第二讲 概率随机变量及其分布
- 格式:doc
- 大小:191.50 KB
- 文档页数:4
第二讲 随机变量及其分布【考试要求】1.理解随机变量的概念,理解分布函数(){}()F x P X x x =≤−∞<<+∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson)分布()P λ及其应用.3.(数一了解,数三掌握)泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ、指数分布及其应用,其中参数为λ的指数分布()λE 的概率密度为()e ,00,0x x f x x λλ−⎧>=⎨≤⎩.5.会求随机变量函数的分布.考点:随机变量与分布函数1.随机变量:设试验E 的样本空间为Ω,如果对于每一个样本点Ω∈ω,都有一个实数)(ωX 与之对应,则称定义在Ω上的单值实值函数)(ωX 为随机变量,简记为X . 通常用,,X Y Z 等表示随机变量.【注】随机变量的等式和不等式可表示随机事件. 2.分布函数(1)定义:设X 是一个随机变量,x 是任意实数,称(){}()F x P X x x =≤−∞<<+∞为X 的分布函数.(2)基本性质①单调不减,即若12x x <,则12()()F x F x ≤;②lim ()0x F x →−∞=,lim ()1x F x →+∞=; ③()F x 是右连续,即(0)()F x F x +=.【注】这三条性质是一个函数作为某随机变量的分布函数的充分必要条件. (3)其他性质(用分布函数()F x 求概率)①)()(}{a F b F b X a P −=≤<; ②)0(}{−=<a F a X P ;③)0()(}{−−==a F a F a X P ;④)0()0(}{−−−=<≤a F b F b X a P ; ⑤)()0(}{a F b F b X a P −−=<<; ⑥{}()(0)P a X b F b F a ≤≤=−−. 【注】分布函数在处连续.【例1】 下述函数中,可以作为某个随机变量的分布函数的是( ) (A ) ()211F x x =+ (B )()x x F sin = (C ) ()11arctan π2F x x =+ (D ) ()1e ,020,0xx F x x −⎧−>⎪=⎨⎪≤⎩【例2】 设随机变量X 的分布函数为()00πsin 02π12,x F x A x,x ,x ⎧⎪<⎪⎪=≤≤⎨⎪⎪>⎪⎩,则A _____=,6P X ______π⎧⎫<=⎨⎬⎩⎭.【例3】 已知随机变量X 的分布函数为()0,11,18,111,1x x F x ax b x x <−⎧⎪⎪=−⎪=⎨⎪+−<<⎪≥⎪⎩,且()F x a {}0P X a ⇔=={}114P X ==,则_____,_____a b ==. 【例4】 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥−<≤<=−1,110,210,0)(x e x x x F x,则{}1P X ==( )(A )0 (B )21(C )121−−e (D )11e −−考点:离散型随机变量及其分布1.离散型随机变量定义:若随机变量X 所有可能取值是有限或可列无限个,则称X 为离散型随机变量.2.分布律(1)定义:设离散型随机变量X 的所有可能取值为()12i x i ,,=,且X 取ix 的概率为i p ,则称{}()12i i P X x p i ,,===为离散型随机变量X 的分布律.X(2)基本性质:①0,1,2,i p i ≥=;②11ii p∞==∑.【注】这两条性质也是一个数列可以作为某随机变量分布律的充分必要条件. 3.离散型随机变量的分布函数若离散型随机变量X 的分布律为{}()12i i P X x p i ,,===,则X 的分布函数为(){}{}()i i i i x xx xF x P X x P X x p x ≤≤=≤===−∞<<+∞∑∑.若123x x x <<<,则()111212230,,,x x p x x x F x p p x x x <⎧⎪≤<⎪=⎨+≤<⎪⎪⎩. 【注】若已知X 的分布函数()F x (阶梯函数),则X 的分布律为{}()()0i i i P X x F x F x ==−−,12i ,,=.【例1】 (1)做n 次伯努利实验,已知每次成功的概率均为()10<<p p ,令X 表示n 次试验中成功的次数,求X 的分布律.(2)做伯努利试验,已知每次成功的概率均为()10<<p p ,令X 表示直到第一次成功为止所进行的实验次数,求X 的分布律.【例2】 设袋中有5个球,其中3个新球,2个旧球,从中任取3个球,用X 表示3个球中新球个数,求X 的分布律与分布函数.考点:连续型随机变量及其分布1.连续型随机变量及其概率密度(1)定义:设随机变量X 的分布函数为()F x ,若存在非负可积函数()f x ,使得对于任意实数x ,有()()xF x f t dt −∞=⎰,则称X 为连续型随机变量,()f x 称为X 的概率密度函数,简称概率密度(简写为.f .d .p ).