算法是指在给定的数据集合中按照某种规则对数据进行排序,以便更快地找到所需信息。
常见的检索排序算法包括冒泡排序、选择排序、插入排序、希尔排序、归并排序和快速排序等。
三、冒泡排序冒泡排序是一种简单直观的算法,其基本思想是将相邻两个元素进行比较,如果顺序不对就交换位置。
通过多次遍历整个序列,最终可以将序列按照升序或降序排列。
虽然冒泡排序算法简单易懂,但由于其时间复杂度较高,在大规模数据集合中表现不佳。
四、选择排序选择排序是另一种简单直观的算法,其基本思想是每次从未排好序的元素中选出最小(或最大)的一个元素放到已排好序的末尾。
通过多次遍历整个序列,最终可以将序列按照升序或降序排列。
虽然选择排序算法比冒泡排序算法稍微快一些,但其时间复杂度仍然较高。
五、插入排序插入排序是一种简单高效的算法,其基本思想是将未排序的元素逐个插入到已排序的元素中。
通过多次遍历整个序列,最终可以将序列按照升序或降序排列。
虽然插入排序算法比冒泡排序和选择排序算法要快一些,但其时间复杂度仍然较高。
六、希尔排序希尔排序是一种改进的插入排序算法,其基本思想是先将整个序列分成若干个子序列进行插入排序,再逐步缩小子序列长度直至为1。
通过多次遍历整个序列,最终可以将序列按照升序或降序排列。
希尔排序算法相对于插入排序算法而言,在大规模数据集合中表现更好。
七、归并排序归并排序是一种基于分治思想的算法,其基本思想是将待排元素分成两部分进行递归处理,直到每部分只有一个元素为止。
然后再将两部分有序地合并成一个有序序列。
通过多次递归处理,最终可以将整个序列按照升序或降序排列。
归并排序算法相对于前面几种算法而言,在大规模数据集合中表现更好。
八、快速排序快速排序是一种基于分治思想的算法,其基本思想是选择一个基准元素,将小于基准元素的元素放到左边,大于基准元素的元素放到右边,然后再对左右两部分进行递归处理。
java算法总结一、排序1、冒泡排序:t冒泡排序是一种简单的排序算法,它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。
走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
2、选择排序:t选择排序是一种简单直观的排序算法,无论什么数据进去都是O(n)的时间复杂度。
所以用到它的时候,数据规模越小越好。
唯一的好处可能就是不占用额外的内存空间了吧。
3、插入排序:t插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。
它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
4、希尔排序:t希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。
希尔排序是非稳定排序算法。
该方法的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。
二、查找1、线性查找:t线性查找又称顺序查找,是一种最简单的查找算法。
从数据结构线形表的一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则查找成功;若扫描结束仍没有找到关键字等于k的结点,则表示表中不存在关键字等于k的结点,查找失败。
2、二分查找:t二分查找又称折半查找,要求待查找的序列有序。
每次取中间位置的值与待查关键字比较,如果中间位置的值更大,则在前半部分循环这个查找的过程,如果中间位置的值更小,则在后半部分循环这个查找的过程。
3、二叉查找树:t二叉查找树(Binary Search Tree,简称BST),又被称为二叉搜索树、有序二叉树。
它是一棵空树或者是具有下列性质的二叉树:若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;若任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;任意节点的左、右子树也分别为二叉查找树;没有键值相等的节点三、字符串处理1、KMP算法:tKMP算法是由Donald E.Knuth、Vaughn R. Pratt和James H.Morris三人于1977年提出的一种改进的字符串匹配算法,它利用匹配失败后的信息,尽量减少模式串与主串的匹配次数以达到快速匹配的目的。
排序算法十大经典方法
排序算法是计算机科学中的经典问题之一,它们用于将一组元素按照一定规则排序。
以下是十大经典排序算法:
1. 冒泡排序:比较相邻元素并交换,每一轮将最大的元素移动到最后。
2. 选择排序:每一轮选出未排序部分中最小的元素,并将其放在已排序部分的末尾。