【注】①只有存在概率密度的随机变量才能称为连续型随机变量,分布函数连续的随机变量不一定是连续型随机变量.②存在既非连续型又非离散型的随机变量.③(),()()0()F x x F x f x x F x '⎧=⎨⎩为的可导点,为的不可导点. (2)概率密度的基本性质:①()0f x ≥;②()1f x dx +∞−∞=⎰.【注】这两条性质是一个函数可以作为概率密度函数的充分必要条件.(3)连续型随机变量的其他性质: ①)(x F 处处连续.②对()+∞∞−∈∀,a ,有{}.0==a X P ③若()f x 在x 处连续,则有()()F x f x '=. ④对于任意的实数()1212x ,x x x ≤,有{}()()211221()x x P x X x F x F x f x dx <≤=−=⎰.【例1】 设随机变量X 的概率密度为()x f ,则下列函数中必为某随机变量的概率密度的是( )(A )()x f 2 (B )()x f 2 (C )()x f −1 (D )()x f −1【例2】 设随机变量X 的概率密度为()cos ,||20,||2A x x f x x ππ⎧≤⎪⎪=⎨⎪>⎪⎩,求(1)常数A ; (2)X 的分布函数为()x F . 【例3】 设随机变量X 的概率密度为()1||,||10,x x f x else −<⎧=⎨⎩,则______412=⎭⎬⎫⎩⎨⎧<<−X P .考点:常见分布1.常见的离散型随机变量 (1) 0-1分布若随机变量X 的分布律为{}()()110101kk P X k p p ,k ,p −==−=<<,则称X 服从0-1分布,记为),1(~p B X .(2) 二项分布若随机变量的分布律为{}C (1),0,1,2,k k n kn P X k p p k n −==−=,其中01p <<,则称X 服从二项分布,记为~(,)X B n p .(3) 几何分布若随机变量X 的分布律为{}1(1)k P X k p p −==−⋅,1,2,3k =,其中01p <<,则称X 服从参数为p 的几何分布,记为()~X G p .(4) 超几何分布(从未考过)若随机变量X 的分布律为{}C C C k n kM N MnNP X k −−==,其中N k ∈,且{}{}n M k N n M ,min ,0max ≤≤−+,则称X 服从超几何分布.【注】:此公式的数学模型为:设N 件产品中含M 件次品,现从中任取n 件产品,则所取的n 件产品恰有k 件次品的概率.(5) 泊松分布 ①定义若随机变量X 的分布律为{}e !kP X k k λλ−==,0,1,2,k =,其中0λ>,则称X 服从参数为λ的泊松分布,记为~()X P λ.X②泊松定理(数一了解;数三掌握)设0λ>是一个常数,n 是任意正整数,若lim n n np λ→∞=,则对于任意的非负整数k ,有()e lim 1.!nk n kkknn n C p p k λλ−−→∞−=【例1】 设随机变量X 服从参数为()2,p 的二项分布,随机变量Y 服从参数为()3,p 的二项分布,若{}519P X ≥=,则{}1_______P Y ≥=. 【例2】 设某时间段内通过一路口的汽车流量服从泊松分布,已知该时段内没有汽车通过的概率为1e,则这段时间内至少有两辆汽车通过的概率为___________. 2.常见的连续型随机变量 (1) 均匀分布若X 的概率密度为1,()0,a xb f x b a⎧<<⎪=−⎨⎪⎩其它,则称X 在()a,b 上服从均匀分布,记为()~,X U a b ,其分布函数为0,(),1,x a x aF x a x b b a x b<⎧⎪−⎪=≤<⎨−⎪⎪≥⎩. (2) 指数分布若X 的概率密度为e ,0()0,0x x f x x λλ−⎧>=⎨≤⎩,其中0λ>,则称X 服从参数为λ的指数分布,记为()XE λ,其分布函数为1e ,0()0,0x x F x x λ−⎧−≥=⎨<⎩.(3) 正态分布若随机变量X的概率密度为22()2()()x f x x μσ−−=−∞<<+∞,其中0σ>,μ与σ均为常数,则称X 服从参数为,μσ的正态分布,记为2~(,)X N μσ,其分布函数为22()2()d ()t xF x t x μσ−−=−∞<<+∞⎰.特别地,当0,1μσ==,即~(0,1)X N ,称X 服从标准正态分布,其概率密度为22(),x x x ϕ−=−∞<<+∞,分布函数22()d t xx t −Φ=⎰,x −∞<<+∞.【注】(1)指数分布的无记忆性:若()~X E λ,则对任意的0,0s t >>,有{}{}|.P X s t X s P X t >+>=>【例3】 设随机变量()6,1~U X ,则方程012=++Xy y 有实根的概率为____.【例4】 设随机变量()~2,5X U ,现对X 进行三次独立重复观测,求至少有两次观测值大于3的概率.【例5】 设随机变量Y 服从参数为12λ=的指数分布,求关于未知量x 的方程2230x Yx Y ++−=没有实根的概率.【例6】 设随机变量的概率密度函数为()221e ()x x f x k x −+−=−∞<<+∞X则常数=_______k .【例7】 设随机变量()22,X N σ且{}240.3P X <<=,则{}0_______P X <=.【例8】 设随机变量()2,X N μσ,则概率{}P X μσ−<的值随着σ的增大而( )(A )增大 (B )减小 (C )保持不变 (D )无法确定考点:随机变量函数的分布1.离散型随机变量函数的分布设X 为离散型随机变量,其概率分布为{},1,2,i i P X x p i ===,函数()g x 连续,则随机变量()Y g X =的分布律为{}(),1,2,i k k i g x y P Y y p k ====∑.做法:找到Y 全部可能的取值,算出相应值的概率.【例1】 设随机变量X 在()1,2−上服从均匀分布,1,01,0X Y X −<⎧=⎨≥⎩,求Y 的分布律.【例2】(课后作业)设随机变量X 的概率分布为,求常数和的概率分布. 2.连续型随机变量函数的分布情形一:Y 为离散型. 做法:找到Y 全部可能的取值,算出相应值的概率. 情形二:Y 为连续型.(1)分布函数法(代数法和几何法)先求出()Y g X =的分布函数()Y F y ,即()(){}()()Y g x y F y P g X y f x dx ≤=≤=⎰,再对()YF y 求导得到Y 的概率密度()Y f y .(2)公式法 若()y g x =在X 的取值区间内有连续导数()g x ',且()0g x '>或者()0g x '<,则()Y g X =是连续型随机变量,且其概率密度为{}(1,2,)3k c P X k k ===c sin()2Y X π=()()()',0,X Y f h y h y y f y αβ⎧<<⎡⎤⎪⎣⎦=⎨⎪⎩其他其中(),αβ为()y g x =的值域,()h y 是()g x 的反函数.情形三:Y 既非连续型又非离散型 做法:分布函数法求其分布函数.【例3】 设随机变量X 服从()0,2上的均匀分布,则随机变量2Y X =在()0,4内的概率密度()Y f y _______=.【例4】 设随机变量X 的概率密度为()22,00,x x f x ππ⎧<<⎪=⎨⎪⎩其它,求sin Y X =的概率密度()Y f y .。
第2讲概率、随机变量及其分布列一、选择题1.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( A )(A)(B)(C)(D)解析:甲、乙两人都有3种选择,共有3×3=9种情况,甲、乙两人参加同一兴趣小组共有3种情况,所以甲、乙两人参加同一兴趣小组的概率P==,故选A.2.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为 ( D )(A)(B)(C)(D)解析:设事件“甲或乙被录用”为事件A,则表示甲、乙都未被录用,由古典概型,P()==, 所以P(A)=1-=.3.某一批花生种子,如果每1粒发芽的概率为,那么播下3粒这样的种子恰有2粒发芽的概率是( C )(A)(B)(C)(D)解析:用X表示发芽的粒数,独立重复试验服从二项分布B(3,),P(X=2)=()2()1=.4.已知随机变量ξ服从正态分布N(2,1),若P(ξ>3)=0.023,则P(1≤ξ≤3)等于( D )(A)0.046 (B)0.623 (C)0.977 (D)0.954解析:因为ξ~N(2,1),P(ξ>3)=0.023,所以由正态分布的对称性可知P(1≤ξ≤3)=1-2P(ξ>3)=1-2×0.023=0.954,所以选D.5. 如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是( A )(A)1- (B)-1 (C)2-(D)解析:依题意,有信号的区域面积为×2=,矩形的面积为2,所求概率为P==1-.则E(6X+8)的值为( B )(A)13.2 (B)21.2 (C)20.2 (D)22.2解析:由随机变量的期望公式可得E(X)=1×0.2+2×0.4+3×0.4=2.2,E(6X+8)=6E(X)+8=6×2.2+8=21.2.7. 如图,△ABC和△DEF都是圆内接正三角形,且BC∥EF,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在△ABC内”,用B表示事件“豆子落在△DEF内”,则P(B|A)等于( D )(A)(B)(C)(D)解析:如图,作三条辅助线,根据已知条件得这些小三角形都全等,所以P(B|A)===.故选D.8.(2015湖北卷)设X~N(μ1,),Y~N(μ2,),这两个正态分布密度曲线如图所示.