3. 插入排序:将未排序部分的第一个元素插入到已排序部分的合适位置。
4. 希尔排序:改进的插入排序,将数据分组排序,最终合并排序。
5. 归并排序:将序列拆分成子序列,分别排序后合并,递归完成。
6. 快速排序:选定一个基准值,将小于基准值的元素放在左边,大于基准值的元素放在右边,递归排序。
7. 堆排序:将序列构建成一个堆,然后一次将堆顶元素取出并调整堆。
8. 计数排序:统计每个元素出现的次数,再按照元素大小输出。
9. 桶排序:将数据分到一个或多个桶中,对每个桶进行排序,最后输出。
10. 基数排序:按照元素的位数从低到高进行排序,每次排序只考虑一位。
以上是十大经典排序算法,每个算法都有其优缺点和适用场景,选择合适的算法可以提高排序效率。
几种排序的算法时间复杂度比较1.选择排序:不稳定,时间复杂度 O(n^2)选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。
这样,经过i遍处理之后,前i个记录的位置已经是正确的了。
2.插入排序:稳定,时间复杂度 O(n^2)插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。
第i遍处理仅将L[i]插入L[1..i-1]的适当位置,使得L[1..i] 又是排好序的序列。
要达到这个目的,我们可以用顺序比较的方法。
首先比较L[i]和L[i-1],如果L[i-1]≤ L[i],则L[1..i]已排好序,第i遍处理就结束了;否则交换L[i]与L[i-1]的位置,继续比较L[i-1]和L[i-2],直到找到某一个位置j(1≤j≤i-1),使得L[j] ≤L[j+1]时为止。
图1演示了对4个元素进行插入排序的过程,共需要(a),(b),(c)三次插入。
3.冒泡排序:稳定,时间复杂度 O(n^2)冒泡排序方法是最简单的排序方法。
这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。
在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。
所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。
如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。
显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。
在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。
一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。
4.堆排序:不稳定,时间复杂度 O(nlog n)堆排序是一种树形选择排序,在排序过程中,将A[n]看成是完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。
一、冒泡排序已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。
首先比较a[1]与 a[2]的值,若a[1]大于a[2]则交换两者的值,否则不变。
再比较a[2]与a[3]的值,若a[2]大于a[3]则交换两者的值,否则不变。
再比较a[3]与a[4],以此类推,最后比较a[n-1]与a[n]的值。
这样处理一轮后,a[n]的值一定是这组数据中最大的。
再对a[1]~a[n- 1]以相同方法处理一轮,则a[n-1]的值一定是a[1]~a[n-1]中最大的。
再对a[1]~a[n-2]以相同方法处理一轮,以此类推。
共处理 n-1轮后a[1]、a[2]、……a[n]就以升序排列了。
优点:稳定;缺点:慢,每次只能移动相邻两个数据。
二、选择排序每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
选择排序是不稳定的排序方法。
n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果:①初始状态:无序区为R[1..n],有序区为空。
②第1趟排序在无序区R[1..n]中选出关键字最小的记录R[k],将它与无序区的第1个记录R[1]交换,使R[1..1]和R[2..n]分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。
……③第i趟排序第i趟排序开始时,当前有序区和无序区分别为R[1..i-1]和R(1≤i≤n-1)。
该趟排序从当前无序区中选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。