下列结论中正确的是( C )(A)P(Y≥μ2)≥P(Y≥μ1)(B)P(X≤σ2)≤P(X≤σ1)(C)对任意正数t,P(X≤t)≥P(Y≤t)(D)对任意正数t,P(X≥t)≥P(Y≥t)解析:由题图可知μ1<0<μ2,σ1<σ2,所以P(Y≥μ2)<P(Y≥μ1),故A错;P(X≤σ2)>P(X≤σ1),故B错;当t为任意正数时,由题图可知P(X≤t)≥P(Y≤t),而P(X≤t)=1-P(X≥t),P(Y≤t)=1-P(Y≥t),所以P(X≥t)≤P(Y≥t),故C正确,D错.9.如果X~B(20,p),当p=且P(X=k)取得最大值时,k的值为( C )(A)8 (B)9 (C)10 (D)11解析:当p=时,P(X=k)=()k·()20-k=·()20,显然当k=10时,P(X=k)取得最大值.10.已知袋中装有标号为1,2,3的三个小球,从中任取一个小球(取后放回),连取三次,则取到的小球的最大标号为3的概率为( B )(A)(B)(C)(D)解析:P==,故选B.11. 如图,在网格状小地图中,一机器人从A(0,0)点出发,每秒向上或向右行走1格到相应顶点,已知向上的概率是,向右的概率是,问6秒后到达B(4,2)点的概率为( D )(A)(B)(C)(D)解析:根据题意,从A到B相当于6次试验中4次向右走,2次向上走,因此所求概率为()2·()4=,故选D.12.若a,b∈(0,2),则函数f(x)=ax3+2x2+4bx+1存在极值的概率为( A )(A)(B)(C) (D)解析:f′(x)=ax2+4x+4b,函数f(x)=ax3+2x2+4bx+1存在极值,则Δ=42-4a×4b>0,所以ab<1,又=2ln 2,所以函数有极值的概率为=.二、填空题13.(2015广东卷)已知随机变量X服从二项分布B(n,p).若E(X)=30,D(X)=20,则p= .解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=.答案:14.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.解析:十个数中任取七个不同的数共有种情况,七个数的中位数为6,那么6只有处在中间位置,有种情况,于是所求概率P==.答案:15.(2014浙江卷)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)= . 解析:设P(ξ=1)=x,P(ξ=2)=y,则得表格如下:由分布列的性质得+x+y=1,①又E(ξ)=0×+1×x+2y=1,②①、②联立,解得x=且y=.所以D(ξ)=(1-0)2×+(1-1)2×+(1-2)2×=.答案:16.甲、乙等5名志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.设随机变量X为这5名志愿者中参加A岗位服务的人数,则X的数学期望为. 解析:根据题意,5名志愿者被随机分配到A,B,C,D四个不同岗位,每个岗位至少一人,共有=240种,而X=1,2,则P(X=1)===,P(X=2)===,故E(X)=1×+2×=.答案:三、解答题17.(2014湖北卷)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?解:(1)依题意,p1=P(40<X<80)==0.2,p2=P(80≤X≤120)==0.7,p3=P(X>120)==0.1.由二项分布,在未来4年中至多有1年的年入流量超过120的概率为p=(1-p3)4+(1-p3)3p3=()4+4×()3×=0.9477.(2)记水电站年总利润为Y(单位:万元).①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=5000,E(Y)=5000×1=5000.②安装2台发电机的情形.依题意,当40<X<80时,一台发电机运行,此时Y=5000-800=4200,因此P(Y=4200)=P(40<X<80)=p1=0.2;当X≥80时,两台发电机运行,此时Y=5000×2=10000,因此P(Y=10000)=P(X≥80)=p2+p3=0.8.由此得Y的分布列如下所以,E(Y)=4200×0.2+10000×0.8=8840.③安装3台发电机的情形.依题意,当40<X<80时,一台发电机运行,此时Y=5000-1600=3400,因此P(Y=3400)=P(40<X<80)=p1=0.2;当80≤X≤120时,两台发电机运行,此时Y=5000×2-800=9200,因此P(Y=9200)=P(80≤X≤120)=p2=0.7;当X>120时,三台发电机运行,3综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.18.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.①若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.解:(1)当需求量n<16时,卖出n枝,剩(16-n)枝,当需求量n≥16时,16枝全卖出.所以y=(n∈N).