这样,n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果。
优点:移动数据的次数已知(n-1次);缺点:比较次数多。
三、插入排序已知一组升序排列数据a[1]、a[2]、……a[n],一组无序数据b[1]、 b[2]、……b[m],需将二者合并成一个升序数列。
C语言经典算法大全1. 冒泡排序(Bubble Sort):比较相邻的元素,如果顺序错误就交换位置,直到整个序列有序。
2. 快速排序(Quick Sort):选择一个中间元素作为基准,将序列分成两部分,左边的元素都小于等于基准,右边的元素都大于等于基准,然后递归地对两个子序列进行排序。
3. 插入排序(Insertion Sort):将元素逐个插入到已经排序的序列中,直到整个序列有序。
4. 选择排序(Selection Sort):每次选择一个最小(或最大)的元素放到有序序列的末尾(或开头),直到整个序列有序。
5. 归并排序(Merge Sort):将序列分成若干个子序列,对每个子序列进行排序,然后再将已排好序的子序列合并成一个有序序列。
6. 希尔排序(Shell Sort):将序列划分成若干个小的子序列分别进行直接插入排序,然后逐渐减小子序列的间隔直到整个序列有序。
7. 堆排序(Heap Sort):利用堆这种数据结构进行排序,构建一个大(或小)根堆,依次将根节点(最大或最小值)和最后一个节点交换位置,然后重新调整堆。
8. 计数排序(Counting Sort):统计每个元素的出现次数,然后根据统计结果,将元素按照顺序放入相应位置,从而实现排序。
9. 桶排序(Bucket Sort):将元素分到不同的桶中,桶内元素进行排序,然后按照桶的顺序将元素取出,从而实现排序。
10.基数排序(Radix Sort):根据元素的位数进行排序,首先排个位,然后排十位,以此类推,直到排完最高位。
除了上述排序算法之外,C语言中还有许多其他经典算法,例如二分查找、递归、深度优先、广度优先、贪心算法、动态规划等等。
这些算法都有各自的特点和应用场景,对于提高编程水平和解决实际问题都有很大的帮助。
总结起来,掌握C语言的经典算法对于编程爱好者来说是非常重要的。
它们可以帮助我们更好地理解计算机科学的基本原理和数据结构,提高我们编写程序的能力和效率。
各种排序方法的比较与讨论现在流行的排序有:选择排序、直接插入排序、冒泡排序、希尔排序、快速排序、堆排序、归并排序、基数排序。
一、选择排序1.基本思想:每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
2. 排序过程:【示例】:初始关键字[49 38 65 97 76 13 27 49]第一趟排序后13 [38 65 97 76 49 27 49]第二趟排序后13 27 [65 97 76 49 38 49]第三趟排序后13 27 38 [97 76 49 65 49]第四趟排序后13 27 38 49 [49 97 65 76]第五趟排序后13 27 38 49 49 [97 97 76]第六趟排序后13 27 38 49 49 76 [76 97]第七趟排序后13 27 38 49 49 76 76 [ 97]最后排序结果13 27 38 49 49 76 76 973.void selectionSort(Type* arr,long len){long i=0,j=0;/*iterator value*/long maxPos;assertF(arr!=NULL,"In InsertSort sort,arr is NULL\n");for(i=len-1;i>=1;i--){maxPos=i;for(j=0;jif(arr[maxPos]if(maxPos!=i)swapArrData(arr,maxPos,i);}}选择排序法的第一层循环从起始元素开始选到倒数第二个元素,主要是在每次进入的第二层循环之前,将外层循环的下标赋值给临时变量,接下来的第二层循环中,如果发现有比这个最小位置处的元素更小的元素,则将那个更小的元素的下标赋给临时变量,最后,在二层循环退出后,如果临时变量改变,则说明,有比当前外层循环位置更小的元素,需要将这两个元素交换.二.直接插入排序插入排序(Insertion Sort)的基本思想是:每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子文件中的适当位置,直到全部记录插入完成为止。
各种排序算法的稳定性和时间复杂度小结选择排序、快速排序、希尔排序、堆排序不是稳定的排序算法,冒泡排序、插入排序、归并排序和基数排序是稳定的排序算法。
冒泡法:这是最原始,也是众所周知的最慢的算法了。