(2)由题意知,日需求量n与对应概率如表①由题意知X=60,70,80,且P(X=60)=P(n=14)=0.1,P(X=70)=P(n=15)=0.2,P(X=80)=P(n≥16)=0.7,所以X的分布列为X的数学期望E(X)=60×0.1+70×0.2+80×0.7=76.X的方差D(X)=(60-76)2×0.1+(70-76)2×0.2+(80-76)2×0.7=44.②答案一:花店一天应购进16枝.当花店一天购进17枝玫瑰花时,用Y表示当天的利润(单位:元),则Y=55,65,75,85.P(Y=55)=P(n=14)=0.1,P(Y=65)=P(n=15)=0.2,P(Y=75)=P(n=16)=0.16,P(Y=85)=P(n≥17)=0.54.所以E(Y)=55×0.1+65×0.2+75×0.16+85×0.54=76.4,D(Y)=(55-76.4)2×0.1+(65-76.4)2×0.2+(75-76.4)2×0.16+(85-76.4)2×0.54=112.04. 综上知D(X)<D(Y)且相差较大,虽然E(X)<E(Y)但相差不大,所以一天购进16枝玫瑰花时利润波动相对较小,且平均获利基本相同,故花店一天应购进16枝玫瑰花.答案二:花店一天应购进17枝玫瑰花,理由如下:若花店一天购进17枝玫瑰花,Y表示当天的利润(单位:元)则Y的分布列为Y的期望为E(Y)=55×0.1+65×0.2+75×0.16+85×0.54=76.4.可知E(Y)>E(X),故购进17枝玫瑰花时的平均利润大于购进16枝时的平均利润,故花店一天应购进17枝玫瑰花.互斥事件与相互独立事件的概率训练提示:(1)注意相互独立事件与互斥事件的区别.(2)独立重复试验中概率的计算.1.甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6,0.5,0.4,能通过面试的概率分别是0.6,0.6,0.75.(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;(2)求经过两次考试后,至少有一人被该高校预录取的概率.解:(1)分别记“甲、乙、丙三个同学笔试合格”为事件A1,A2,A3;E表示事件“恰有一人通过笔试”,则P(E)=P(A1)+P(A2)+P(A3)=0.6×0.5×0.6+0.4×0.5×0.6+0.4×0.5×0.4=0.38.即恰有一人通过笔试的概率是0.38.(2)分别记“甲、乙、丙三个同学被该高校预录取”为事件A,B,C,则P(A)=0.6×0.6=0.36,P(B)=0.5×0.6=0.3,P(C)=0.4×0.75=0.3.事件F表示“甲、乙、丙三个同学中至少有一人被该高校预录取”.则表示甲、乙、丙三个同学均没有被该高校预录取,即=,于是P(F)=1-P()=1-P()P()P()=1-0.64×0.7×0.7=0.6864.2.某人向一目标射击4次,每次击中目标的概率为.该目标分为3个不同的部分,第一、二、三部分面积之比为1∶3∶6,击中目标时,击中任何一部分的概率与其面积成正比.(1)设X表示目标被击中的次数,求X的分布列;(2)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A).解:(1)依题意知X~B(4,),P(X=0)=()0(1-)4=,P(X=1)=()1(1-)3=,P(X=2)=()2(1-)2=,P(X=3)=()3(1-)1=,P(X=4)=()4(1-)0=.所以X的分布列为(2)设A i表示事件“第一次击中目标时,击中第i部分”i=1,2.B i表示事件“第二次击中目标时,击中第i部分”,i=1,2.依题意知P(A1)=P(B1)=0.1,P(A2)=P(B2)=0.3,A=A1∪B1∪A1B1∪A2B2,所求的概率P(A)=P(A1)+P(B1)+P(A1B1)+P(A2B2)=P(A1)P()+P()P(B1)+P(A1)P(B1)+P(A2)P(B2)=0.1×0.9+0.9×0.1+0.1×0.1+0.3×0.3=0.28.离散型随机变量的均值与方差训练提示:求离散型随机变量均值与方差的基本方法(1)已知随机变量的分布列求它的均值、方差,按定义求解.(2)已知随机变量X的均值、方差,求X的线性函数Y=aX+b的均值、方差,可直接用X的均值、方差的性质求解.(3)如果所给随机变量是服从常用的分布(如两点分布、二项分布等),利用它们的均值、方差公式求解.3.(2015重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望.解:(1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)==.(2)X的所有可能值为0,1,2,且P(X=0)==,P(X=1)==,P(X=2)==.故E(X)=0×+1×+2×=(个).4.柴静的《穹顶之下》发布后,各地口罩市场受其影响生意火爆,A市场虽然雾霾现象不太严重,但经抽样有25%的市民表示会购买口罩,现将频率视为概率,解决下列问题:(1)从该市市民中随机抽取3位,求至少有一位市民会购买口罩的概率;(2)从该市市民中随机抽取4位,X表示愿意购买口罩的市民人数,求X的分布列及数学期望. 