他的名字的由来因为它的工作看来象是冒泡:复杂度为O(n*n)。
当数据为正序,将不会有交换。
复杂度为O(0)。
直接插入排序:O(n*n)选择排序:O(n*n)快速排序:平均时间复杂度log2(n)*n,所有内部排序方法中最高好的,大多数情况下总是最好的。
归并排序:log2(n)*n堆排序:log2(n)*n希尔排序:算法的复杂度为n的1.2次幂关于快速排序分析这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况1.数组的大小是2的幂,这样分下去始终可以被2整除。
假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n所以算法复杂度为O(log2(n)*n)其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变成交换法(由于使用了递归,情况更糟)。
但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。
实践证明,大多数的情况,快速排序总是最好的。
如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢于快速排序(因为要重组堆)。
本文是针对老是记不住这个或者想真正明白到底为什么是稳定或者不稳定的人准备的。
首先,排序算法的稳定性大家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。
在简单形式化一下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。
基于比较的排序算法有哪些七种排序算法[1]分别是:•四种基本排序算法:冒泡排序,选择排序,插入排序,希尔排序。
•三种高级排序算法:归并排序,快速排序,堆排序。
这七种排序算法都是比较排序算法,这种算法的特点顾名思义就是排序是依赖于元素间两两比较的结果[2]。
任何比较算法在最坏的情况下都要经过Ω(nlgn)次比较。
1. 冒泡排序顾名思义,冒泡排序的整个过程就像碳酸饮料中的小气泡,慢慢浮到最上面。
只不过在冒泡排序中浮上去的是最大的数而已。
简要思路:遍历数组,每次比较相邻的两个元素 arr[i],arr[i + 1],如果 arr[i + 1] < arr[i] ,就把 arr[i + 1] 和 arr[i] 调换位置。
冒泡排序有这样的排序特性:•每次都只排好一个元素。
•最坏情况时间复杂度为O(n^2)。
•平均情况时间复杂度为O(n^2)。
•需要额外空间O(1)。
•所需时间与输入数组的初始状态无关。
算法示例public static void bubbleSort(int[] arr) {int n = arr.length;// 每一次循环,都把最大的元素冒泡到对应的位置for (int i = 0; i < n - 1; ++i) {for (int j = 0; j < n - i - 1; ++j) {// 如果后一个比前一个小,那么就把大的放后面if (less(arr, j + 1, j)) exch(arr, j, j + 1);}}}2. 选择排序其实选择排序,直观上来说和冒泡排序差不多,只不过么有了相邻元素频繁交换的操作,但是却保留了冒泡排序频繁访问数组的特点。
简要思路:对于每一个循环,我们在剩余的未排序数中找到最小数对应的下标,遍历一次后再把对应的数放到合适的位置。
选择排序有这样的排序特性:•每次循环都只排好一个元素。
•最坏情况时间复杂度为\Theta (n^2)。
1.稳定性比较插入排序、冒泡排序、二叉树排序、二路归并排序及其他线形排序是稳定的选择排序、希尔排序、快速排序、堆排序是不稳定的2.时间复杂性比较插入排序、冒泡排序、选择排序的时间复杂性为O(n2)其它非线形排序的时间复杂性为O(nlog2n)线形排序的时间复杂性为O(n);3.辅助空间的比较线形排序、二路归并排序的辅助空间为O(n),其它排序的辅助空间为O(1); 4.其它比较插入、冒泡排序的速度较慢,但参加排序的序列局部或整体有序时,这种排序能达到较快的速度。
反而在这种情况下,快速排序反而慢了。
当n较小时,对稳定性不作要求时宜用选择排序,对稳定性有要求时宜用插入或冒泡排序。
若待排序的记录的关键字在一个明显有限范围内时,且空间允许是用桶排序。
当n较大时,关键字元素比较随机,对稳定性没要求宜用快速排序。
当n较大时,关键字元素可能出现本身是有序的,对稳定性有要求时,空间允许的情况下。
宜用归并排序。
当n较大时,关键字元素可能出现本身是有序的,对稳定性没有要求时宜用堆排序。