解:(1)依题意可得,任意抽取一位市民会购买口罩的概率为,从而任意抽取一位市民不会购买口罩的概率为.设“至少有一位市民会购买口罩”为事件A,则P(A)=1-()3=1-=,故至少有一位市民会购买口罩的概率为.(2)X的所有可能取值为0,1,2,3,4.P(X=0)=()4=,P(X=1)=()3×==,P(X=2)=()2×()2==,P(X=3)=()1×()3==,P(X=4)=()4=,E(X)=0×+1×+2×+3×+4×=1,或因为X~B(4,),所以E(X)=np=1.5. 现有一游戏装置如图,小球从最上方入口处投入,每次遇到黑色障碍物等可能地向左、右两边落下.游戏规则为若小球最终落入A槽,得10张奖票;若落入B槽,得5张奖票;若落入C 槽,得重投一次的机会,但投球的总次数不超过3次.(1)求投球一次,小球落入B槽的概率;(2)设玩一次游戏能获得的奖票数为随机变量X,求X的分布列及数学期望.解:(1)由题意可知投一次小球,落入B槽的概率为()2+()2=.(2)投一次小球,落入A槽的概率为()2=,落入B槽的概率为,落入C槽的概率为()2=.X的所有可能取值为0,5,10,P(X=0)=()3=,P(X=5)=+×+()2×=,P(X=10)=+×+×()2=,E(X)=0×+5×+10×=.日最高气温不高于32 ℃的频率为0.9.(2)若视频率为概率,求六月份西瓜日销售额的期望和方差;(3)在日最高气温不高于32 ℃时,求日销售额不低于5千元的概率. 解:(1)由已知得P(t≤32)=0.9,所以P(t>32)=1-P(t≤32)=0.1,所以Z=30×0.1=3,Y=30-(6+12+3)=9.(2)P(t≤22)==0.2,P(22<t≤28)==0.4,P(28<t≤32)==0.3,P(t>32)==0.1,所以六月份西瓜日销售额X的分布列为所以E(X)=2×0.2+5×0.4+6×0.3+8×0.1=5,D(X)=(2-5)2×0.2+(5-5)2×0.4+(6-5)2×0.3+(8-5)2×0.1=3. (3)因为P(t≤32)=0.9,P(22<t≤32)=0.4+0.3=0.7,所以由条件概率得P(X≥5|t≤32)=P(22<t≤32|t≤32)===.。
第二章随机变量及其分布2.1随机变量为全面研究随机试验的结果,皆是随机现象的统计规律性,需要将随机试验的结果数量化,即把随机试验的结果与实数对应起来.2.1.1随机变量的定义定义一:设Ω为随机试验E 的样本空间,若对Ω中的每一个样本点ω都有一个确定的实数)(ωX 与之对应,则称)(ωX X =为定义在Ω上的随机变量.随机变量通常用大写字母X、Y、Z 或希腊字母ηξ,等表示,而表示随机变量所取的值时,一般用小写字母x,y,z 等表示.2.1.2引入随机变量的意义随机变量因其取值方式不同,通常分为离散型和非离散型两类.非离散型随机变量最重要的是连续型随机变量.2.1.3随机变量的分布函数定义二:设X 是一个随机变量,称+∞<<-∞≤=x x X P x F },{)(为X 的分布函数.对任意实数)(,2121x x x x <,随机点落在区间(21,x x ]内的概率为:)()(}{}{)(121221x F x F x X P x X P x X x P -=≤-≤=<<分布函数的性质:(1)1)(0≤≤x F (2)非减(3),0)(lim )(==-∞-∞→x F F x ,1)(lim )(==+∞+∞→x F F x 事实上,由事件+∞≤-∞≤x x 和分别是不可能事件和必然事件(4)右连续)()(lim 00x F x F x x =+→2.2离散型随机变量及其概率分布2.2.1离散型随机扮靓及其概率分布定义三:设X 是一个随机变量,如果他的全部可能取值只有有限个或可数无穷多个,则称X 是离散型随机变量.设随机变量X 的全部可能取值为,,,,,n i x i ...21=X 取各个可能取值的概率n i x p x X P i i ,,,,...21)()(===,则称为随机变量X 的分布律,离散型随机变量X 的分布律也可以表示为:X X1X2...Xn ...P(X)P(x1)P(x2)...P(xn)...离散型随机变量X 的分布律满足:(1)),...(,...,2,1,0)(非负性n i x p i =≥(2))(1)(1规范性=∑+∞=i i x p 易得X 的分布函数为:)(}{}{)(∑∑≤≤===≤=xx i xx i i i x p x X P x X P x F 即,当i x x <时,0)(=x F ;当1x x <时,0)(=x F ;当21x x x <<时,)()(1x p x F =;当32x x x <<时,)()()(21x p x p x F +=;......当n n x x x <<-1时,)(.....)()()(21n x p x p x p x F +++=;......2.2.2常用离散型随机变量的分布1.两点分布(“0-1”分布)定义四:若一个随机变量X 只有两个可能取值21x x ,,且其分布为:10,1)(,)(21<<-====p p x X P p x X P 则称X 服从21x x ,处参数为p 的两点分布.2.二项分布若随机变量X 的全部可能取值为0,1,2,...,n,且其分布律为,,,,,n k q p C p k X P k n k k n ...,210,)(===-其中,0<p<1,q+p=1,则称为X 服从参数为n,p 的二项分布,或称X 服从参数为n,p 的伯努利分布,记为)(~p n B X ,3.泊松分布定义五:若一个随机变量X 的分布律为:...210,0,!)(,,,=>==-k k e k X P kλλλ则称X 服从参数为λ的泊松分布,记作)(~λP X .易见:(1)...210,0)(,,,=≥=k k X P (2)1!!}{00=====-+∞=-+∞=-+∞=∑∑∑λλλλλλe e k e k ek X P k k k k k 4.二项分布的泊松近似引言:对于二项分布B(n,p),当实验次数n 很大时,计算其概率很麻烦.例如:10001,5000(~B X 定理1:(泊松定理)在n 次伯努利试验中,事件A 在每次试验中发生的概率为n p (注意这与实验的次数有关),如果∞→n 时,λ→n np (λ》0为常数),则对于任意给定的k,有!)1(lim k ep p C kkn kk nn λλ--∞→=-(np =λ)2.3连续型随机变量及其概率密度2.3.1连续型随机变量及其概率密度定义六:设)(x F 为随机变量X 的分布函数,若存在非负函数)(x f ,对任意实数x ,有⎰∞-=x dt t f x F )()(,则称X 为连续型随机变量,称)(x f 为X 的概率密度函数或分布密度函数,简称概率密度.概率密度具有下列性质:(1)0)(≥x f (2)1)(=⎰+∞∞-dx x f 连续型随机变量的性质:(1)连续型随机变量X ,若已知其密度函数)(x f ,则根据定义,可求其分布函数)(x F ,同时,还可求得X 的取值落在任意区间(a,b]上的概率为⎰=-=≤<ba dxx f a F b F b X a P )()()(}{(2)连续型随机变量X 取任意指定值)(R a a ∈的概率为零,因为⎰∆-→∆→∆=<<∆-==axa x x dxx f a X x a P a X P )(lim }{lim }{00故对连续型随机变量X ,则有⎰=-=<<=≤≤ba dxx f a F b F b X a P b X a P )()()(}{}{(3)若)(x f 在点x 处连续,则)()('x f x F =2.3.2常用连续型随机变量的分布1.均匀分布定义七:若连续型随机变量X 的概率密度=)(x f 其他bx a ab <<⎪⎩⎪⎨⎧-,,01则称X 在区间(a,b)上服从均匀分布,记作),(~b a U X 易见:(1);0)(≥x f (2)1)(=⎰+∞∞-dx x f 求得其分布函数:.;;,,,10)(b x b x a a x a b ax x F ≥<<≤⎪⎩⎪⎨⎧--=2.指数分布定义八:若随机变量X 的概率密度为⎩⎨⎧>=-其他,00,)(x e x f x λλ其中,0>λ是常数,则称X 服从参数λ的指数分布,简记为)(~λe X .易见:(1);0)(≥x f (2)1)(=⎰+∞∞-dx x f 易求出其分布函数:⎩⎨⎧>-=-其他。
专题六:概率统计、算法初步、复数
第二讲——概率、随机变量及其分布
一、基础训练
(1)(2009安徽文卷)从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条
线段为边可以构成三角形的概率是 。
(2)(2010安徽文)甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个
顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( )。
(A )318 (B )418 (C )518 (D )618
(3)(2010江西理)一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀
疑大臣作弊,他用两种方法来检测。
方法一:在10箱子中各任意抽查一枚;方法二:在5
箱中各任意抽查两枚。
国王用方法一、二能发现至少一枚劣币的概率分别为1p 和2p ,则
( ).A. 1p =2p B. 1p <2p C. 1p >2p D.以上三种情况都有可能
(4) (2010湖北理)投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事
件A,“骰子向上的点数是3”为事件B,则事件A ,B 中至少有一件发生的概率是( ). A.512 B.12 C.712 D.34
(5)(2010湖北文)13.一个病人服用某种新药后被治愈的概率为0.9.则服用这咱新药的4
个病人中至少3人被治愈的概率为 。
(用数字作答).