********************************************************************* ****************重温经典排序思想--C语言常用排序全解/*===================================================================== ========相关知识介绍(所有定义只为帮助读者理解相关概念,并非严格定义):1、稳定排序和非稳定排序简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就说这种排序方法是稳定的。
反之,就是非稳定的。
比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。
计算机常见的32种算法在计算机科学领域,算法是指解决问题的一系列步骤和规则。
计算机常见的32种算法涵盖了不同领域的计算问题,包括排序、搜索、图算法和动态规划等。
以下是对这32种算法的简要介绍:1. 冒泡排序算法(Bubble Sort):通过比较相邻元素并交换位置来排序一个数组。
2. 选择排序算法(Selection Sort):依次从未排序部分选择最小元素,并将其放在已排序部分的末尾。
3. 插入排序算法(Insertion Sort):将数组分为已排序和未排序两部分,依次将未排序元素插入已排序部分的正确位置。
4. 希尔排序算法(Shell Sort):通过比较相距一定间隔的元素并进行交换来排序一个数组,最终逐渐减小间隔直至1。
5. 归并排序算法(Merge Sort):将数组递归地拆分为较小的子数组,然后将这些子数组合并成有序数组。
6. 快速排序算法(Quick Sort):选择一个基准元素,将数组分为比基准小和比基准大的两部分,然后递归地对这两部分进行排序。
7. 堆排序算法(Heap Sort):构建一个二叉堆,并依次将堆顶元素与最后一个元素交换,然后重新调整堆。
8. 计数排序算法(Counting Sort):统计数组中小于某个值的元素个数,并根据统计结果进行排序。
9. 桶排序算法(Bucket Sort):将元素根据某个特征值放入不同的桶中,然后对每个桶中的元素进行排序。
10. 基数排序算法(Radix Sort):按照每个元素的个位、十位、百位等进行排序,从最低有效位到最高有效位。
11. 二分搜索算法(Binary Search):在有序数组中查找某个特定元素的位置。
12. 线性搜索算法(Linear Search):顺序遍历数组,逐个比较元素直到找到目标元素。
13. 插值搜索算法(Interpolation Search):根据目标元素在有序数组中的分布情况,通过估算目标元素的位置来进行搜索。
头歌数据结构十大经典排序算法导言在计算机科学中,排序算法是一类常见且重要的算法。
通过对一组元素进行排序,我们可以提高数据的组织性和检索效率。
本文将介绍头歌数据结构十大经典排序算法,包括冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序、计数排序、桶排序和基数排序。
冒泡排序冒泡排序是一种简单直观的排序算法。
它通过多次比较和交换相邻元素的方式,将较大(或较小)的元素逐渐交换至数组的一端,从而达到排序的目的。
选择排序选择排序是一种简单且高效的排序算法。
它通过每次选择未排序部分的最小元素,并将其交换至已排序部分的末尾,从而逐步构建有序序列。
插入排序插入排序是一种自然而然的排序算法。
它通过将待排序元素逐个插入已排序序列的正确位置,不断扩大已排序部分的范围,从而完成排序。
希尔排序希尔排序是一种高效的插入式排序算法。
它通过将待排序元素分组,分组内进行插入排序,然后逐步减小分组的大小,以达到整体有序的目的。
归并排序归并排序是一种高效且稳定的排序算法。
它将已排序的子序列合并,不断递归地执行该操作,直到合并整个序列,从而实现排序。
快速排序快速排序是一种高效的分治排序算法。
它通过选择一个基准元素,将序列分割成两部分,并分别对这两部分进行排序,最终将序列有序地整合起来。
堆排序堆排序是一种高效且稳定的排序算法。
它利用堆这种特殊的数据结构,在每次构建堆过程中,获取最大(或最小)元素,并将其放入已排序部分的末尾,从而完成排序。
计数排序计数排序是一种非比较性的排序算法。
它通过统计每个元素出现的次数,计算每个元素应该在有序序列中的位置,从而完成排序。
桶排序桶排序是一种高效的排序算法。
它通过将元素分配到不同的桶中,并对每个桶进行排序,从而得到排序结果。
基数排序基数排序是一种高效的排序算法。
它通过将待排序元素按照个位、十位、百位等进行排序,最终得到有序序列。
结语头歌数据结构十大经典排序算法是计算机科学中不可或缺的内容。