二、例 题
例1.(2009福建卷文)袋中有大小、形状相同的红、黑球各一个,现一次有放
回地随机摸取3次,每次摸取一个球
(I )试问:一共有多少种不同的结果?请列出所有可能的结果; (Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概
率。
例2.【08安徽文18】在某次普通话测试中,为测试汉字发音水平,设置了10
张卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有
后鼻音“g ”.
(Ⅰ)现对三位被测试者先后进行测试,第一位被测试者从这10张卡片总
随机抽取1张,测试后放回,余下2位的测试,也按同样的方法进行。
求这三位被测试者抽取的卡片上,拼音都带有后鼻音“g ”的概率。
(Ⅱ)若某位被测试者从10张卡片中一次随机抽取3张,求这三张卡片上,
拼音带有后鼻音“g ”的卡片不少于2张的概率。
变式训练
(1)(08北京文18)甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.
(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率;
(Ⅱ)求甲、乙两人不在同一个岗位服务的概率.
(2)(11山东18)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女. (Ⅰ)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
(Ⅱ)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
例3.【08福建文18】三人独立破译同一份密码.已知三人各自破译出密码的概
率分别为111,,,543
且他们是否破译出密码互不影响. (Ⅰ)求恰有二人破译出密码的概率;
(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由
例4.【08湖南文16】甲、乙、丙三人参加一家公司的招聘面试,面试合格者可
正式签约。
甲表示只要面试合格就签约;乙、丙则约定:两人面试都合格就
一同签约,否则两人都不签约。
设每人面试合格的概率都是2
1,且面试是否合格互不影响。
求:
(I )至少一人面试合格的概率;
(II )没有人签约的概率。
变式训练
【08全国Ⅱ文19】甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2.
设甲、乙的射击相互独立.
(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;
(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率.
例5.(2010浙江理19)如图,一个小球从M 处投入,通过管道自上而下落A 或B 或C 。
已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A ,B ,C ,则分别设为l ,2,3等奖.
(I )已知获得l ,2,3等奖的折扣率分别为50%,70%,
90%.记随变量ξ为获得k (k =1,2,3)等奖的折扣率,求随
机变量ξ的分布列及期望ξE ;
(II)若有3人次(投入l 球为l 人次)参加促销活动,记随机
变量η为获得1等奖或2等奖的人次,求)2(=ηP .
例6.(2010全国卷2理) 如右图,由M 到N 的电路中有4个元件,分别标为T 1,T 2,T 3,T 4,电流能通过T 1,T 2,T 3的概率都是p ,电流能通过T 4的概率是0.9.电
流能否通过各元件相互独立.已知T 1,T 2,T 3中至少有一个能通过电流的概率为
0.999.
(Ⅰ)求p ;
(Ⅱ)求电流能在M 与N 之间通过的概率;
(Ⅲ)ξ表示T 1,T 2,T 3,T 4中能通过电流的元件个数,求
ξ的期望.
例7.(2010江西理)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门。
首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门。
再次到达智能门时,系统会随机打开一个你未到过...
的通道,直至走完迷宫为止。
令ξ表示走出迷宫所需的时间。
(1) 求ξ的分布列;
(2) 求ξ的数学期望。
变式训练
(1)(2010四川理)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为1
6
.甲、乙、丙三位同学每人购买了一瓶该饮料。
(Ⅰ)求甲中奖且乙、丙都没有中奖的概率;
(Ⅱ)求中奖人数ξ的分布列及数学期望Eξ.
(2)(2010天津理)某射手每次射击击中目标的概率是2
3
,且各次射击的结果互不影响。
(Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率
(Ⅱ)假设这名射手射击5次,求有3次连续击中目标。
另外2次未击中目标的概率;(Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3
分,记ξ为射手射击3次后的总的分数,求ξ的分布列。
三、练习巩固
1.(2010重庆文)加工某一零件需经过三道工序,设第一、二、三道工序
的次品率分别为1
70
、
1
69
、
1
68
,且各道工序互不影响,则加工出来的零件的次
品率为。
2.(2010福建理)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮。
假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于。
3.(2010江苏卷)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是。