分类:1)插入排序(直接插入排序、希尔排序)2)交换排序(冒泡排序、快速排序)3)选择排序(直接选择排序、堆排序)4)归并排序5)分配排序(基数排序)所需辅助空间最多:归并排序所需辅助空间最少:堆排序平均速度最快:快速排序不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:1.直接插入排序(1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的。
如此反复循环,直到全部排好顺序。
(2)实例(3)用java实现12345678911121314151617181920package com.njue;publicclass insertSort {public insertSort(){inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,2 5,53,51};int temp=0;for(int i=1;i<a.length;i++){int j=i-1;temp=a[i];for(;j>=0&&temp<a[j];j--){a[j+1]=a[j]; //将大于temp的值整体后移一个单位}a[j+1]=temp;}for(int i=0;i<a.length;i++){System.out.println(a[i]);}2. 希尔排序(最小增量排序)(1)基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差 d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。
当增量减到1时,进行直接插入排序后,排序完成。
(2)实例:(3)用java实现123456789101112131415161718192122232425262728293031publicclass shellSort { publicshellSort(){int a[]={1,54,6,3,78,34,12,45,56,100}; double d1=a.length;int temp=0;while(true){d1= Math.ceil(d1/2);int d=(int) d1;for(int x=0;x<d;x++){for(int i=x+d;i<a.length;i+=d){int j=i-d;temp=a[i];for(;j>=0&&temp<a[j];j-=d){a[j+d]=a[j];}a[j+d]=temp;}}if(d==1){break;}for(int i=0;i<a.length;i++){System.out.println(a[i]);}}3.简单选择排序(1)基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
数据的排序方法有哪些数据的排序方法主要有以下几种:1. 冒泡排序:冒泡排序是最简单的排序算法之一。
它重复地比较相邻的两个元素,如果它们的顺序错误就交换位置,直到整个序列有序。
2. 选择排序:选择排序是一种简单但低效的排序算法。
它每次从未排序的部分选择一个最小(或最大)的元素放到已排序部分的末尾。
3. 插入排序:插入排序类似于整理扑克牌的过程,将无序部分的元素逐个插入有序部分的合适位置,最终使整个序列有序。
4. 希尔排序:希尔排序是插入排序的优化版本,通过将序列拆分成多个子序列进行插入排序,最终得到完全有序的序列。
5. 归并排序:归并排序使用分治法,将序列拆分成两个子序列,分别对子序列进行排序,然后合并成一个有序序列。
它的核心思想是将两个有序的子序列合并成一个有序的序列。
6. 快速排序:快速排序使用分治法,选择一个基准元素将序列分成两个子序列,其中一个子序列的元素都小于基准元素,另一个子序列的元素都大于基准元素,然后分别对两个子序列进行排序。
7. 堆排序:堆排序是一种利用二叉堆数据结构进行排序的算法。
它首先将序列构建成一个大顶堆(或小顶堆),然后按照堆的性质逐个取出堆顶元素,得到有序序列。
8. 计数排序:计数排序是一种用于整数的线性时间排序算法。
它通过统计序列中每个元素出现的次数,然后根据统计结果重构有序序列。
9. 桶排序:桶排序是一种将元素分布在多个桶中的排序算法。
它先将序列分布到多个桶中,然后对每个桶中的元素进行排序,最后按照桶的顺序将元素依次取出,得到有序序列。
10. 基数排序:基数排序是一种按照数字位数从低位到高位进行排序的算法。
它先按照最低有效位进行排序,然后依次向高位进行排序,最终得到有序序列。
以上是常见的数据排序方法,每种方法都有其适用的场景和优劣势。
在实际应用中,需要根据具体情况选择合适的排序方法来提高排序效率。
c语言十大排序算法C语言是一种广泛应用于计算机领域的编程语言,在数据处理过程中,排序算法是最常用的操作之一。
在C语言中,有许多经典的排序算法,下面将介绍十大排序算法并讨论其特点和适用场景。
1.冒泡排序算法冒泡排序算法是一种简单的排序方法,其基本思想是将要排序的数组分为两部分:已排序部分和未排序部分。
进入排序过程后,每一次排序将未排序部分中的第一个数与第二个数进行比较,若第二个数小于第一个数,则交换它们的位置,依次往后,直到最后一个未排序的数。
冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1),适用于数据量较小的排序场景。
2.插入排序算法插入排序算法是一种稳定的排序方法,其中以第一个元素作为基准,与后面的元素进行比较,若后面的元素小于前一个元素,则将其插入到合适位置,依次往后,直到最后一个元素。
插入排序的时间复杂度为O(n^2),空间复杂度为O(1),适用于数据量较小的排序场景。
3.选择排序算法选择排序算法是一种简单的排序算法,其基本思想是每次选择一个最小(或最大)的元素,在未排序部分找出最小的元素,并放到已排序部分的最后一个位置。
选择排序的时间复杂度为O(n^2),空间复杂度为O(1),适用于数据量较小的排序场景。
4.归并排序算法归并排序算法是一种稳定的排序算法,其基本思想是将数组分成两半,然后递归地将每个子数组排序,最后将两个排好序的子数组归并到一起。
归并排序的时间复杂度为O(nlogn),空间复杂度为O(n),适用于数据量较大的排序场景。
5.快速排序算法快速排序算法是一种常用的排序算法,其基本思想是将待排序的数组分为两个子数组,设置一个基准值,小于基准值的元素放到左边,大于基准值的元素放到右边,然后递归地对左右两个子数组进行排序。
快速排序的时间复杂度为O(nlogn),空间复杂度为O(nlogn),适用于数据量较大的排序场景。
6.计数排序算法计数排序算法是一种稳定的排序算法,其基本思想是先统计序列中每个元素出现的次数,将其存入临时数组中,然后从临时数组中按照顺序取出元素。
scratch排序算法的分类
1. 冒泡排序:它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。
2. 选择排序:遍历整个列表,找到最小/大的元素,并将其放置到已经排序的列表的合适位置。
3. 插入排序:从第一个元素开始,该元素可以认为已经被排序;取出下一个元素,在已经排序的元素序列中二分查找到第一个比它大的元素;把新元素插入到该位置之后。
4. 希尔排序:将数列按照步长分组,分别进行插入排序。
5. 堆排序:将数列构造成一个大根堆或者小根堆,将最大/最小元素移走,并针对剩余元素进行重构堆,重复这个过程直到所有的元素都移走。
6. 归并排序:将数列分成两个子数列,在每个字数列上重复使用合并和排序的操作,直到所有元素都有序,然后做合并。
7. 快速排序:选择一个基准元素,将数列以该基准元素分成两个子序列,分别将比基准元素大的元素标识为一个子序列,比基准元素小的则为另一个子序列,然后对每一个子序列继续重复上述操作,直至所有子序列都有序。
算法:基于⽐较的排序算法最近整理了常⽤的排序算法,整理好,留下⾃⼰的思考过程。
1、冒泡排序:(1)平均时间复杂度:O(n2)(2)最好时间复杂度:O(n)(3)最坏时间复杂度:O(n2)(5)空间复杂度:O(1)(5)稳定性:稳定(6)JavaScript实现:function bubble ( arr ) {var len = arr.length;var tmp;// 外层循环负责控制排序的趟数for(var i = 0; i < len - 1; i++){// 内层循环负责进⾏⼀趟排序for(var j = 0; j < len - 1 - i; j++){if(arr[j + 1] < arr[j]){tmp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = tmp;};};};return arr;};2、选择排序:(1)平均时间复杂度:O(n2)(2)最好时间复杂度:O(n2)(3)最坏时间复杂度:O(n2)(4)空间复杂度:O(1)(5)稳定性:不稳定(6)JavaScript实现:function select( arr ) {var len = arr.length;// 外层循环需要进⾏len - 1趟排序for(var i = 0; i < len - 1; i++){var index = i;var min = arr[i];var tmp;// 内层循环从未排序的数组元素中⽐较出最⼩的⼀个for(var j = i + 1; j < len; j++){if(min > arr[j]){index = j;min = arr[j];};};// 将其放在排序后的数组元素的最后tmp = arr[i];arr[i] = min;arr[index] = tmp;};};3、插⼊排序:(1)平均时间复杂度:O(n2)(2)最好时间复杂度:O(n)(3)平均时间复杂度:O(n2)(4)空间复杂度:O(1)(5)稳定性:稳定(6)JavaScript实现:function insert ( arr ) {var len = arr.length;var tmp;for(var i = 1; i < len; i++){// 取出当前的数组元素tmp = arr[i];for(var j = i - 1; j >= 0; j--){if (arr[j] > tmp) {arr[j+1] = arr[j];} else { break; };};// 插⼊取出的数组元素arr[j+1] = tmp;};return arr;}4、希尔排序:(1)平均时间复杂度:O(nlogn) ~ O(n2)(2)最好时间复杂度:O(n1.3)(3)最坏时间复杂度:O(n2)(4)空间复杂度:O(1)(5)稳定性:不稳定(6)JavaScript实现:// 插⼊排序function sort( arr, di ){for(var i = di; i < arr.length; i++){var guard = arr[i];for(var j =i -di; j >= 0 && guard < arr[j]; j -= di){arr[j+di] = arr[j];};arr[j+di] = guard;};return arr;}// 希尔排序,本质上是以不同的步长多次进⾏插⼊排序// 步长的选择对希尔排序的效率有显著影响function shell ( arr ) {var di = parseInt( arr.length / 2 );while ( di >= 1) {arr = sort( arr, di);di = parseInt( di / 2 );};return arr;};5、归并排序:(1)平均时间复杂度:O(nlogn)(2)最好时间复杂度:O(nlogn)(3)最坏时间复杂度:O(nlogn)(4)空间复杂度:O(n)(5)稳定性:稳定(6)JavaScript实现:// 对被归并的左右两个数组进⾏归并排序// 被输⼊的左右两个数组,都是有序的。
一、算法简介
冒泡排序算法、选择排序算法和希尔排序算法是三种常用的排序算法。
这三种算法的共同点是都属于比较排序算法,即通过比较元素之间的大小,进行排序。
下面将分别对这三种算法进行介绍。
二、冒泡排序算法
冒泡排序算法的基本思想是对相邻的元素进行比较,如果逆序则交换它们的位置,直到整个序列有序为止。
具体实现过程如下:
1. 设置循环次数为 n-1,n 为待排序序列长度。
2. 对于每一次循环,从第一个元素开始,依次比较相邻的两个元素,如果逆序则交换它们的位置。
3. 每一次循环结束后,待排序序列中最大的元素就会被排到末尾。
4. 重复执行上述步骤,直到整个序列有序。
冒泡排序算法的时间复杂度为 O(n^2),空间复杂度为 O(1),稳定性较好,适用于数据量较小的情况。
三、选择排序算法
选择排序算法的基本思想是从待排序序列中选择最小的元素,放到已排序序列的末尾,直到整个序列有序为止。
具体实现过程如下:
1. 设置循环次数为 n-1,n 为待排序序列长度。
2. 对于每一次循环,从第一个元素开始,找到待排序序列中最小的元素,并将其放到已排序序列的末尾。
3. 重复执行上述步骤,直到整个序列有序。
选择排序算法的时间复杂度为 O(n^2),空间复杂度为 O(1),稳定性较差,适用于数据量较小的情况。
四、希尔排序算法
希尔排序算法也称为缩小增量排序算法,是插入排序算法的一种改进。
希尔排序算法的基本思想是将待排序序列分成若干个子序列,对每个子序列进行插入排序,然后再对整个序列进行一次插入排序,直到整个序列有序为止。
具体实现过程如下:
1. 设置一个增量值 gap,将待排序序列分成若干个子序列,每个子序列包含的元素个数为 gap。
2. 对于每个子序列,进行插入排序。
3. 减小增量值 gap,重复执行上述步骤,直到 gap=1。
4. 对整个序列进行一次插入排序,使得序列有序。
希尔排序算法的时间复杂度为 O(n^2),空间复杂度为 O(1),稳定性较差,适用于数据量较大的情况。
五、总结
冒泡排序算法、选择排序算法和希尔排序算法是三种常用的排序算法。
它们都采用比较元素大小的方式进行排序,但具体实现过程略有不同,导致时间复杂度和稳定性等方面也有所不同。
在实际应用中,可以根据数据量的大小和稳定性要求等因素,选择合适的排序算法进行使用。